Untargeted metabolomic study of autism in newborn screening samples: a pilot study.

Julie Courraud¹,², Madeleine Ernst¹,², Susan Svane Laursen¹, Arieh S. Cohen¹

¹ Section for Clinical Mass Spectrometry, Department of Congenital Disorders, Danish Center for Neonatal Screening, Statens Serum Institut Copenhagen, Copenhagen, Denmark
² iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark

Correspondence: Julie Courraud (julc@ssi.dk), Section for Clinical Mass Spectrometry, Department of Congenital Disorders, Danish Center for Neonatal Screening, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen S, Denmark
ORCID 0000-0002-6797-7129

Abstract:

Background
The etiopathology of autism spectrum disorder (ASD) is unclear. Main risk factors include both genetic and non-genetic factors, especially prenatal and perinatal events. The Danish Neonatal Screening Biobank in connection with registry data provides unique opportunities to study early signs of disease. Therefore, we aimed to study the metabolomic profiles of dried blood spot (DBS) of newborns later diagnosed with ASD.

Methods
From the iPsych cohort, we randomly selected 37 subjects born in 2005 and diagnosed with ASD in 2012 (cases) together with 37 matched controls and submitted their biobanked DBS to an LC-MS/MS-based untargeted metabolomics protocol. Raw data were preprocessed using MZmine 2.41.2 and
metabolites were subsequently putatively annotated using mzCloud, GNPS feature-based molecular networking and other metabolome mining tools (MolNetEnhancer). Statistical analyses and data visualization included principal coordinates analyses, PERMANOVAs, t-tests, and fold-change analyses.

Results

4360 mass spectral features were detected, of which 150 could be putatively annotated at a high confidence level. Chemical structure information at a broad level could be retrieved for a total of 1009 metabolites, covering 31 chemical classes including bile acids, various lipids, nucleotides, amino acids, acylcarnitines and steroids. Although the untargeted analysis revealed no clear distinction between cases and controls, 18 compounds repeatedly reported in the ASD literature could be detected in our study and three mass spectral features were found differentially abundant in cases and controls before FDR correction. In addition, our results pinpointed important other factors influencing chemical profiles of newborn DBS samples such as gestational age, age at sampling and month of birth.

Limitations

Inherent to pilot studies, our sample size was insufficient to reveal metabolic markers of ASD. Nevertheless, we were able to establish an efficient metabolomic data acquisition and analysis pipeline and flag main confounders to be considered in future studies.

Conclusions

In this first untargeted DBS metabolomic study, newborns later diagnosed with ASD did not show a significantly different metabolic profile when compared to controls. Nevertheless, our method covered many metabolites associated with ASD in previous studies, suggesting that biochemical markers of ASD are present at birth and may be monitored during newborn screening.

Keywords: autism, dried blood spots, untargeted metabolomics, newborn screening, biomarkers
Background

The etiopathology of ASD is still unclear and today ASD is diagnosed based on behavioral signs and assessment of communication skills [1,2]. How the condition should be classified is debated [3,4], as well as which tests offer the most reliable conclusions [1]. In Europe, detection services based on behavioral signs are usually accessed on average at 18 months of age, and diagnosis occurs on average at 36 months of age [5]. In this setting, early intervention is a challenge and has been reported to start in Europe at 42 months of age on average [5]. Whether behavioral impairments are reflected in the blood as biochemical abnormalities is still unsure, but the quest for biomarkers is legitimate, as they would represent a useful tool to help in the diagnosis and treatment of ASD and in understanding its underlying molecular mechanisms [6].

The main risk factors for ASD include genetic [7,8] and non-genetic factors, especially exposure during fetal life [1,9–11]. Prenatal stress could influence fetal brain development and interact with genetic predispositions thereby enhancing the risk of future psychiatric disorders [12,13]. Among prenatal outcomes, maternal infection accompanied by fever during the second trimester of pregnancy has been found to increase the risk of ASD twofold approximately [14]. Among perinatal outcomes, preterm birth (<37 weeks) and low birthweight (small for gestational age) have been associated with an increased risk of ASD as well as high frequency ventilation and intracranial hemorrhage [15]. Low Apgar scores, a score used to summarizing vital signs and assess health in newborns [16], also have recently been associated with an increased risk of developing ASD [17].

Gastrointestinal tract disorders are often reported in ASD children, along with certain foods or diets impacting the severity of symptoms [18–21]. There is a growing evidence of strong interactions...
between gut and brain through microbiota [22,23], and these observations support the notion that ASD is associated with metabolic malfunction such as decrease in sulphation capacity [18], and potentially connected to gut microbial populations and functions [20]. It has also been shown that many small molecules differing between normally-developing and ASD individuals likely result from microbial metabolism [20,24,25]. Recently, plasma and stool metabolites have been associated with poor communication scoring at age 3, and with good prediction of autism by age 8 [26]. Sharon and collaborators (Sharon et al. 2019) have shown that microbiome and metabolome profiles of mice harboring human microbiota predict that specific bacterial taxa and their metabolites modulate ASD behaviors. They found that taurine and 5-amiovaleric acid (5AV) had significantly lower levels in ASD mice and could show that when feeding BTBR mice either taurine or 5AV, autism-like symptoms such as repetitive behavior and decreased social interaction could be decreased. In an intervention study, treatment with *Lactobacillus reuteri* has been shown to have beneficial effects on ASD-related social disturbances in mice [27]. In humans, intestinal microbiota transplantation has shown very promising results, both against gastrointestinal tract symptoms and ASD symptoms, granting the therapy a ‘fast-track’ status by the FDA [28]. Among the plasma metabolites showing average to good classification capacity between the treated children and the controls, sarcosine, tyramine O-sulfate and inosine 5’-monophosphate were selected as most discriminant [29]. Many of these studies postulate that microbiota-derived molecules are transported across the blood-brain-barrier, acting as neuroactive metabolites [22]. An impaired intestinal permeability or ‘leaky gut’ could also play a role in the effect of microbiota activity on psychiatric disorders [30,31]. If gut microbial metabolites of potential impact are indeed detectable in blood, this opens the door to blood-based investigations to further study and understand the metabolomic differences between ASD and non-ASD individuals in the context of gut-brain interactions.
Several studies have reported an altered metabolome associated with ASD during childhood, either in blood [32–35,25,36–44], urine [18,38,45–56] or other matrices [25,57]. However, although some biochemical biomarkers or set of biomarkers seem promising [6], none has yet been proven robust enough for clinical practice. Furthermore, it remains unclear at what point in life biochemical abnormalities of ASD are detectable.

To study the early role of genetic, prenatal and perinatal variables on disease development, samples need to be collected shortly after birth. However, it is not practically and ethically straightforward to draw blood from newborns prospectively. In many countries, the newborn screening programs are conducted on dried blood spots (DBS) collected a few days after birth. In Denmark, such DBS are stored in the Danish National Biobank and are available for research purposes for the last 30 years, thereby covering approximately half of the country’s population [58]. This allows researchers to alleviate the biases inherent to recruitment in prospective clinical studies and instead retrospectively retrieve the samples that are connected to the relevant metadata stored in centralized health registries.

Taking advantage of this unique resource, we here aimed at studying the strengths and limitations of DBS samples in studying early biochemical abnormalities related to ASD development using an untargeted metabolomics protocol. We compared the metabolomic profiles of newborns that have been diagnosed with ASD at age 7 (cases) to newborns that have not (controls) and investigated potential main confounders.

Methods

Materials and methods

Materials
Methanol (MeOH), acetonitrile (ACN), isopropanol (IPA), water (H₂O) and formic acid (FA) were of Optima™ LCMS-grade and were purchased from Thermo Fisher Scientific (Waltham, MA, USA).

Stable-isotope-labeled internal standards (IS) from the NeoBase Non-derivatized MSMS kit (PerkinElmer, Waltham, MA, USA) were used. The exact list of compounds is provided in Additional file 1.

Subjects and samples

Children (n=74) from the iPsych cohort [59] born in 2005 were randomly selected, of which 37 with a diagnosis of autism spectrum disorder (ICD10 F84.0, F84.1, F84.5, F84.8 and/or F84.9) [2] at the date of registry data extraction (2012), and 37 paired controls. Cases and controls were matched based on gender and date of birth. Other metadata such as gestational age (GA), birthweight, age at sampling, month of birth, mother’s age at birth, and date of diagnosis, were also collected (when available).

Sample size was chosen for several reasons: 1) the unknown variation of metabolites in DBS made power calculations impossible, hence why we needed a pilot study, 2) batch effect is a common technical challenge in metabolomics, and analyzing all samples on one single 96-well plate was expected to reduce technical variability, 3) DBS are highly precious samples.

DBS are full blood from newborns, aged between 48 and 72 hours, blotted onto Ahlstrom #226 filter paper and left to dry for at least 3 hours at room temperature before being sent by mail at ambient temperature to the Department of Congenital Disorders at the Statens Serum Institut in Copenhagen. Subsequent to being used in the newborn screening program the samples are biobanked in the Danish National Biobank (www.nationalbiobank.dk) at -20°C until they are retrieved for further research analysis.
A punch of 3.2-mm diameter was collected from each DBS using a Panthera-Puncher™ 9 blood spot punching system (PerkinElmer) directly into a MicroPlate, non-coated 96-well clear polystyrene plate (PerkinElmer). 100 μL of IS in extraction buffer were added to each well. The IS were labelled amino acids (AA IS) and acylcarnitines (AC IS) diluted in 80% methanol (i.e. dilution factor of 1:330, concentrations in Additional file 1). The plate was heat-sealed and shaken for 45 min at 750 rpm at 25°C in a PHMP-4 incubator. Then it was centrifuged for 30 min at 4000 rpm at 4 °C. All the transferring steps were performed on a Microlab STAR line automated liquid handling workstation using Venus software (Hamilton, Bonaduz, Switzerland).

The supernatant (75 μL) was transferred to a hard-shell 96-well polypropylene PCR plate (Bio-Rad) and dried down with nitrogen 60 L/min at 25 °C for 1 hour on an EVX-192 (Apricot Designs Evaporex). The residue was reconstituted in 75 μL 2.5% methanol, shaken for 15 min at 750 rpm at 25°C in a PHMP-4 incubator, and centrifuged 10 min at 4000 rpm at 4 °C. 65µL were transferred to a hard-shell 96-well polypropylene PCR plate (Bio-Rad), heat-sealed, and centrifuged again for 5 min at 3000 rpm at 4 °C. The method from sample preparation to MS acquisition is also available as a table according to the guidelines for standardization of LCMS method reporting [60] with adaptation to metabolomics (Additional file 1).

Quality assurance

LC-MS/MS instrument performance was controlled by analyzing 4 pooled extracts, 8 solvent blanks, and 3 paper blanks at regular intervals. Pooled extracts were made of 5 μL of reconstituted extract from each of the samples (cases and controls only, total of 370 μL divided in four wells spread across the plate) and were used to assess the consistency of extraction and data acquisition. Solvent blanks were used to check for carry over and instrument noise, while paper blanks were used to monitor matrix signals from the paper. Internal standards were used to control the quality of the extraction, elution, and
signal acquisition. Paired cases and controls were injected after one another but in a random order (first case, then control, or vice-versa). Pairs were randomized over the plate.

Liquid chromatography

The samples were injected using an autosampler with stack cooler (Open Autosampler UltiMate OAS-3300TXRS (Thermo Fisher Scientific)) and eluted through a Waters Acquity UPLC BEH C18 column (130 Å, 2.1 mm x 50 mm, 1.7-µm particles) preceded by a Waters Acquity UPLC BEH C18 VanGuard pre-column, 130 Å, 2.1 mm x 5 mm, 1.7-µm particles) using a Transcend II, LX-2 with UltiMate pumps (Thermo Fisher Scientific). The pressure limits were set at 0.0 – 1034.0 bar.

The mobile phase consisted of solvent A (97.31% H₂O, 1.25% ACN, 1.25% MeOH and 0.2% FA), and B (2.49% H₂O, 48.66% ACN, 48.66% MeOH and 0.2% FA).

The Wash1 solvent was mobile phase A and the Wash2 solvent mix was 25:25:25:25 v/v MeOH:IPA:H₂O:ACN + 0.2% FA. The gradient (0.25 mL/min) started with 100% A : 0% B. After 0.5 min, we applied a gradient ramp to 0% A: 100% B over 8.5 minutes followed by a 0.5-min flow ramp up to 0.9 mL/min and 5 minutes of 100% B. At 15 min, the column was equilibrated for 5.5 min with 100% A. At 17.5 min, the flow was changed back to 0.25 mL/min over 0.5 min. The total run time was 20.5 minutes, including 10 min sample run time and 10.5 min column wash and equilibration. The column temperature was maintained at 60.0°C using a hot pocket column heater and the samples in the autosampler were kept at 4°C throughout the analysis. The data was acquired in profile mode from 0.20 min and over 9.80 min.

Mass spectrometry
The Q-Exactive Orbitrap mass spectrometer (Thermo Fisher Scientific) was operated with a heated
electrospray ionization source (HESI) in positive mode. The instruments were controlled using
TraceFinder 4.1 Clinical Research and Aria MX (Thermo Fisher Scientific). Mass range in MS full
scan mode was set to 70 to 1050 m/z with a resolution of 35,000. Automatic gain control was set to
1.106, and maximum injection time at 100 ms. For data dependent-MS2 the resolution was set to
17,500. Automatic gain control was set to 1.105, and maximum injection time at 50 ms. Loop count
was 5, isolation window 1.5 m/z and the stepped NCE 17.5, 35 and 52.5 eV. The spectrum data type
was set to Profile. In data dependent settings the Apex trigger was set to 2 to 7 s with 15s dynamic
exclusion and charge exclusion on 3-8 and >8. Diisooctylphtalate (391.28429 m/z) was selected as
lock mass. Other settings included the sheath gas pressure (N$_2$, 32 psi), the auxiliary gas flow and
temperature (N$_2$, 8 arb. units, 350°C), the S-lens radio frequency level (50.0%), the ion source
temperature (350°C), and the spray voltage (3.8 kV between 0-9.8 min and 1.0 kV between 9.8-10
min).

LC-MS data preprocessing

After conversion to .mzML (centroid) using MSConvertGUI v3.0 (ProteoWizard Software Foundation,
Palo Alto, CA, USA) [61], raw files were pre-processed using MZmine v2.41.2 [62,63]. All setting
details are provided in the batch .xml file (Additional file 2). Briefly, data were cropped based on
retention time (RT) 0.27-9.80 min. Masses were detected with a noise threshold of 10,000 for MS1 and
of 0 for MS2. The chromatogram was built using the ADAP module [64], with minimum 7 scans per
peak, a group intensity threshold of 10,000, a minimum highest intensity of 150,000, and a m/z
tolerance of 0.001 m/z or 5 ppm. Deconvolution was performed using the Wavelets (ADAP) module,
with m/z center calculation using median, and ranges for MS2 scan pairing of 0.01 Da and 0.4 min. The
isotopes were grouped with a m/z tolerance of 0.001 m/z or 5 ppm and RT tolerance of 0.1 min. Peaks
were aligned with a m/z tolerance of 0.001 m/z or 5 ppm and RT tolerance of 0.1 min, with 75% weight given to m/z and 25% to RT. Finally, peaks were filtered with a minimum of fifteen peaks in a row, and the same RT and peak duration ranges as previously applied. The feature quantification table (.csv) and aggregated MS2 masses list (.mgf) were exported (no merging of MS/MS and filter rows: ALL) for further analysis.

Feature-based molecular networking using GNPS and compound annotation

A molecular network was created with the feature-based molecular networking workflow (https://ccms-ucsd.github.io/GNPSDocumentation/featurebasedmolecularnetworking/) [65] on the GNPS website (http://gnps.ucsd.edu) [66] by uploading the aggregated MS2 mass list. The data was filtered by removing all MS/MS fragment ions within +/- 17 Da of the precursor m/z. MS/MS spectra were window filtered by choosing only the top 6 fragment ions in the +/- 50Da window throughout the spectrum. The precursor ion mass tolerance was set to 0.02 Da and a MS/MS fragment ion tolerance of 0.02 Da. A network was then created where edges were filtered to have a cosine score above 0.7 and more than 4 matched peaks. Further, edges between two nodes were kept in the network if and only if each of the nodes appeared in each other's respective top 10 most similar nodes. Finally, the maximum size of a molecular family was set to 100, and the lowest scoring edges were removed from molecular families until the molecular family size was below this threshold. The spectra in the network were then searched against GNPS' spectral libraries. The library spectra were filtered in the same manner as the input data. All matches kept between network spectra and library spectra were required to have a score above 0.7 and at least 4 matched peaks. The .graphml network file was then visualized using Cytoscape v3.7.2 [67] where individual sample data and metadata were locally plotted (per sample and metadata sample group relative intensities). To enhance annotation of potential compounds of interest using the mzCloud spectral library (Thermo Fisher Scientific), .raw files were also preprocessed using Compound Discoverer 2.1 (CD2.1) SP1 software.
Details regarding the settings are provided in Additional file 3. GNPS and Compound Discoverer (annotation reported when above mzCloud 80% confidence in identity or similarity search) offer annotations with a level 2 confidence according to the Metabolomics Standards Initiative (i.e. putative annotation) [68,69]. To summarize and further enhance chemical structural information within the molecular network, substructure information (https://ccms-ucsd.github.io/GNPSDocumentation/ms2lda/) [70], information from in silico structure annotations from Network Annotation Propagation [71] and Dereplicator [72] were incorporated using the GNPS MolNetEnhancer workflow (https://ccms-ucsd.github.io/GNPSDocumentation/molnetenhancer/) [73] with chemical class annotations retrieved from the ClassyFire chemical ontology [74]. When no chemical structural information could be retrieved through the above searches, the MS/MS spectra were additionally searched via MASST [75] and SIRIUS+CSI:FingerID [76–78]. MASST allows to query a single MS/MS spectrum across all public GNPS datasets giving an idea of the type of samples or matrices where the same MS/MS spectrum has been detected [75]. SIRIUS+CSI:FingerID uses deep learning algorithms to predict the molecular and structural formula of a molecule from MS/MS spectra [76–79].

Contamination filtering and further data curation

Using a Kendrick Mass Filter, we explored the compositionality of our data to assess the potential presence of undesired chemical background [80]. Out of the 4,360 features obtained through MZmine preprocessing, more than 1,100 possessed repeat units typical of polyethylene glycol (PEG) and polypropylene glycol (PPG). Filtering of PEG followed by filtering of PPG was performed using a Kendrick Mass Filter [80] with the following parameters: number of observed signals = 5, Kendrick mass defect = 0.01, and fraction base = 1 (see Additional file 4AB).
Of the 3,253 remaining features, we further excluded those with a maximum intensity in paper blanks / maximum intensity in samples ratio ≥ 0.2, as well as features with 20% or more gaps (i.e. missing value) in cases and/or in controls (1,975 features filtered).

Data visualization and outlier handling

We performed principal coordinates analyses (PCoA) to visualize the data in an interactive 3D-space using EMPor within QIIME 2 [81,82] using the Bray-Curtis, Canberra, Robust Aitchison [83] and Jaccard distance metrics. This tool allowed us to easily map metadata on each sample in the 3D-space and quickly detect broad patterns in the data, such as assessing the consistency of repeated pool injections (i.e. repeated injections of the same pooled samples should cluster in PCoA space). When performing these calculations on our “raw” unfiltered feature table (4,360 features), all tested distance metrics showed seven samples as clear outliers, of which two controls and five cases. After contamination filtering and data curation (1,281 features), six outliers remained since one outlier (control) was due to PEG contamination. Among the investigated potential explanations for these outliers, no pattern was found when looking at: position on the plate layout, potential RT shift impairing the alignment, and metadata. However, targeted analysis of labeled internal standards and unlabeled endogenous homologs showed that significant (but unexplained) errors occurred during LCMS acquisition, with many undetectable compounds (TraceFinder 4.1 Clinical Research, Thermo Fischer Scientific) (Additional file 5). A heatmap representation of the data (1,281 features) using MetaboAnalyst 4.0 [84] confirmed the six outliers with very low intensities (Additional file 5). Therefore, we decided to exclude these outliers from further statistical analyses and reran the PCoA calculations on the remaining 68 samples.

Statistics
Using the calculated distance matrices from the PCoAs (1,281 features, 68 samples), we performed Permutational Multivariate Analyses of Variance (PERMANOVAs) [85] to assess how much of the variance in the data is explained by a certain variable in the metadata. We investigated the following variables: autism (yes/no), autism subtype, gender, birthweight, gestational age, age at sampling, month of birth, and injection order. The Adonis R^2 value indicates to what extent the variance is explained by the tested variable. Significance threshold was set at 0.05. Calculations were performed using the vegan and ggplot2 packages in R software v3.6.1 [86].

Finally, the curated dataset (1,281 features, 68 samples, unpaired samples) was processed using MetaboAnalyst 4.0 [84]. We excluded features with more than 50% missing values and replaced the remaining missing values by a small value (half the minimum positive value in the original data). We further filtered non-informative near-constant features based on interquantile range and applied a glog transformation and Pareto scaling. We used a fold-change threshold of 2 (case/control or control/case) and performed t-test and Wilcoxon rank-sum test with FDR correction for multiple comparisons. We could not reliably use the Partial Least Squares Discriminant Analysis (negative Q2 in cross validation). All Jupyter notebooks used for statistical analysis are publicly available on github.

Results

Subjects

Subjects’ characteristics are presented in Table 1 (details in Additional file 6). Cases and controls were similar in terms of GA, birthweight, age at sampling and age of their mother at birth. The most prevalent autism subtype was childhood autism. Most cases had only one diagnosis, but six had both unspecified pervasive development disorder and autism (either childhood autism or atypical autism). None had more than two diagnoses. Median age at first diagnosis was 5.6 years (range 1.1-7.8). Most subjects were born at term (GA ≥ 38 weeks). Only three cases and two controls were born preterm.
Molecular Network analysis

From all features for which a MS2 spectrum has been acquired (2217 features over 4360) a feature-based molecular network was computed via GNPS. Annotation could be retrieved for 150 features (3.4%) of which 103 by matching to GNPS libraries (annotation level 2), and 47 by matching to our in-house library using Trace Finder (annotation level 1, Additional file 7). Using the MolNetEnhancer workflow [73], putative chemical structural information at the chemical class level, corresponding to a level 3 annotation, could be retrieved for an additional 859 features. Hence, nearly 46% (1009) of the mass spectral features could be putatively annotated at a level 1 to 3 (Additional file 7). Annotation covered 31 chemical classes including 53 subclasses and 116 direct parents, such as medium-chain fatty acids, phosphatidylcholines, nucleotides, amino acids, bile acids, steroids, acyl carnitines and catecholamines.

Molecular families (independent clusters of nodes) from the 15 predominant putatively annotated chemical classes are presented in Figure 1 (see details in Additional file 7). Plotting the average intensities in the three groups (cases, controls, paper blanks) as well as fold change values (or p-values) on the network nodes allowed for a quick overview of the molecular families with potential biological relevance (See the example of bile acids in Figure 2). This analysis showed the potential of DBS in covering various chemical classes and the power of feature-based molecular network analyses and related metabolome mining tools in expanding the interpretability of complex untargeted metabolomics data.

Statistical analyses
In PCoA space, repeated pool injections clustered satisfactorily showing that the LC-MS/MS data acquisition was of acceptable quality (Figure 3). When looking at the two groups (cases/controls), no clear separation was observed, even after removal of outliers (Figure 3A) and on all tested distance metrics.

The PERMANOVAs (Figure 4, Additional file 8) revealed that the variance in the data was not significantly explained by the grouping (cases/controls) (Bray-Curtis Adonis $R^2 = 0.014$, P-value = 0.777), even when distinguishing subtypes of ASD, although subtypes had a higher Adonis R^2 (Bray-Curtis Adonis $R^2 = 0.070$, P-value = 0.707, see Table 1 for details on subtypes of ASD). Similarly, the gender and birthweight did not significantly explain the variance in the data. However, variation in the data explained by gestational age (Bray-Curtis Adonis $R^2 = 0.034$, P-value = 0.028), age at sampling (Bray-Curtis Adonis $R^2 = 0.053$, P-value = 0.002) and especially month of birth (Bray-Curtis Adonis $R^2 = 0.262$, P-value = 0.001, see Figure 3B) was significant, and to an increasing extent respectively (greater Adonis R^2). On a technical level, we also observed a significant effect of injection order on the data variation (Bray-Curtis Adonis $R^2 = 0.047$, P-value = 0.002), pointing to a limitation in our LC-MS/MS method.

Results of univariate analyses and fold change analysis were carefully scrutinized feature by feature. Considering our small sample size and potential pitfalls inherent to untargeted metabolomics related to contaminants or integration errors, we thought essential to inspect each result to eliminate false positives and spurious findings. Our inspection consisted of a five-step logic starting with peak integration and shape quality (MZmine). We then plotted all individual intensity values to assess whether the case/control difference was driven by four or fewer samples. If not, we reported the extent of missing values in each group, checked the consistency of replicated pool injections, and finally checked whether the feature was present in the feature-based molecular network, annotated as a
contaminant or in a node cluster with such annotation (Additional file 9). A large proportion of the
inspected features were excluded based on these criteria, showing the importance of such a verification
in order not to pursue spurious findings in future studies.

Among the 24 features with a fold change (case/control) value <0.5 or >2.0, only one passed manual
inspection (Table 2, the full table is in Additional file 9). Eluting quite late (RT = 6.64 min, ID8605),
this relatively hydrophobic compound had a detected \(m/z \) of 1014.4892 and was not connected to any
other node in the network analysis (see its mass spectrum in Additional file 10). It could not be
annotated, but the algorithm of SIRIUS+CSI:FingerID pointed at a raw formula of \(C_{36}H_{63}N_{21}O_{14} \)
([M+H]+, only 7.12% scoring). This compound was more than twice as intense in controls as in cases
(FC 0.42, average intensity in cases 2.73E+05 and controls 7.51E+05), and would need further
investigation, especially as it was not detected in many samples (Additional file 9). A MASST search
was performed, however the feature with \(m/z \) 1014.4892 was not found in any of the public datasets on
GNPS.

No feature was significantly differentially abundant in cases and controls according to the univariate
analyses with FDR correction for multiple comparisons (p values in Table 2).

Features that were differentially abundant before FDR correction are presented in Table 2. As a high
proportion of features were deemed irrelevant after inspection, we are presenting only the two relevant
features that passed our quality-control criteria. The full list and inspection details can be found in
Additional file 9. Methacholine was found to be significantly more abundant in cases when compared
to controls (average intensity in cases 4.41E+07 and controls 3.94E+07) both when using a t-test (\(p = \)
0.0021) and a Wilcoxon rank-sum test (\(p = 0.0031 \)). The corresponding node (ID159) in the network
analysis was connected to another node with a mass difference of -0.036 m/z (225 ppm) which could not be annotated. None of the applied metabolome mining tools was able to retrieve chemical structural information for the second compound significantly more abundant in cases than in controls (ID5593, m/z 1014.4892, average intensity in cases 5.71E+05 and controls 4.35E+05). SIRIUS+CSI:Finger ID predicted a molecular formula of C_{11}H_{22}N_{2}O_{3} (M+H+, 99.96% scoring). Its RT of 2.78 min could indicate a medium polarity with a logP between -1.0 and 0.5 when compared to tryptophan (RT 2.56 min, HMDB experimental logP -1.06) and hippuric acid (RT 3.04 min, HMDB experimental logP 0.31).

Among the 273 compounds reported in two recent reviews [6,87], 22 were cited at least three times, of which 18 could be linked to features in our study after manual verification (Table 3, Additional file 11).

Discussion

To assess the early signs of ASD development shortly after birth, we compared DBS samples from newborns that have later on been diagnosed with ASD to newborns that have not. Our pilot study showed the capacity of untargeted metabolomics as an analytical tool applied to biobanked DBS samples to cover several metabolites relevant to ASD, thus suggesting that biochemical markers of ASD are present at birth and could be targeted during neonatal screening. In addition, our method pinpointed other factors which have a strong influence on the metabolic profile of newborn DBS, such as gestational age, age at sampling and month of birth, and which are important to consider when designing metabolomic studies in neonatal, biobanked DBS.
One study from 2013 was performed on newborn DBS samples from 16 autistic children and assessed 90 biomarkers (not only small molecules) using immunoassays [88] of which three sets of five were associated with ASD. Another study was performed on DBS but in ASD children (n=83, age 2-10 years) and was targeting 45 metabolites [37], of which 9 were significantly higher in ASD children.

However, the potential of DBS in untargeted metabolomics studies has not yet been fully studied, and never in the context of ASD (see recent reviews [6,87]).

Among the 22 compounds that had been repeatedly (≥3 times) reported in the literature to be involved in ASD, 18 could be putatively annotated in our study, showing that our analytical pipeline covers many relevant metabolites, including some specific to gut microbiota activity. Despite thorough curation and inspection of the acquired data, no feature was significantly differentially abundant in cases and controls after FDR correction. The small sample size as well as strong confounders could play a role in the low power of this pilot study. Nonetheless, the PERMANOVA results showed that subtypes of autism seemed to explain more variance in the data than just the case/control division (higher Adonis R2, Figure 4). This could mean that subtypes have indeed distinct biochemical profiles and should maybe be considered separately or in a stratified manner. Although, the lack of significance could suggest that ASD genetic, prenatal and/or perinatal variables do not (sufficiently) translate into biochemical abnormalities in newborns or that these are not detectable in biobanked DBS using our current experimental setup, we were able to pinpoint 18 out of 22 metabolic markers associated with ASD in previous studies. This finding suggests that rather the sample size and confounders are responsible for the absent signal observed here, and future studies controlling for the here identified confounders and greater sample size could provide more answers.

Among the hits and interesting findings of our pilot, we could show that a methacholine structural analogue could be a relevant marker for ASD, as it was found at a higher although not significant
abundance in newborns that have been diagnosed with ASD at age 7. Methacholine is a choline ester
drug acting as non-selective muscarinic receptor agonist. It is mainly known as methacholine chloride
for its use in assessing bronchial hyper-reactivity in asthmatic patients. Although muscarinic receptors
were not associated with autism in children [89], lower estimates of ASD risk among children exposed
during fetal life to muscarinic receptor 2 agonists were reported [90]. Higher abundance of
methacholine in DBS of ASD cases, as seen in our study, would therefore not be easily explained and
demand further investigation. However, detecting a drug metabolite such as methacholine in newborn
samples is unexpected, thus it is more likely that this feature is an endogenous choline ester with
similar fragmentation behavior to methacholine.

Two other unknown features would benefit from being monitored in future studies. One relatively
hydrophobic compound (ID8605, m/z 1014.4892) showed an important fold change (much lower in
cases) but was not detected in many samples maybe due to low intensities. The second compound
(moderately polar, ID5593, m/z 1014.4892, C_{11}H_{22}N_{2}O_{3}) was significantly higher in cases before FDR
correction and detected in more than 65% of samples. Including both in an inclusion list for optimized
MS2 acquisition could provide higher quality spectra for better annotation. Overall, we observed poor
fragmentation of some analytes (4 fragmentation peaks or less) and optimization of fragmentation
parameters to a few targeted compounds, could enable better chemical structural annotation, although
fragmentation parameters such as other technical and sample preparation parameters, can never be
optimized for all compounds equally.

Although our study was not designed specifically to assess the tested confounders, we have shown that
gestational age, age at sampling and month of birth are strong drivers of metabolomic profiles in
newborns. This demonstrates the importance of considering these confounders when designing a future study in newborn DBS.

Prematurity has been involved in numerous adverse health outcomes [91] and metabolic maturity has been shown to be reflected in the blood and other matrices of infants after birth [92,93]. Although, in the present study, only three cases and two controls were premature (<38 weeks of gestational age), we saw a significant effect of gestational age on the metabolomic profile of newborns thus showing that gestational age is an important factor to be controlled for in newborn DBS studies.

Similarly, we found that age at sampling has a significant impact on the newborn blood metabolome. From 3 to 10 days of age, only one week has passed, and yet fundamental metabolic changes occur in the newborn who is not anymore connected to his/her mother’s blood, but exposed to various types of nutrition and environmental conditions (healthcare, hospital vs home, etc.). The endogenous anabolism/catabolism balance is in itself a strong variable to consider at that age. From 2009 onwards, the Danish newborn screening program has indeed chosen to standardize the age at DBS sampling to 48 to 72 hours to optimize the window where potential inborn errors of metabolism would be detected best and as early as possible since quick intervention is essential in such cases [94]. The iPscPsych cohort was based on diagnoses of psychiatric disorders recorded in Danish health registry in 2012 [59]. Such diagnoses are often given after several years of age, which is why the cohort did not cover subjects born after 2005, year at which the age at sampling was not so narrowly standardized. The large sample size of the iPscPsych cohort (almost 15,000 cases of ASD) should however allow for stricter selection criteria in our future studies.
Another major change that occurs in newborns at birth and in the following days is the gut maturation and its further colonization by microbes [95]. This topic has been under expanding attention in the last decade, and the development and involvement of gut microbiota in neurodevelopment is being scrutinized extensively [22]. The exact dynamics of the microbiota development in the placenta and during the first days of life is still uncertain [95–97], as well as to what extent its activity can be reflected in the blood. A recent study has shown that gut microbial alpha-diversity can be predicted from the human blood metabolome [98] suggesting that microbial metabolites explain a significant amount of the variance in the human blood metabolome. Thus, although sampled at an early stage in life, it is plausible that microbial metabolites mediating health may be found in dried blood spots from newborns [93]. Studying both fecal and blood samples will be essential to answer questions related to the impact of gut microbes on the gut-brain axis, especially in the context of psychiatric disorders where the brain is the main organ concerned but indeed located quite far from the gut. Microbial metabolites would necessarily need to travel in the blood (or lymph) and through the blood-brain barrier to interact with the brain. In our study, some detected metabolites could partly derive from gut microbiota activity such as DL-Indole-3-lactic acid (ID3461, [99,100]), taurine (ID428, level 3, [25]), various bile acids (Additional file 7, [57]), or inosine 5'-monophosphate (ID1133, level 3, [29]).

Lastly, we found that month of birth explains a significant variation in metabolomic profiles of newborns (Figure 3b, Figure 4). Whether there is a yearly cyclic pattern or whether our findings are specific to 2005 remains to be determined. Explanations could include aspects related to pregnancy conditions varying along the year such as diet, weather conditions and sun exposure (e.g. impact on vitamin D levels, type and extent of physical and social activities, mood and stress [101]), exposure to “seasonal” infectious diseases (e.g. influenza), exposure to varying air quality (e.g. pollution or pollens
[102]), as well as storing conditions which might fluctuate over the year (e.g. sample transport at higher temperatures during summer).

Gender and birthweight were not found to explain a significant part of the variance in the metabolomic profiles of newborns in our study, despite the obvious connection between gestational age and birthweight. The gender misbalance which reflects the gender disparity in ASD (a quarter were girls), non-dedicated design, and small sample size could explain this finding. Some studies have indeed reported that the profile of newborn girls and boys differed in, for instance, blood amino acids and acylcarnitines [103], as well as urine profiles [104]. Despite our finding, we believe that gender and birthweight should be adjusted for and taken into consideration when designing metabolomics studies in newborns. Several of the tested confounders are inter-connected with, for instance, reports of more males being born preterm [105] and females being born lighter [106], both associations being explained by mechanisms that are likely to be reflected in the metabolome such as inflammatory response and insulin resistance, respectively.

On the technical side, the strong effect of injection order is again a reminder that randomizing sample pairs on the plates is fundamental in untargeted metabolomics. Although technical improvements can be considered, it is extremely difficult if not impossible to avoid some level of signal drift and carryover in untargeted metabolomics studies[107].

Limitations and strengths

To avoid batch effect and minimize the use of highly valuable and rare samples, we analyzed only 37 pairs of cases and controls in this pilot study. Despite the small sample size that did not confer enough statistical power for pinpointing strong marker metabolites of ASD, we could detect numerous
metabolites associated with ASD in previous studies and identify a number of confounders to be considered in future untargeted metabolomics study using newborn DBS. Other confounders not evaluated in our study will need to be assessed in future studies, including metabolic changes in DBS associated with time and storage conditions. Hematocrit variation could not be measured in our study as we had access to only one punch of paper and did not have the possibility to measure a surrogate marker such as potassium [108]. Furthermore, metabolites detected in this study are inherently reflective of sampling protocols, including extraction protocols and MS acquisition parameters and should be interpreted within these limitations.

Conclusions

This is the first study assessing metabolomic profiles of a psychiatric disorder, ASD in biobanked, newborn DBS samples. The development of biobanks and reuse of systematically collected DBS samples for research purposes in connection with registry data represent many new opportunities to study the physiopathology and early signs of diseases, with extraordinary impacts in prevention, diagnosis and treatment strategies. We showed that untargeted metabolomics on DBS samples offers a wide and relevant coverage of metabolites for the study of ASD and that the new processing tools used in our method largely expand the interpretability of such complex data.

Declarations

- Ethics approval and consent to participate

The Danish ethical committee approved the project (1-10-72-287-12). All blood samples can be stored without explicit informed consent according to Danish law, and be reused for additional analysis provided that projects are approved by the Research Ethics Committee and the Danish Data Protection Agency. Although research projects require informed consent, the Research Ethics Committee can...
waive this requirement if samples are anonymously processed, and if the projects do not imply any
health-related risk or burden to the subjects [109].

- Consent for publication

 Not applicable

- Availability of data and materials

 The datasets generated and/or analyzed during the current study are not publicly available due to the
risk of compromising individual privacy but are available from the corresponding author on reasonable
request and provided that an appropriate collaboration agreement can be agreed upon.

- Competing interests

 The authors declare that they have no competing interests.

- Funding

 This study was funded by The Lundbeck Foundation, Denmark.

 This research has been conducted using the Danish National Biobank resource supported by the Novo
Nordisk Foundation grant number is 2010-11-12 and 2009-07-28.

- Disclaimer

 This funder had no involvement in any aspect of the study.

- Grant number

Authors' contributions

JC and AC designed the study.

SSL collected the samples and ran the metabolomics analyses.

ME defined and coded major steps of data processing, chemical structural annotation and statistical analysis and edited the manuscript.

JC processed the data, performed statistical analyses, and drafted the manuscript.

All authors were involved in the manuscript edition and data interpretation, critically revised the manuscript for important intellectual content, and approved the final version of this manuscript.

JC and AC had full access to all the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.

Acknowledgements

We thank Anders Björkbom for his major contribution to the LCMS method development and Marie Bækvd-Hansen for her help in curating data.

Authors' information (optional)

Not applicable

References

Table 1. Subjects characteristics

<table>
<thead>
<tr>
<th></th>
<th>All subjects n = 74</th>
<th>After outlier removal n = 68</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age at 1st Jan. 2006 (months, median (range))</td>
<td>7.6 (0.8-11.6)</td>
<td>7.6 (0.8-11.6)</td>
</tr>
<tr>
<td>Gender (girls / boys)</td>
<td>8 / 29</td>
<td>8 / 29</td>
</tr>
<tr>
<td>Classification of cases (ICD10)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- F84.0 Childhood autism</td>
<td>17</td>
<td>15</td>
</tr>
<tr>
<td>- F84.1 Atypical autism</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>- F84.5 Asperger syndrome</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>- F84.8 Other pervasive developmental disorders</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>- F84.9 Unspecified pervasive developmental disorders</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>Gestational age (weeks, median (range), NA)</td>
<td>40 (33-42)</td>
<td>2</td>
</tr>
<tr>
<td>Birthweight (g, median (range), NA)</td>
<td>3500 (2210-4880)</td>
<td>2</td>
</tr>
<tr>
<td>Age at sampling (days, median (range), NA)</td>
<td>6 (3-9)</td>
<td>2</td>
</tr>
<tr>
<td>Age of mother at birth (years, median (range))</td>
<td>31.7 (20.8-41.5)</td>
<td>31.8 (18.3-41.2)</td>
</tr>
</tbody>
</table>

1 ICD10 classification [2]

More details are provided in Additional file 6.
Table 2. Differentially abundant features in univariate analyses without FDR correction (p<0.01) and/or with high fold-change meeting inspection criteria

<table>
<thead>
<tr>
<th>Putative annotation of relevant compounds</th>
<th>Annotation level</th>
<th>m/z</th>
<th>RT (min)</th>
<th>ID</th>
<th>p-value t-test without FDR correction</th>
<th>p-value Wilcoxon rank-sum test without FDR correction</th>
<th>p-value Wilcoxon rank-sum test with FDR correction</th>
<th>FC</th>
<th>Network connections</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methacholine C₈H₁₈N₂O₄⁺</td>
<td>2⁴</td>
<td>160.13315</td>
<td>0.45</td>
<td>159</td>
<td>0.0021</td>
<td>0.9174</td>
<td>0.0031</td>
<td>0.9434</td>
<td>1.25</td>
</tr>
<tr>
<td>SIRIUS 99.96%: C₁₁H₂₂N₂O₃ (M+H⁺)</td>
<td>4</td>
<td>231.17005</td>
<td>2.78</td>
<td>5593</td>
<td>0.0072</td>
<td>0.9174</td>
<td>0.0138</td>
<td>0.9434</td>
<td>1.46</td>
</tr>
<tr>
<td>SIRIUS 7.12%: C₃₆H₆₃N₂₁O₁₄ (M+H⁺)</td>
<td>4</td>
<td>1014.48923</td>
<td>6.64</td>
<td>8605</td>
<td>0.0414</td>
<td>0.9174</td>
<td>0.0179</td>
<td>0.9434</td>
<td>0.42</td>
</tr>
</tbody>
</table>

1 Annotation level of confidence according to the Metabolomics Standards Initiative (i.e. putative annotation) [68,69].

2 FC: Fold-change (case/control)

3 Network connections in GNPS feature-based molecular network.

4 Source of annotation mzCloud (89.9% score). See its mass spectrum in Additional file 10.

Inspection criteria: peak integration or shape quality, initial missing values, single values plot, presence and consistence in replicated pool injections, annotation or connection to contaminants. For details see Additional file 7.
<table>
<thead>
<tr>
<th>Compound name</th>
<th>Annotation level</th>
<th>Raw formula</th>
<th>(\text{m/z} \ [\text{M+H}]+)</th>
<th>RT (min)</th>
<th>Feature ID (MZmine 2.41)</th>
<th>Detected by Compound Discoverer 2.1</th>
<th>HMDB ID</th>
<th>Literature reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arginine</td>
<td>1</td>
<td>C6H14N4O2</td>
<td>175.11895</td>
<td>0.35</td>
<td>1450</td>
<td>ND</td>
<td>HMDB0000517</td>
<td>[38,44,50]</td>
</tr>
<tr>
<td>Aspartic acid</td>
<td>1</td>
<td>C4H7NO4</td>
<td>134.04478</td>
<td>0.41</td>
<td>1073</td>
<td>ND</td>
<td>HMDB0000191</td>
<td>[34,35,40,41,50,57]</td>
</tr>
<tr>
<td>Citric acid</td>
<td>4</td>
<td>C6H8O7</td>
<td>193.03428</td>
<td>0.35</td>
<td>1776</td>
<td>yes</td>
<td>HMDB0000094</td>
<td>[40,42,51]</td>
</tr>
<tr>
<td>Creatine</td>
<td>2</td>
<td>C4H9N3O2</td>
<td>132.07675</td>
<td>0.40</td>
<td>16</td>
<td>yes</td>
<td>HMDB0000064</td>
<td>[42,47,52]</td>
</tr>
<tr>
<td>Creatinine</td>
<td>2</td>
<td>C4H7N3O</td>
<td>114.06619</td>
<td>0.40</td>
<td>281</td>
<td>yes</td>
<td>HMDB0000562</td>
<td>[40,50,52,53]</td>
</tr>
<tr>
<td>Decanoylcarnitine</td>
<td>1</td>
<td>C17H33NO4</td>
<td>316.24823</td>
<td>6.00</td>
<td>3633</td>
<td>yes</td>
<td>HMDB0000651</td>
<td>[37,41,57]</td>
</tr>
<tr>
<td>Glutamic acid</td>
<td>1</td>
<td>C5H9NO4</td>
<td>148.06043</td>
<td>0.38</td>
<td>136</td>
<td>yes</td>
<td>HMDB0000148</td>
<td>[34,35,38,40–43,52]</td>
</tr>
<tr>
<td>Glutamine</td>
<td>2</td>
<td>C5H10N2O3</td>
<td>147.07642</td>
<td>0.40</td>
<td>107</td>
<td>yes</td>
<td>HMDB0000641</td>
<td>[35,38,39]</td>
</tr>
<tr>
<td>Glycine</td>
<td>3</td>
<td>C2H5NO2</td>
<td>76.03930</td>
<td>0.38</td>
<td>1177</td>
<td>ND</td>
<td>HMDB0000123</td>
<td>[34,39,43,47,49,52]</td>
</tr>
<tr>
<td>Glycolic acid</td>
<td>-</td>
<td>C2H4O3</td>
<td>77.02332</td>
<td>-</td>
<td>ND</td>
<td>ND</td>
<td>HMDB0000115</td>
<td>[53–55]</td>
</tr>
<tr>
<td>Hippuric acid</td>
<td>2</td>
<td>C9H9N1O3</td>
<td>180.06552</td>
<td>3.04</td>
<td>5174</td>
<td>ND</td>
<td>HMDB0000714</td>
<td>[48,51,52,54]</td>
</tr>
<tr>
<td>Histidine</td>
<td>2</td>
<td>C6H9N3O2</td>
<td>156.07675</td>
<td>0.32</td>
<td>342</td>
<td>yes</td>
<td>HMDB0000177</td>
<td>[34,49,56]</td>
</tr>
<tr>
<td>Lactic acid</td>
<td>-</td>
<td>C3H6O3</td>
<td>91.03897</td>
<td>-</td>
<td>ND</td>
<td>ND</td>
<td>HMDB0000190</td>
<td>[35,44,52]</td>
</tr>
<tr>
<td>p-cresol</td>
<td>-</td>
<td>C7H8O1</td>
<td>109.06479</td>
<td>-</td>
<td>ND</td>
<td>ND</td>
<td>HMDB0001858</td>
<td>[34,35,53,56]</td>
</tr>
<tr>
<td>Phenylalanine</td>
<td>1</td>
<td>C9H11NO2</td>
<td>166.08625</td>
<td>1.70</td>
<td>594+5370+287</td>
<td>yes</td>
<td>HMDB000159</td>
<td>[34,56,57]</td>
</tr>
<tr>
<td>Serine</td>
<td>2</td>
<td>C3H7NO3</td>
<td>106.04987</td>
<td>0.40</td>
<td>437</td>
<td>ND</td>
<td>HMDB0000187</td>
<td>[34,40,42,43,49]</td>
</tr>
<tr>
<td>Succinic acid</td>
<td>-</td>
<td>C4H6O4</td>
<td>119.03388</td>
<td>-</td>
<td>ND</td>
<td>ND</td>
<td>HMDB0000254</td>
<td>[40,47,48,54]</td>
</tr>
<tr>
<td>Taurine</td>
<td>3</td>
<td>C2H7N3O3S</td>
<td>126.02194</td>
<td>0.43</td>
<td>428</td>
<td>ND</td>
<td>HMDB0000251</td>
<td>[25,44,47–49,52]</td>
</tr>
<tr>
<td>Threonine</td>
<td>2</td>
<td>C4H9NO3</td>
<td>120.06552</td>
<td>0.40</td>
<td>476</td>
<td>ND</td>
<td>HMDB0000167</td>
<td>[38,42,49,50]</td>
</tr>
<tr>
<td>Tryptophan</td>
<td>2</td>
<td>C11H12N2O2</td>
<td>205.09715</td>
<td>2.53</td>
<td>164</td>
<td>yes</td>
<td>HMDB0000929</td>
<td>[38,41,52,55,56]</td>
</tr>
<tr>
<td>Tyrosine</td>
<td>1</td>
<td>C9H11NO3</td>
<td>182.08117</td>
<td>0.72</td>
<td>58</td>
<td>yes</td>
<td>HMDB0000158</td>
<td>[35,42,57]</td>
</tr>
<tr>
<td>Valine</td>
<td>2</td>
<td>C5H11NO2</td>
<td>118.08625</td>
<td>0.42</td>
<td>ND</td>
<td>yes</td>
<td>HMDB0000883</td>
<td>[34,39,52]</td>
</tr>
</tbody>
</table>

ND: not detected
1 Annotation level of confidence according to the Metabolomics Standards Initiative (i.e. putative annotation) [68,69].

When the [M+H]+ adduct could not be found (+/- 5 ppm), common adducts were searched including [M+Na]+, [M+K]+, [M+2H]2+, [M+H-H_2O]⁺.

See full list of compounds considered and more details in Additional file 11.
Figures

Figure 1. Feature-based molecular network displaying the 15 predominant putative chemical classes and their subclasses

Nodes represent mass spectral features and are used as a proxy for a metabolite. Connected nodes represent high tandem mass spectral similarity, and thus high chemical structural similarity. The thickness of the grey edges connecting nodes varies according to the cosine score representing to what extent two connected metabolites are chemically similar (based on MS2 spectra, from 0.7: less similar and thin edge to 1.0: identical and thick edge).

The name of annotated metabolites (levels 1 and 2), details on chemical classes with fewer than 4 metabolites (absent on this figure), chemical classification scores [73], all unknowns, and group intensities for all features (average, standard deviations) are detailed in Additional file 7.

See Figure_1.pdf
Figure 2. Network of molecular features putatively annotated as bile acids with average group intensities, fold change values, mass differences and cosine scores displayed.

Molecular family #75 is composed of eight bile acid structural analogues (see details in Additional File 7). Coloring according to the fold change values makes it easier to spot the families with differential abundance in cases vs. controls. Displaying average intensities for the three groups (cases, controls, paper blanks) allows for a quick control of the noise (paper blanks, here no noise detected) and confirmation of fold change. On edges, while the thickness of the connection represents to what extent two metabolites are chemically similar, the mass difference is essential to support annotation as it translates into how molecules differ from one another (e.g. water loss, conjugation, adducts, etc.).

See Figure_2.pdf
Average intensity in

- Cases
- Controls
- Paper blanks

Fold change value (case/control)

- 2.0
- 1.5
- 1.0

Glycochenodeoxycholic acid
ID4647

Glycoursodeoxycholic acid
ID4591

Glycocholic acid
ID2178

Glycocholic acid
ID4663

- 36.021
- 2H₂O

- 18.010
- H₂O

Taurocholic acid
ID7284

- 18.010
- H₂O

- 53.048
- 2H₂O

- 36.021
- 2H₂O

- 18.010
- H₂O

+49.982

+35.038

- 53.048
- 2H₂O

+49.982

+35.038

Mass difference (m/z)
Figure 3. Bray-Curtis principal coordinates analysis of the 68 samples after outlier removal.

Each sphere represents one sample. Axes are principal components 1 (x) and 3 (y) explaining 18.48% and 8.79% of the variability in the data, respectively. The four replicated pool injections cluster satisfactorily.

a) Coloring reflects the type of samples, i.e. cases, controls and four replicated pool injections. No clear distinction between cases and controls can be observed (PERMANOVA Adonis $R^2 = 0.014$, P-value = 0.777).

b) Coloring reflects the month of birth for the 68 samples as well as the four replicated pool injections. Samples collected in the winter (dark purple and yellow, extremities of the color scale) are positioned away from the samples collected in summer (green and turquoise, middle of the color scale). 26.2% of the variation in the data can be explained by month of birth (Adonis $R^2 = 0.262$, P-value = 0.001).

See Additional file 8 for detailed values with and without FDR correction and for other distance matrices.

See Figure_3ab.pdf
Figure 4. PERMANOVAs of the four tested distance matrices showing how much of the variation (Adonis R^2) is explained by a metadata variable.

P-values include FDR correction. A star is present when the corrected p-values was <0.05.

All exact values are available in Additional file 8 and detailed metadata (subject characteristics) are available in Table 1 and Additional file 6.

See Figure_4.pdf
Additional files

Additional file 1: Standardized reporting of untargeted metabolomics LC-MS/MS method according to [60] containing the list of internal standards from the Neobase Non-derivatized MSMS kit and their concentration in the extraction buffer
See .xlsx

Additional file 2: MZmine batch .xml file used to preprocess the raw data
See .xml

Additional file 3: Compound Discoverer 2.1 preprocessing workflow settings
See .pdf

Additional file 4ab: PEG (4a) and PPG (4b) filtering scripts using the Kendrick Mass filter according to [80]
See the two .ipynb
Can be opened using https://jupyter.org/

Additional file 5: Targeted analysis of outliers using TraceFinder (IS and unlabeled homologs) and heatmap of untargeted analysis
See .pdf

Additional file 6: Subjects characteristics in details
See .xlsx

Additional file 7:
All features including annotated compounds. Out of the 4360 features detected, 150 could be annotated by GNPS library matching (annotation level 2) or in-house Trace Finder library (annotation level 1) and an additional 859 by MolNetEnhancer (annotation level 3).

Additional file 8: PERMANOVAs Adonis R^2 values and p-values calculated with (74 samples) and without (68 samples) outliers.

Additional file 9: Full list of compounds with t-test p value <0.01 without FDR correction and/or with Wilcoxon rank-sum test p value <0.01 without FDR correction and/or case/control fold change value <0.5 or >2.

Additional file 10: Fragmentation profiles of the two unknown features to be monitored in future studies as well as methacholine as shown in Table 2.

Additional file 11: Full list of compounds reported in the literature as involved in ASD and considered in this study.