medRxiv preprint doi: https://doi.org/10.1101/2020.04.17.20069021; this version posted April 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder more granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC 4.0 International license.

BMJ Open

America Addresses Two Epidemics – Cannabis and Coronavirus and their Interactions: An Ecological Geospatial Study

Journal:	BMJ Open
Manuscript ID	Draft
Article Type:	Original research
Date Submitted by the Author:	n/a
Complete List of Authors:	Reece, Albert Stuart; University of Western Australia, School of Psychiatry and Clinical Neurosciences Hulse, Gary; University of Western Australia, Psychiatry & Clinical Neurosciences
Keywords:	Infection control < INFECTIOUS DISEASES, Substance misuse < PSYCHIATRY, Epidemiology < INFECTIOUS DISEASES, Public health < INFECTIOUS DISEASES, Health policy < HEALTH SERVICES ADMINISTRATION & MANAGEMENT
	·
Note: The following files were s You must view these files (e.g.	submitted by the author for peer review, but cannot be converted to PDF movies) online.
CovN2.R CovDDsfOO.nbb CovDDsfOO.lww CovDDdfO7sf.dbf CovDDdfO7sf.prj CovDDdfO7sf.shp CovDDdfO7sf.shx	

SCHOLARONE[™] Manuscripts

medRxiv preprint doi: https://doi.org/10.1101/2020.04.17.20069021; this version posted April 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC 4.0 International license.

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

Rez on

medRxiv preprint doi: https://doi.org/10.1101/2020.04.17.20069021; this version posted April 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC 4.0 International license . America Addresses Two Epidemics – Cannabis and Coronavirus and their Interactions:

An Ecological Geospatial Study

Short Title:

Cannabis - Coronavirus Geospatial Interactions

Albert Stuart Reece, MBBS(Hons.), FRCS(Ed.), FRCS(Glas.), FRACGP, MD (UNSW)^{1,2} Gary Kenneth Hulse, BBSc.(Hons.), MBSc., PhD.^{1,2}

Affiliations:

1 - Division of Psychiatry,

University of Western Australia,

Crawley, Western Australia 6009, Australia.

2 - School of Medical and Health Sciences,

Edith Cowan University,

Joondalup, Western Australia, 6027, Australia.

* Address Correspondence to:

Albert Stuart Reece 39 Gladstone Rd., Highgate Hill, Brisbane, Queensland, Australia. Ph: (617) 3844-4000 FAX: (617) 3844-4015 Email: <u>stuart.reece@bigpond.com</u> Word Count: 3,282.

Key words: cannabis, cannabinoid, Δ 9-tetrahydrocannabinol, cannabigerol, cannabidiol, coronavirus, Covid-19, SARS2-CoV-2

Liezoni

BMJ Open

medRxiv preprint doi: https://doi.org/10.1101/2020.04.17.20069021; this version posted April 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC 4.0 International license .

Question: Since cannabis is immunosuppressive and is frequently variously contaminated, is its use associated epidemiologically with coronavirus infection rates?

Findings: Geospatial analytical techniques were used to combine coronavirus incidence, drug and cannabinoid use, population, ethnicity, international flight and income data. Cannabis use and daily cannabis use were associated with coronavirus incidence on both bivariate regression and after multivariable spatial regression with high levels of statistical significance. Cannabis use quintiles and cannabis legal status were also highly significant.

Meaning: Significant geospatial statistical associations were shown between cannabis use and coronavirus infection rates consistent with immunomodulatory mechanistic reports and environmental exposure concerns.

Rezienzonz

medRxiv preprint doi: https://doi.org/10.1101/2020.04.17.20069021; this version posted April 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC 4.0 International license .

Importance. Covid-19 infection has major international health and economic impacts and risk factors for infection are not completely understood. Cannabis smoking is linked with poor respiratory health, immunosuppression and multiple contaminants. Potential synergism between the two epidemics would represent a major public health convergence. Cigarettes were implicated with disease severity in Wuhan, China.

Objective. Is cannabis use epidemiologically associated with coronavirus incidence rate (CVIR)?

Design. Cross-sectional state-based multivariable study.

Setting. USA.

Primary and Secondary Outcome Measures. CVIR. Multivariable-adjusted geospatiallyweighted regression models. As the American cannabis epidemic is characterized by a recent doubling of daily cannabis use it was considered important to characterize the contribution of high intensity use.

Results. Significant associations of daily cannabis use quintile with CVIR were identified with the highest quintile having a prevalence ratio 5.11 (95%C.I. 4.90-5.33), an attributable fraction in the exposed (AFE) 80.45% (79.61-81.25%) and an attributable fraction in the population of 77.80% (76.88-78.68%) with Chi-squared-for-trend (14,782, df=4) significant at P<10⁻⁵⁰⁰. Similarly when cannabis legalization was considered decriminalization was associated with an elevated CVIR prevalence ratio 4.51 (95%C.I. 4.45-4.58), AFE 77.84% (77.50-78.17%) and Chi-squared-for-trend (56,679, df=2) significant at P<10⁻⁵⁰⁰. Monthly and daily use were linked with CVIR in bivariate geospatial regression models (P=0.0027, P=0.0059). In multivariable additive models number of flight origins and population density were significant. In interactive geospatial models adjusted for international travel, ethnicity, income, population, population density and drug use, terms including last month cannabis were significant from P=7.3x10⁻¹⁵, daily cannabis use from P=7.3x10⁻¹¹ and last month cannabis was independently associated (P=0.0365).

medRxiv preprint doi: https://doi.org/10.1101/2020.04.17.20069021; this version posted April 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC 4.0 International license.
Conclusions and Relevance. Data indicate CVIR demonstrates significant trends across cannabis use intensity quintiles and with relaxed cannabis legislation. Recent cannabis use is independently predictive of CVIR in bivariate and multivariable adjusted models and intensity of use is interactively significant. Cannabis thus joins tobacco as a SARS2-CoV-2 risk factor.

medRxiv preprint doi: https://doi.org/10.1101/2020.04.17.20069021; this version posted April 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC 4.0 International license . Article Summary

Strengths and Limitations of this Study

- Population level was used for the large datasets employed relating to international travel, Covid-19 rates and drug exposure.
- Nationally representative datasets were employed for drug use and exposure
- A Broad range of covariates was considered including socioeconomic, demographic, drug use, Covid-19 incidence and international travel.
- Advanced geospatial modelling techniques were used to analyze data.
- Higher resolution geospatial data was not available to this study.

BMJ Open

medRxiv preprint doi: https://doi.org/10.1101/2020.04.17.20069021; this version posted April 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC 4.0 International license .

The coronavirus pandemic of January-March 2020 has gathered great attention worldwide and is accelerating globally at the time of writing. With a mortality originally posted by WHO at 3-4% ¹ rising to over 10% in some nations ², and ventilator shortages reported in Italy ³ and USA ^{4,5} there is considerable cause for concern. Importantly whilst senior NIH authorities have since revised mortality estimates in the general population downward to below one percent ⁶ mortality rates in the elderly and patients with chronic disease are likely to remain appreciable ⁶⁻⁹. Coronavirus data on March 27th 2020 showed that there had been 94,014 cases and 1,431 deaths attributed to the virus in USA to that time (1.52% mortality) ¹⁰.

When risk factors for severe infection with coronavirus were recently been studied in Hubei province on China in three tertiary hospitals in Wuhan, tobacco smoking was identified in 27.3% of patients with progressive disease v 3% of non-progressive disease (N= 11 progressors and 67 non-progressors, P=0.018)⁷.

Importantly the cannabis industry is known to have recently increased its activity significantly in USA following widespread relaxation of regulations pertaining to its use, and a 2018 study indicated that legalization was associated with an increase of more than 1,000,000 cannabis users and 500,000 cannabis-dependent people¹¹. A large literature describes the immunosuppressive properties of several cannabinoids including Δ 9-tetrahydrocannabinol (THC), cannabidiol and cannabinol ¹²⁻²⁰. Cannabis users frequently inhale with deep breaths which are held for long period so that smoke can penetrate deeply into the lung ^{12,21}. Moreover cannabis has been shown to be contaminated with foreign chemicals, viruses and fungal spores ²²⁻²⁵ so that concern has been expressed that patients can be relatively immunocompromised and at heightened risk of exposure to microorganisms placing them at increased risk of infection ²⁶.

Moreover the recent World Drug Report 2019 released from the Office of Drugs and Crime of United Nations emphasized that whilst the US revival of cannabis is including more users, it is primarily about an increase in the number of daily or near daily users with that rate having doubled 2008-2018²⁷. It is important to consider then that we can expected to see more patients presenting with the effects of high level cannabis use. This important datum suggests that the immunosuppressive effects of cannabis are likely to be magnified in

medRxiv preprint doi: https://doi.org/10.1101/2020.04.17.20069021; this version posted April 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC 4.0 International license. habitual users by the higher potency of modern strains, increased exposure and deep

inhalation smoking habits in this context.

There are therefore a number of theoretical reasons for being concerned that cannabis use may exacerbate infectious risks such as that posed by coronavirus as was recently suggested ²⁶.

The present study is an ecological exploration designed to test the hypothesis that there may be epidemiological evidence for a geospatial association between high rates of cannabis use with increased coronavirus infection rates (CVIR). The study was performed based on USA data as that nation has the best publicly available datasets available which allow formal analysis. The hypothesis was formulated prior to study commencement.

BMJ Open

medRxiv preprint doi: https://doi.org/10.1101/2020.04.17.20069021; this version posted April 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC 4.0 International license . Methods

Data. U.S. state-based Corona virus data was taken from the worldometer website on March 27th 2020 ¹⁰. The most recently available data on 49,320 international flights into USA (from October 2018-September 2019) was taken from the Department of Transport ²⁴. Drug use by state data was taken from the 2017-2018 Restricted Use Data Analysis System (RDAS) held by the Substance abuse and Mental Health Services Administration (SAMHSA) ²⁸. Eight drug codes were employed namely: IRABUPOSPNR for prescription pain reliever abuse in past year, PNRNMYR for Recoded – pain relievers past year misuse, MRJMDAYS for percent using cannabis on all or most days (defined as ≤20 days per month), MJRMON for past month cannabis use, COCYR for past year cocaine use, CIGMON for past month cigarette use, BNGALC for binge alcohol use in past month and AMPHETAPYU for any amphetamine past year use. State recreational cannabis legal status was taken from an internet search ²⁹. State population, ethnicity and median household income was derived from the US Census Bureau five year American Community Survey (ACS) for 2018 via the tidycensus package in R. State area is included in the albersusa R package and was used to derive population density.

Data Sharing Statement

Study data is made available with this paper in the online supplementary material.

Statistics. Data was processed in RStudio version 1.2.1335 based on R version 3.6.1 on 1st April 2020. Parameters were log transformed depending on the results of the Shapiro test. The packages dplyr, sf, albersusa, spdep, splm were used for data import, manipulation, analysis and drawing of maps and graphs. Non-parametric analysis was performed using the Wilcoxson test. Chi squared test for trend was done in R. Prevalence ratios and associated measures were calculated using the epiR::epi9.2by2 function. Geospatial interstate queenbased (edge and corner) links were derived with spdep::poly2nb and edited manually as indicated. Geospatial analysis was performed in the package splm using spatial panel maximum likelihood (spml) and spatial panel generalized method of moments (spgm) by Millo and Piras ³⁰ and spatial panel random effects maximum likelihood (spreml) analysis was performed using splm::spreml ³¹. The spatial error structure used for spml models was that of Kapoor, Kelejian and Prucha (KKP) ³². Further details are given in the Tables. spml models were compared using the spatial Hausman test (sphtest) with directionality informed

medRxiv preprint doi: https://doi.org/10.1101/2020.04.17.20069021; this version posted April 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC 4.0 International license. by the Log Likelihood Ratio (logL1k). The spatial error structure used in spreml models was the full error structure (spatial error after Kapoor Kelejian and Prucha with serially correlated remainder errors and random effects (sem2srre) without lagging). The appropriateness of this error structure was formally tested by substituting various alternative forms and comparing results including the logLik. P<0.05 was considered significant.

Patient and Public Involvement Statement

Patients were involved in this research at several points. Patients worldwide are very concerned about the Covid-19 epidemic and the implications for their health, their lifespan, their quality of life, their risk of unemployment and many serious matters related to this. Patients are also concerned about the things they can do to stay healthy. Patients are concerned about possible risk factors for health and well being. For this reason they are interested in the subject of the present investigation. Patients have also been most interested in the results. They are interested in how they can apply this result to their own lives and to that of friends and family who might be close to them.

Hence the research questions and outcome measures were developed and informed by patients priorities, experiences and preferences. Our patients were involved in the design of this study in that they unanimously agreed that such matters should be investigated from extant publicly accessible databases. Patients were not involved in patient recruitment as that was not applicable to a study of this methodology. Hence their time was not consumed with the actual conduct and performance of this research.

Patients have been widely consulted about the best way to disseminate the results of this research. The agreed that publication in reputable professional medical journals is advisable and preferable. They also feel that such efforts should be supported on social media and on mainstream media to the extent that commercial radio personalities might be interested in such subjects for indeed at the time of writing the coronavirus pandemic is receiving very extensive media coverage indeed.

Ethics. This study was approved by the Human Research Ethics Committee of the University of Western Australia on 31st March 2020 (No. RA/4/20/4724).

medRxiv preprint doi: https://doi.org/10.1101/2020.04.17.20069021; this version posted April 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC 4.0 International license.

For peer teriew only

medRxiv preprint doi: https://doi.org/10.1101/2020.04.17.20069021; this version posted April 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC 4.0 International license .

Figure 1 shows the rates of coronavirus infection (A) and death (B) by state across USA as of March 27th 2020.

It is known that air travel is one of the primary vectors of spread of the virus. For this reason it was of interest to quantitate this. The most recent data on international flights to USA from the US Department of Transport was sourced and is also shown map-graphically in Figure 1 showing the number of flights (Figure 1C), numbers of flight origins (Figure 1D), and the product of these two parameters (Figure 1E).

Other state-based socioeconomic data including population, area, population density and median household income were also sourced from the US Census Bureau (USCB) and shown in Supplementary Figure 1. Ethnicity data sourced from USCB is shown in Supplementary Figure 2.

State-based drug use data was sourced from the RDAS maintained by SAMHSA relating to the use of cigarettes, binge alcohol, amphetamines, opioids and cocaine. Two metrics of cannabis use were obtained related to any use the past month (MRJMON) and percent smoking cannabis daily or near daily (\geq 20 days/month, MRJMDAYS; denoted hereafter "daily cannabis use"). This data is shown map-graphically in Figure 2.

Supplementary Table 1 provides a tabulation of the states by their daily cannabis use quintile and the legal status of cannabis in 2020. Figure 3A shows a boxplot of the CVIR by quintile of daily cannabis use with Quintile 5 being the lowest daily use and Quintile 1 being the highest daily use. Whilst the trend appears to be positively skewed the notches of the boxes overlap indicating lack of statistical difference. Supplementary Table 2 shows the Prevalence ratio (PR, like odds ratio for cross-sectional data), the attributable fraction in the exposed (AFE) and the attributable fraction in the population (AFP) calculated numerically directly from the case numbers. As can be seen the PR's rise monotonically with Quintile number from 1.22 (95%C.I. 1.14-1.31) to 5.11 (4.90-5.33). The AFE's rise from 18.15% (12.49-23.44%) to 80.45 (79.61-81.25%) and the AFP's rise from 6.9% (4.51-9.24%) to 77.80% (76.88-78.68%). These are very significant fractions indeed. (Chi-squared for trend = 14,782, df=4, P<2.2x10⁻⁵⁰⁰; for comparison $X^2 = 1,478$, df=4, P=8.43x10⁻³¹⁹).

BMJ Open

medRxiv preprint doi: https://doi.org/10.1101/2020.04.17.20069021; this version posted April 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC 4.0 International license.

Figure 3B shows the coronavirus infection rate as a function of the legal status of recreational cannabis. At this time cannabis is legal in 11 states, illegal in 25 states and decriminalized in 14 states. This Figure is calculated from the CVIR. Again a positive increment is noted with relaxation of cannabis regulations. This time however the notches do not overlap. Supplementary Table 2 shows the case rates calculated from the raw case numbers. Rising PR's, AFE's and AFP's are noted. Cannabis decriminalization is noted in this analysis to be associated with a PR of 4.51 (4.45-4.58), an AFE of 77.84% (77.50-78.17%) and an AFP of 51.22% (50.74-51.70%). (Chi-squared for trend = 56,679, df=2, P<2.2x10⁻⁵⁰⁰; for comparison $X^2 = 567$, df=2, P=7.54x10⁻¹²⁴). These data look different from those in Figure 3B due to the skewing effect of outliers. When non-parametric analysis was used on these CVIR the illegal-legal difference was significant (W=72, P=0.0239) but the illegal-decriminalized difference was not (W=180, P = 0.8965).

It was therefore of interest to consider these data from a geospatial analytical perspective. Supplementary Figure 3A shows the links derived from the spdep::poly2nb function and how these were edited to allow Alaska to conceptually relate to Washington state and Oregon and Hawaii to California. The final neighbour link network used is shown in Supplementary Figure 3B.

Table 1 presents a geospatial bivariate spreml analysis of the relationship of the CVIR to last month cannabis use, daily cannabis use, their interaction, cannabis quintiles and cannabis legal status. In each case these parameters are associated with (exponentiated) effect sizes of 1.2851, 1.2611, 0.9734, 2.2318 (Quintile 1 v 5) and 1.6063 (legal v illegal) respectively.

It was of interest to consider also the effect of the other variables each in their domain. Supplementary Table 3 presents the geospatial analysis of the data in the five domains of Flights, Median Household Income, Ethnicity, Population, and Drug Use. All three parameters in the flights domain are significant as might be expected. In this domain the Number of Flight Origins has the highest log likelihood ratio (logLik) so this is the parameter entered into full spatial models. Median household income is not significant. Two ethnicities are significant as noted. In the Population domain both total population and population density are significant. medRxiv preprint doi: https://doi.org/10.1101/2020.04.17.20069021; this version posted April 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC 4.0 International license.
The lower section of Supplementary Table 3 presents the Drug use domain. Three spreml models are presented each incorporating slightly different interaction structures between their terms as shown. Given that the final model has the highest log likelihood value (-32.4261) that is the model structure which is progressed to the full comprehensive models used subsequently. In this model the most significant term predictive of the CVIR is cannabis use (P=8.7x10⁻⁷). Cannabis use is included in 8 of the 11 terms remaining in the final model. The interaction between cannabis use last month and daily cannabis use is included in three terms and is also highly significant in its own right.

Given that many terms in the five domains of Supplementary Table 3 were significant it was of considerable interest to investigate how they compared when they were all combined together in a single comprehensive model. The results of additive models in all terms are shown in Supplementary Table 4. The number of flight origins and the population density are the remaining significant covariates after spgm model reduction. When the number of flights is used as the index of travel this term does not appear in the final model, but cannabis use persists as the most significant term (P=0.0079).

Table 2 presents final interactive spatial models after reduction via the spml, spgm and spreml algorithms. Interestingly travel, cannabis and opioid pain relievers are found to be significant in all final models. Terms including cannabis are most significant in the spml model, from $P=7.3 \times 10^{-15}$. Cannabis alone is significant (P=0.0365) in the spgm model, a technique which is sensitive to short panel datasets of this type. Cannabis is included in seven of nine terms, eight of twelve terms and seven of nine terms in the three models respectively. Interactions between last month cannabis use and daily cannabis use are included in three terms in each model. Tobacco, binge alcohol, cocaine and amphetamines did not appear in any final spatial models. Study of spreml model error structure confirmed that the full error structure (sem2srre without lagging) was indeed appropriate.

BMJ Open

medRxiv preprint doi: https://doi.org/10.1101/2020.04.17.20069021; this version posted April 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC 4.0 International license .

Our study set out to explore the possible ecological and geospatial associations of cannabis use and coronavirus infection with the concern that cannabis-associated immunosuppression and cannabis contamination might exacerbate the global pandemic at a time when cannabis use and particularly the intensity of cannabis use is rising dramatically in many parts of USA and abroad. Bivariate evidence supported this hypothesis by demonstrating significant associations of daily cannabis use quintile with CVIR with the highest quintile having a prevalence ratio (PR, like odds ratio) of 5.11 (95%C.I. 4.90-5.33), an attributable fraction in the exposed of 80.45% (79.61-81.25%), and an attributable fraction in the population of 77.80% (76.88-78.68%) with a trend significant at $P < 10^{-500}$. Similarly when cannabis legalization was considered decriminalization was associated with an elevated CVIR prevalence ratio of 4.51 (95%C.I. 4.45-4.58), an attributable fraction in the exposed of 77.84% (77.50-78.17%) and an attributable fraction in the population of 51.22% (50.74-51.70%) and a trend significant at $P < 10^{-500}$. When the effect was studied in a multivariable geospatial model after controlling for international travel, ethnicity, income, population, population density and drug use interactive terms in last month cannabis were significant from 7.3×10^{-15} and daily cannabis use from 7.3×10^{-11} . Cannabis use was independently predictive of CVIR in the final spgm model. These results strongly support the hypothesis of an ecological geospatial link between cannabis use and coronavirus infection rate.

Cannabinoids are known to interact with the immune system at multiple points including CB1 and CB2 receptors, six vanilloid channels, peroxisome proliferator-activated receptors (PPAR's), serotonin, adenosine, histamine, glycine, sphingosine, dopamine and opioid receptors, three class A orphan G-protein coupled receptors (GPCR's), toll-like receptors, T-cells, B-cells, macrophages and regulatory cells, effects on sodium channels and several types of potassium and calcium channels, modulation of GABA signalling and inhibition of cyclooxygenase and lipoxygenase enzymes, bind directly to mitochondria and cannabinoid receptors also form heterodimers with opioid, adenosine, dopamine, GABA and other GPCR's and have myriad and major epigenetic effects ^{13-20,33-38}.

The highly potent mammalian toxin carbofuran has also been described as being used on cannabis plants to prevent them being eaten by herbivores such as deer and has been found in cannabis plantations in large quantities ²⁴. This extremely potent toxin is an

medRxiv preprint doi: https://doi.org/10.1101/2020.04.17.20069021; this version posted April 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC 4.0 International license . acetylcholinesterase inhibitor banned in USA in 1991 in granular form and in liquid form in 2009 by the Environmental Protection Agency (EPA) after it was implicated in the death of over 1,000,000 birds including eagles in USA and many lions in Africa ^{39,40}. Concerns relating to carbofuran contamination of groundwater and fresh drinking water supplies have been expressed by the US EPA and WHO ⁴¹⁻⁴³.

To our knowledge this investigation is the first report of a positive association between CVIR and cannabis. Nevertheless given that cannabis is known to have significant immunosuppressive effects by many biological mechanisms, and that reports of contamination of cannabis with diverse chemical, microbial and fungal organisms are not uncommon ²²⁻²⁵, and given the very high levels of statistical significance demonstrated in the present analysis by several techniques, we are concerned that this effect is likely robust and generalizable. In the context of rapidly accelerating pandemics of both cannabis and coronavirus this suggests a biological and mechanistic synergism which is of considerable concern. An interesting issue raised by this data is that cannabis-related -immunosuppression and -contamination is likely reversible upon cessation of exposure. This is an important issue requiring further research.

This report has several strengths and limitations. Our study is timely, and uses a current dataset for CVIR. The study uses a well validated nationally representative drug use dataset, which is widely studied and extensively quoted. Importantly we use two metrics of cannabis use including one which provides a measure of daily (or near daily) cannabis use, which has been shown to be the major parameter of American cannabis consumption ²⁷. We use a very large dataset of international flight arrivals into USA which captures the whole population of these events over a 12 month period. US Census Bureau data is used to source state population, income and ethnicity data from the well validated American Community Survey. Our analysis reaches similar conclusions by several different pathways in both bivariate and multivariable analyses. There is good concordance between models utilizing the spml, spgm and spreml geospatial algorithms. All our major results are at very high levels of statistical significance. The limitations of our study relate to its uncontrolled design. Case control studies cannot be considered in such situations since it is unethical to expose patients to a real risk of mortality in the absence of definitive treatment or vaccination (at the time of writing). Moreover our results are spatially restricted to state level data. For example upstate New York is very rural, but Manhattan is one of the most densely populated places on the planet.

BMJ Open

medRxiv preprint doi: https://doi.org/10.1101/2020.04.17.20069021; this version posted April 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC 4.0 International license. The broader geospatial level of our study was not able to capture such important details which are likely of particular importance to socially transmissible agents such as coronavirus. Further studies at higher geospatial levels of resolution are strongly and urgently indicated.

In summary we found strong bivariate and multivariable confirmatory evidence for the hypothesis that cannabis use is associated with coronavirus infection. A strong quintile effect was noted along with a prominent effect of cannabis decriminalization. After adjustment cannabis use emerged as a persistent, independent and robust correlate of CVIR at high levels of significance. This finding is of concern and suggests a powerful negative feedforward interaction between two major public health challenges faced by USA and the international community. Given the immediate salience and potent imminence of the coronavirus epidemic this association is well worth further immediate epidemiological research. The present report indicates stricter cannabis controls as one public health measure by which to address an infectious challenge and support cellular and soluble immunity for the whole community.

All authors had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Funding Statement

This research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors.

Authorship Contributions

ASR assembled the data, designed and conducted the analyses, and wrote the first manuscript draft. GKH provided technical and logistic support, co-wrote the paper, assisted with gaining ethical approval, provided advice on manuscript preparation and general guidance to study conduct.

Competing Interests Statement Neither author has conflicts of interest to declare.

	References
1.	World Health Organization. Coronavirus Disease 2019 (COVID-10) Situation Repor
	- 46. 2020; 1-9. Available at: https://www.who.int/docs/default-
	source/coronaviruse/situation-reports/20200306-sitrep-46-covid-
	<u>19.pdf?sfvrsn=96b04adf_2</u> . Accessed 31st March 2020, 2020.
2.	Worldometer. Coronavirus in Italy. 2020;
	https://www.worldometers.info/coronavirus/country/italy/. Accessed 31st March
-	2020, 2020.
3.	Rosenbaum L. Facing Covid-19 in Italy - Ethics, Logistics, and Therapeutics on the
4	Epidemic's Front Line. N Engl J Med. 2020.
4.	Truog RD, Mitchell C, Daley GQ. The Toughest Triage - Allocating Ventilators in a Pandemic. <i>N Engl J Med.</i> 2020.
5.	Emanuel EJ, Persad G, Upshur R, et al. Fair Allocation of Scarce Medical Resources
).	in the Time of Covid-19. N Engl J Med. 2020.
5.	Fauci AS, Lane HC, Redfield RR. Covid-19 - Navigating the Uncharted. N Engl J
	Med. 2020;382(13):1268-1269.
7.	Liu W, Tao ZW, Lei W, et al. Analysis of factors associated with disease outcomes i
	hospitalized patients with 2019 novel coronavirus disease. Chinese medical journal.
	2020.
8.	Guan WJ, Ni ZY, Hu Y, et al. Clinical Characteristics of Coronavirus Disease 2019
	China. N Engl J Med. 2020.
Э.	Zhu N, Zhang D, Wang W, et al. A Novel Coronavirus from Patients with Pneumon
10	in China, 2019. N Engl J Med. 2020;382(8):727-733.
10.	Worldometer. Coronavirus in USA. 2020;
	https://www.worldometers.info/coronavirus/country/us/. Accessed 31st March 2020, 2020.
11.	Hasin DS, Sarvet AL, Cerda M, et al. US Adult Illicit Cannabis Use, Cannabis Use
11.	Disorder, and Medical Marijuana Laws: 1991-1992 to 2012-2013. JAMA Psychiatry
	2017;74(6):579-588.
12.	Volkow ND, Baler RD, Compton WM, Weiss SR. Adverse health effects of
	marijuana use. N Engl J Med. 2014;370(23):2219-2227.
13.	Dong C, Chen J, Harrington A, Vinod KY, Hegde ML, Hegde VL. Cannabinoid
	exposure during pregnancy and its impact on immune function. Cell Mol Life Sci.
	2019;76(4):729-743.
14.	Katz-Talmor D, Katz I, Porat-Katz BS, Shoenfeld Y. Cannabinoids for the treatment
	of rheumatic diseases - where do we stand? Nature reviews Rheumatology.
	2018;14(8):488-498.
15.	Donvito G, Nass SR, Wilkerson JL, et al. The Endogenous Cannabinoid System: A
	Budding Source of Targets for Treating Inflammatory and Neuropathic Pain.
16	Neuropsychopharmacology. 2018;43(1):52-79.
16.	Abrams DI. The therapeutic effects of Cannabis and cannabinoids: An update from the National Academics of Sciences, Engineering and Madicine report. <i>Fur Untern</i>
	the National Academies of Sciences, Engineering and Medicine report. <i>Eur J Intern</i> <i>Med.</i> 2018;49:7-11.
17.	Olah A, Szekanecz Z, Biro T. Targeting Cannabinoid Signaling in the Immune
1/.	System: "High"-ly Exciting Questions, Possibilities, and Challenges. <i>Front Immunol</i>
	2017;8:1487.
18.	Morales P, Reggio PH. An Update on Non-CB1, Non-CB2 Cannabinoid Related G-
-	Protein-Coupled Receptors. <i>Cannabis Cannabinoid Res.</i> 2017;2(1):265-273.

(which w 19.	reprint doi: https://doi.org/10.1101/2020.04.17.20069021; this version posted April 22, 2020. The copyright holder for this preprint ras not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC 4.0 International license. Chiurchiu V, Leuti A, Maccarrone M. Cannabinoid Signaling and Neuroinflammatory
	Diseases: A Melting pot for the Regulation of Brain Immune Responses. J
	<i>Neuroimmune Pharmacol.</i> 2015;10(2):268-280.
20.	Cabral GA, Ferreira GA, Jamerson MJ. Endocannabinoids and the Immune System in
	Health and Disease. Handbook of experimental pharmacology. 2015;231:185-211.
21.	Hulse G.K., White J., Cape G., eds. <i>Management of alcohol and drug problems</i> . 1 ed. Melbourne: Oxford University Press; 2002; No. 1.
22.	Wilcox J, Pazdanska M, Milligan C, Chan D, MacDonald SJ, Donnelly C. Analysis of Aflatoxins and Ochratoxin A in Cannabis and Cannabis Products by LC-Fluorescence Detection Using Cleanup with Either Multiantibody Immunoaffinity Columns or an Automated System with In-Line Reusable Immunoaffinity Cartridges. <i>J AOAC Int.</i>
า ว	2019. Saltamiah N. Cartania Contaminanta, Paculating Saluanta, Mianahag, and Matala in
23.	Seltenrich N. Cannabis Contaminants: Regulating Solvents, Microbes, and Metals in
24	Legal Weed. <i>Environmental health perspectives</i> . 2019;127(8):82001.
24.	Mills D. Cultivating Disaster: The Effect of Cannabis Cultivation on the
	Environment of Calveras County. 2017; 1-61. Available at:
	https://supervisordennismills.com/wp-content/uploads/2019/10/Silent-Poison-final- pdf.pdf. Accessed 1, 1.
25.	Verweij PE, Kerremans JJ, Voss A, Meis JF. Fungal contamination of tobacco and marijuana. <i>Jama</i> . 2000;284(22):2875.
26.	Reece A.S., Hulse G.K. Rapid Response to Lane. Re: Cannabis exposure as an
	interactive cardiovascular risk factor and accelerant of organismal ageing: a
	longitudinal study, 2016. BMJ Open. 2020;6:e011891 - e011902.
27.	United National Office of Drugs and Crime. World Drug Report 2019. In: World
	Health Organization Office of Drugs and Crime, ed. Vol 1-5. Geneva, Switzerland:
	United National World Health Organization;
	2019: <u>https://wdr.unodc.org/wdr2019/index.html</u> .
28.	Substance Abuse and Mental Health Network. Substance Abuse and Mental Health
	Data Archive. 2019; https://www.datafiles.samhsa.gov/. Accessed December 30th
	2019, 2019.
29.	Wikipedia. Legality of Cannabis by U.S. Juridicition. 2020;
	https://en.wikipedia.org/wiki/Legality_of_cannabis_by_U.Sjurisdiction. Accessed
	31st March 2020, 2020.
30.	Millo G., Piras G. splm: Spatial Panel Data Models in R. Journal of Stastistical
	<i>Software</i> . 2012;47(1):1-38.
31.	Millo G. Maximum likelihood estimation of spatially and serially correlated panels
	with random effects. Computational Statistics & Data Analysis. 2014;71:914-933.
32.	Kapoor M., Kelejian H.H., Prucha I.R. Panel Data Models with Spatially Correlated
	Error Components. Journal of Econometrics. 2007;140(1):97-130.
33.	McCoy KL. Interaction between Cannabinoid System and Toll-Like Receptors
2.4	Controls Inflammation. <i>Mediators Inflamm</i> . 2016;2016:5831315.
34.	Toth KF, Adam D, Biro T, Olah A. Cannabinoid Signaling in the Skin: Therapeutic
25	Potential of the "C(ut)annabinoid" System. <i>Molecules</i> . 2019;24(5).
35.	Hulse G, Kelty E, Hood S, Norman A, Basso MR, Reece AS. Novel Indications for
	Benzodiazepine Antagonist Flumazenil in GABA Mediated Pathological Conditions
26	of the Central Nervous System. <i>Curr Pharm Des.</i> 2015;21(23):3325-3342.
36.	Reece AS, Hulse GK. Impacts of Cannabinoid Epigenetics on Human Development:
	Reflections on Murphy et. al. 'Cannabinoid Exposure and Altered DNA Methylation
	in Rat and Human Sperm' Epigenetics 2018; 13: 1208-1221. <i>Epigenetics</i> . 2019:1-16.

medRxiv preprint doi: https://doi.org/10.1101/2020.04.17.20069021; this version posted April 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC 4.0 International license. 37. Reece AS, Hulse GK. Chromothripsis and epigenomics complete causality criteria for

- Reece AS, Hulse GK. Chromothripsis and epigenomics complete causality criteria for cannabis- and addiction-connected carcinogenicity, congenital toxicity and heritable genotoxicity. *Mutat Res.* 2016;789:15-25.
- 38. Reece AS, Wang W, Hulse GK. Pathways from epigenomics and glycobiology towards novel biomarkers of addiction and its radical cure. *Medical hypotheses*. 2018;116:10-21.
- Jacobs J. Banned Pesticide Killed 13 Bald Eagles at Maryland Farm. 2018; <u>https://www.nytimes.com/2018/06/21/us/bald-eagles-dead-maryland.html</u>. Accessed June 21, 2018, 2018.
- 40. Wadhams N. Lions, Hyena Killed With Poisoned Meat. *National Geographic* 2010; <u>https://www.nationalgeographic.com/news/2010/4/100412-lions-poisoned-furadan-kenya/</u>. Accessed 31st March 2020, 2020.
- 41. Environmental Protection Agency U.S.A. Carbofuran Interim Re-registration. Eligibility Decision Facts. 2016; <u>https://archive.epa.gov/pesticides/reregistration/web/html/carbofuran_ired_fs.html</u>. Accessed 31st March 2020, 2020.
- 42. Environmental Protection Agency USA. Carbofuran, Integrated Risk Information System, CASRN 1563-66-2.
 <u>https://cfpub.epa.gov/ncea/iris2/chemicalLanding.cfm?substance_nmbr=218</u>. Accessed 31st March 2020, 2020.
- 43. World Health Organization. Carbofuran in Drinking Water. 2004; https://www.who.int/water_sanitation_health/dwq/chemicals/carbofuran.pdf. Accessed 31st March 2020, 2020.
- 44. Baltagi B.H., Song S.H., Jung C., Koh W. Testing for Serial Correlation, Spatial Autocorrelation and Random Effects Using Panel Data. *J Econometrics*. 2007;140(1):5-51.

medRxiv preprint doi: https://doi.org/10.1101/2020.04.17.20069021; this version posted April 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC 4.0 International license.

TABLES

BMJ Open

Table 1.: Bivariate Geospatial Regression Models of Cannabis Use
--

General		Param	ieters				Mo	odel			
Technique	Parameter	Estimate	Std. Error	t value	P-Value	LogLik	Parameters	Value	P-Value		
spreml	Cannabis Use										
spatial	spreml(Case_Rate ~ Can	nabis_Use_L	ast_Month)				phi	2.27E-02	0.9985		
errors =	mrjmon	0.2508	0.0836	3.0005	0.0027	- 46.9835	psi	-4.15E-05	0.9998	**	
sem2srre							rho	5.95E-01	1.35E-05		**
method=											
BFGS	spreml(Case_Rate ~ Can	nabis_Use_M	lost_Days_Last	_Month)	r.		phi	0.0200	NA		
initval=	mrjmdays	0.2320	0.0843	2.7520	0.0059	47.5603	psi	0.0000	0.9998	**	
zeros							rho	0.5742	4.1E-05		**
lag=											
false	spreml(Case_Rate ~ Can	nabis_Use_L	ast_Month : Ca	nnabis_Us	e_Most_Day	vs)	phi	0.0062	0.9991		
	mrjmon: mrjmdays	-0.0265	0.0096	-2.7511	0.0059	- 47.5711	psi	3.3È-05	0.9998	**	
							rho	0.5774	2.8E-05		**
spreml	Cannabis Quintile										
spatial	spreml(Case_Rate ~ Car	nabis_Daily_	Use_Quntile)								
errors =	Quintile 1	0.8028	0.2199	3.6499	0.0003	- 44.8044	phi	0.0197	NA	***	
sem2srre	Quintile 2	0.4763	0.2287	2.0821	0.0373		psi	-1.4E-05	0.9999	*	
method=	Quintile 3	0.4184	0.2095	1.9978	0.0457		rho	0.6175	2.4E-06	*	**
BFGS	Quintile 4	0.1716	0.3482	0.4929	0.6221						
initval=											
zeros	Legal Status										

BMJ Open

lag=	spreml(Case_Rate ~ Lego	al_Status)					phi	0.0601	< 2e-16		***
false	Legal v Illegal	0.4740	0.2321	2.0422	0.0411	- 48.6220	psi	-2.1E-06	0.9041	*	
							rho	0.5887	0.0411		*

Abbreviations:

 mrjmon - Percent using cannabis within the previous month

Lenin the previous month Let on all or most days of the month define - Percent using cannabis on all or most days of the month defined as ≥ 20 days per month. mrjmdays

Table 2.: Final Geospatial Regression Models

General	Parame	eters					Mode	el	
Technique	Parameter	Estimate	Std. Error	t value	P- Value	LogLik	Parameters	Value	P- Value
	SPML								
spml	<pre>spml(Case_Rate ~ NoFlight_Origins * mrjn + 6_Races + Population + Population_Densit</pre>		lays * Painl	Relyr + Ci		ingAlc + Co	ocyr + Amphet	Yr + Anal Y	r + <i>MHY</i>
model=	NoFl_Origins: mrjmon	2.1939	0.2820	7.7787	7.3E- 15		phi	7.1E-07	0.9752
random	NoFl_Origins: PainRelyr	-2.7334	0.3836	- 7.1262	1.0E- 12	-22.8796	rho	0.8188	<2E-16
effect=	NoFl_Origins: mrjmon: mrjmdays	0.3430	0.0527	6.5150	7.3E- 11				
individual	NoFl_Origins: mrjmdays: PainRelyr	-1.1782	0.2148	- 5.4847	4.1E- 08				
spatial.	NoFl_Origins: mrjmdays	-1.6307	0.3370	4.8383	1.3E- 06				
error=	Рор	-1.6895	0.3594	4.7002	2.6E- 06				
ККР	NoFl_Origins: mrjmon: mrjmdays: PainRelyr	-0.0820	0.0199	4.1124	3.9E- 05				
lag=	mrjmon: mrjmdays: PainRelyr	0.1450	0.0433	3.3483	0.0008	6			
false	mrjmdays: PainRelyr	0.9729	0.3155	3.0836	0.0020				
	SPGM								
spgm	spgm(Case_Rate ~ NoFlight_Origins * mrj. MHY + 6_Races + Population + Population_		days * Pain	Relyr + C	igmon + .	BingAlc + C	Cocyr + Amphe	tYr + Anal	Y r +
lag=	NoFl_Origins: mrjmon	2.5296	0.3463	7.3039	2.8E- 13				
false	NoFl_Origins: PainRelyr	-2.9788	0.4401	- 6.7680	1.3E- 11				
model=	NoFl_Origins: mrjmdays: PainRelyr	-1.3538	0.2448	- 5.5298	3.2E- 08				

Page 2	26 of 58
--------	----------

random	NoFl_Origins: mrjmdays	-2.4585	0.4575	5.3739	7.7E- 08				
method=	Рор	-2.1324	0.4046	5.2709	1.4E- 07				
g2sls	NoFl_Origins: mrjmon: mrjmdays: PainRelyr	-0.1113	0.0235	4.7372	2.2E- 06				
moments=	mrjmon: mrjmdays: PainRelyr	0.1757	0.0504	3.4873	0.0005				
initial	PopDens	0.2085	0.0609	3.4237	0.0006				
spatial.	NHPIpc	-0.1924	0.0636	3.0264	0.0025				
error=	NoFl_Origins: mrjmon: mrjmdays	0.2239	0.0764	2.9319	0.0034				
true	mrjmdays: PainRelyr	1.0096	0.3795	2.6606	0.0078				
	mrjmon	-1.7411	0.8326	- 2.0911	0.0365				
	SPREML								
spreml	SPREML spreml(Case_Rate ~ NoFlight_Origins * m MHY + 6 Races + Population + Population		mdays * Pai	nRelyr +	Cigmon +	- BingAlc +	Cocyr + Ai	nphetYr + Ana	<i>lYr</i> +
<i>spreml</i> spatial	spreml(Case_Rate ~ NoFlight_Origins * m		mdays * Pai. 0.2918	nRelyr +	Cigmon +	- <i>BingAlc</i> + - 27.46423	Cocyr + Ai	<i>nphetYr + Ana</i> 0.0980	<i>lYr</i> +
•	spreml(Case_Rate ~ NoFlight_Origins * m MHY + 6_Races + Population + Population_	Density)			1.8E- 13 2.3E- 11	-	-	-	N
spatial	spreml(Case_Rate ~ NoFlight_Origins * m MHY + 6_Races + Population + Population_ NoFl_Origins: mrjmon	Density) 2.1478	0.2918	7.3605	1.8E- 13 2.3E- 11 9.6E- 10	-	phi	0.0980	N 0.999
spatial errors =	spreml(Case_Rate ~ NoFlight_Origins * m MHY + 6_Races + Population + Population_ NoFl_Origins: mrjmon NoFl_Origins: PainRelyr	Density) 2.1478 -2.6492	0.2918 0.3964	7.3605	1.8E- 13 2.3E- 11 9.6E- 10 2.8E- 07	-	phi psi	0.0980 6.7E-05	
spatial errors = sem2srre	spreml(Case_Rate ~ NoFlight_Origins * m MHY + 6_Races + Population + Population_ NoFl_Origins: mrjmon NoFl_Origins: PainRelyr NoFl_Origins: mrjmon: mrjmdays	Density) 2.1478 -2.6492 0.3330	0.2918 0.3964 0.0545	7.3605 6.6834 6.1163	1.8E- 13 2.3E- 11 9.6E- 10 2.8E- 07 3.9E- 06	-	phi psi	0.0980 6.7E-05	N 0.999
spatial errors = sem2srre method=	spreml(Case_Rate ~ NoFlight_Origins * m MHY + 6_Races + Population + Population_ NoFl_Origins: mrjmon NoFl_Origins: PainRelyr NoFl_Origins: mrjmon: mrjmdays NoFl_Origins: mrjmdays: PainRelyr NoFl_Origins: mrjmdays Pop	Density) 2.1478 -2.6492 0.3330 -1.1340	0.2918 0.3964 0.0545 0.2209	7.3605 6.6834 6.1163 5.1340	1.8E- 13 2.3E- 11 9.6E- 10 2.8E- 07 3.9E-	27.46423	phi psi	0.0980 6.7E-05	N 0.999
spatial errors = sem2srre method= BFGS	spreml(Case_Rate ~ NoFlight_Origins * m MHY + 6_Races + Population + Population NoFl_Origins: mrjmon NoFl_Origins: PainRelyr NoFl_Origins: mrjmon: mrjmdays NoFl_Origins: mrjmdays: PainRelyr NoFl_Origins: mrjmdays: PainRelyr	Density) 2.1478 -2.6492 0.3330 -1.1340 -1.5898	0.2918 0.3964 0.0545 0.2209 0.3442	7.3605 6.6834 6.1163 5.1340 4.6186	1.8E- 13 2.3E- 11 9.6E- 10 2.8E- 07 3.9E- 06 5.4E-	27.46423	phi psi	0.0980 6.7E-05	N 0.999
spatial errors = sem2srre method= BFGS initval=	spreml(Case_Rate ~ NoFlight_Origins * m MHY + 6_Races + Population + Population_ NoFl_Origins: mrjmon NoFl_Origins: PainRelyr NoFl_Origins: mrjmon: mrjmdays NoFl_Origins: mrjmdays: PainRelyr NoFl_Origins: mrjmdays: PainRelyr NoFl_Origins: mrjmdays: PainRelyr NoFl_Origins: mrjmdays: PainRelyr NoFl_Origins: mrjmdays Pop NoFl_Origins: mrjmon: mrjmdays:	Density) 2.1478 -2.6492 0.3330 -1.1340 -1.5898 -1.6925	0.2918 0.3964 0.0545 0.2209 0.3442 0.3720	7.3605 6.6834 6.1163 5.1340 4.6186 4.5496	1.8E- 13 2.3E- 11 9.6E- 10 2.8E- 07 3.9E- 06 5.4E- 06	27.46423	phi psi	0.0980 6.7E-05	N 0.999

 BMJ Open

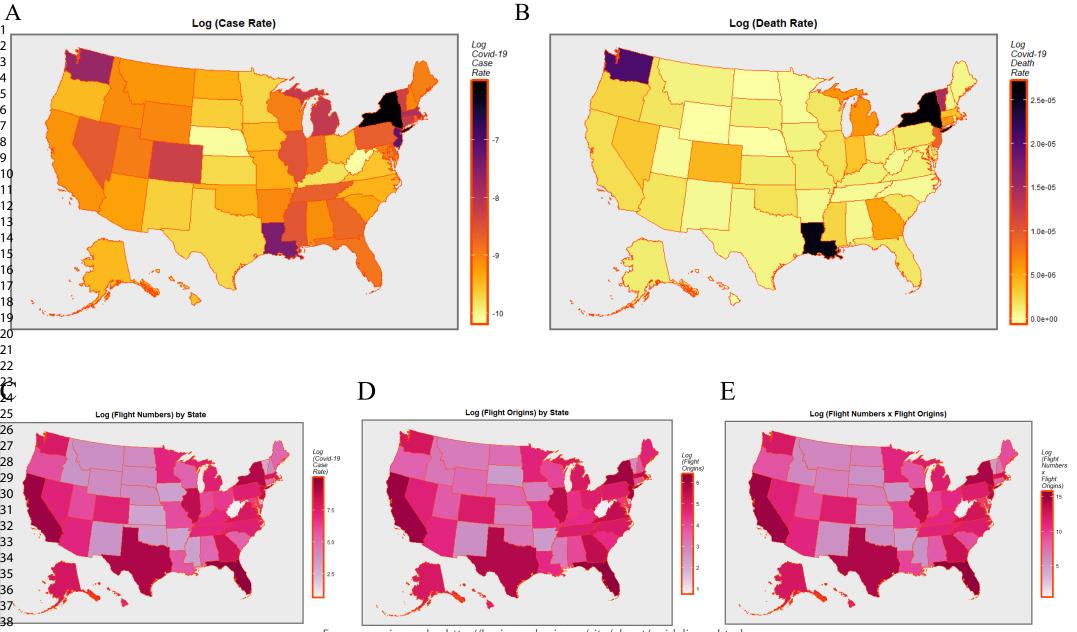
NoFl_Origins	- Number of Flight Origins arriving at airport
mrjmon	- Percent using cannabis within the previous month
mrjmdays	- Percent using cannabis on all or most days of the month defined as ≥ 20 days per month
PainRelyr	- Pain Reliever Misuse Use – Recoded
6_Races	 White + African_American + Asian + Hispanic + American_Indian_/_Alaskan_Native + Native_Hawaiian_/_Pacific_Islander
Technical Notes:	
phi:	- idiosyncratic component of the spatial error term
psi:	- individual time-invariant component of the spatial error term
rho:	- spatial autoregressive parameter
lambda:	- spatial autocorrelation coefficient
g2sls	- generalized 2-step spatial least squares error estimation
sem2srre	 spatial error model with errors estimated by Kapoor, Kalejian, and Prucha, serially correlated remainder of and random effects
ККР	- Kapoor, Kalejian, and Prucha ³²
BFGS	- Errors estimated by the method of Baltagi, Pfaffermayr, Le Gallo and Song ^{30,31,44}
logLik	- Log of Maximum likelihood ratio
initval	- Initial value
spml	- Spatial panel maximum likelihood estimation
spgm	- Spatial Panel Generalized Method of Moments Estimation
spreml	- Spatial Panel Random Effects Maximum Likelihood Estimation

medRxiv preprint doi: https://doi.org/10.1101/2020.04.17.20069021; this version posted April 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC 4.0 International license.

BMJ Open

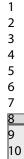
Figure Legends

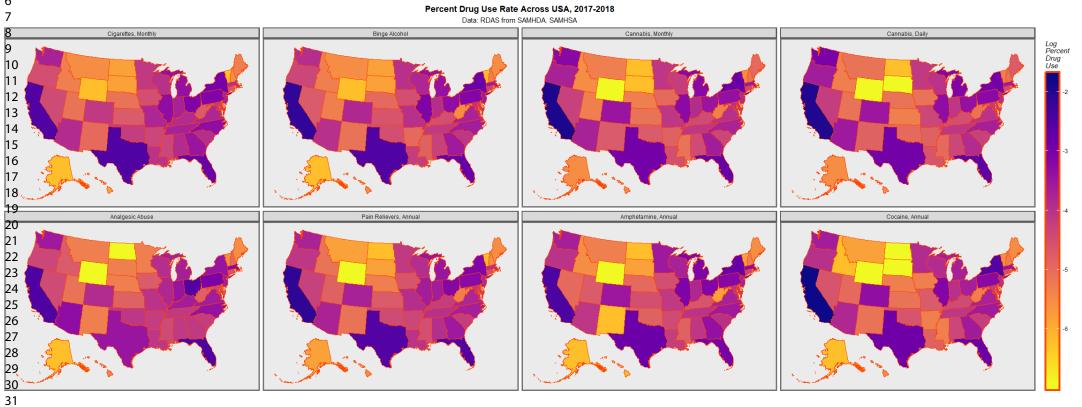
Figure 1.: Covid-19 Rates and Flight Data. (A) Choropleth map of log (Case Rate) by US State. (B) Choropleth map of log (Mortality Rate) by US State. (C) Choropleth map of log (Flight Numbers) by US State. (D) Choropleth map of log (Numbers of Flight Origins) by US State. (E) Choropleth map of log (Product of Flight Numbers x Numbers of Flight Origins) by US State.


Figure 2.: Choropleth maps of log(Drug Use Rates) by US State. Data, Restricted Use Data Analysis System (RDAS) from Substance Abuse and Mental Health Services Data Archive (SAMHDA) from SAMHSA ²⁸.

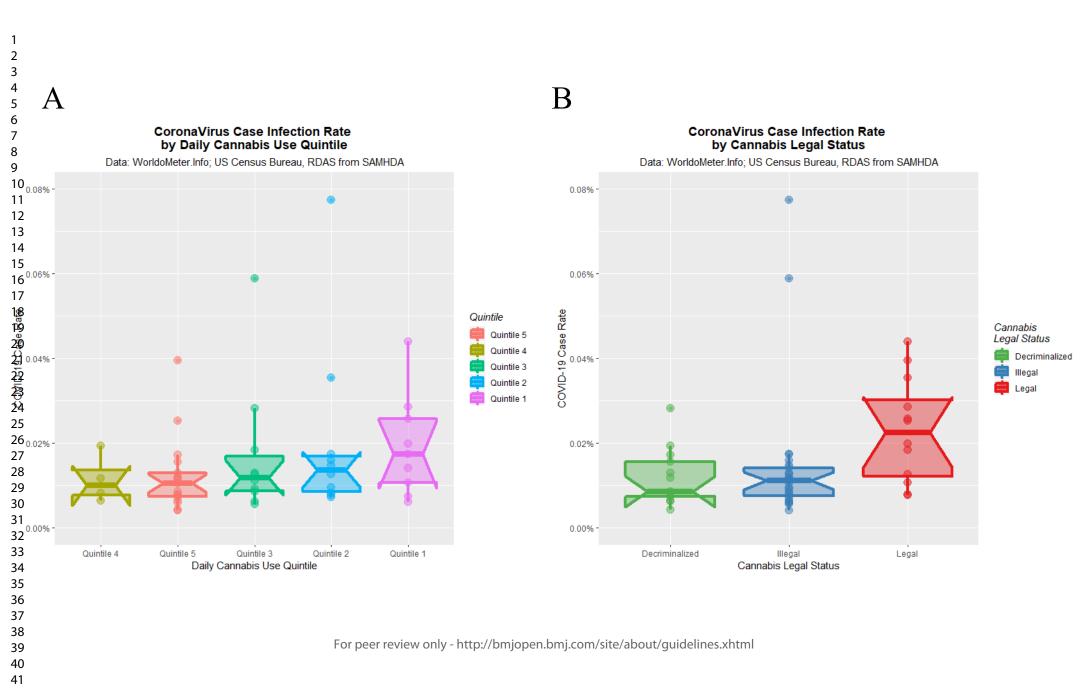
Revenue on 1

Figure 3.: Impact of Cannabis Daily Use Quintiles and Legal Status on Coronavirus Infection Rates. (A) Coronavirus infection rate by daily cannabis use quintiles. (B) Coronavirus infection rate by recreational cannabis use legal status.




22, C4

BMJ Open


BMJ Open

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Page 32 of 58

BMJ Open

Supplementary Table 1.: Cannabis Quintiles & Legal Status Designations
--

State	Quintile Daily Cannabis Use	Legal Status 2020
Alabama	Quintile 3	Illegal
Alaska	Quintile 5	Legal
Arizona	Quintile 2	Illegal
Arkansas	Quintile 4	Illegal
California	Quintile 1	Legal
Colorado	Quintile 1	Legal
Connecticut	Quintile 3	Decriminalized
Delaware	Quintile 5	Decriminalized
Florida	Quintile 1	Illegal
Georgia	Quintile 2	Illegal
Hawaii	Quintile 5	Decriminalized
Idaho	Quintile 5	Illegal
Illinois	Quintile 1	Legal
Indiana	Quintile 2	Illegal
Iowa	Quintile 5	Illegal
Kansas	Quintile 5	Illegal
Kentucky	Quintile 3	Illegal
Louisiana	Quintile 3	Illegal
Maine	Quintile 3	Legal
Maryland	Quintile 3	Decriminalized
Massachusetts	Quintile 2	Legal
Michigan	Quintile 1	Legal

 BMJ Open

		<u> </u>	
Minnesota	Quintile 3	Decriminalized	
Mississippi	Quintile 4	Decriminalized	
Missouri	Quintile 3	Illegal	
Montana	Quintile 5	Illegal	
Nebraska	Quintile 5	Decriminalized	
Nevada	Quintile 3	Legal	
New Hampshire	Quintile 5	Decriminalized	
New Jersey	Quintile 2	Illegal	
New Mexico	Quintile 4	Decriminalized	
New York	Quintile 1	Decriminalized	
North Carolina	Quintile 2	Decriminalized	
North Dakota	Quintile 5	Decriminalized	
Ohio	Quintile 1	Decriminalized	
Oklahoma	Quintile 4	Illegal	
Oregon	Quintile 2	Legal	
Pennsylvania	Quintile 1	Illegal	
Rhode Island		Decriminalized	
	Quintile 5		
South Carolina	Quintile 3	Illegal	
South Dakota	Quintile 5	Illegal	
Tennessee	Quintile 2	Illegal	
Texas	Quintile 1	Illegal	
Utah	Quintile 5	Illegal	
Vermont	Quintile 5	Legal	
Virginia	Quintile 2	Illegal	
Washington	Quintile 1	Legal	
West Virginia	Quintile 5	Illegal	
Wisconsin	Quintile 2	Illegal	
Wyoming	Quintile 5	Illegal	
	Zumme 2	megal	

BMJ Open

Supplementary Table 2.: Quintile & Legal Status Analysis

Group	Cases	Controls	Case_Rate / 10,000	Prevalence Ratio	Attributable Fraction in Exposed (%)	Attributable Fraction in Population (%)		
Quintile		· De						
Quintile 5	2,263	23,881,293	9.5	-	-	-		
Quintile 4	1,388	11,988,616	11.6	1.22 (1.14-1.31)	18.15 (12.49-23.44)	6.90 (4.51-9.24)		
Quintile 3	7,342	44,375,104	16.5	1.75 (1.67-1.83)	42.72 (39.96-45.36)	32.66 (30.19-35.04)		
Quintile 2	16,219	74,658,238	21.7	2.29 (2.19-2.40)	56.38 (54.41-58.25)	47.48 (47.48-51.39)		
Quintile 1	66,531	167,221,538	39.8	5.11 (4.90-5.33)	80.45 (79.61-81.25)	77.80 (76.88-78.68)		
				- Ch				
Legal Status								
Illegal	25,943	161,869,909	1.60	-	Sh-1	-		
Legal	17,878	91,266,635	1.96	1.22 (1.20-1.25)	18.18 (16.61-19.72)	7.42 (6.69-8.13)		
Decriminalized	49,922	68,988,245	7.24	4.51 (4.45-4.58)	77.84 (77.50-78.17)	51.22 (50.74-51.70)		

 BMJ Open

Supplementary Table 3.: Geospatial Spreml Regression on Single Group Variables

General	Parameter	`S					Mo	del	
Techniqu e	Parameter	Estimate	Std. Error	t value	P-Value	LogLik	Parame ters	Value	P-Value
spatial	Flights								
errors =	spreml(Case_Rate ~ Flight_Number)						phi	0.0094	NA
sem2srre	Flight_Number	0.1155	0.0392	2.9420	0.0033	-47.1017	psi	1.2E-05	0.9999
method=							rho	0.5794	<2E-16
BFGS									
initval=	<pre>spreml(Case_Rate ~ Number_Flight_Origins)</pre>	6					phi	0.0216	0.997
zeros NoFlight_Origins spreml(Case_Rate ~ Flight_Number_x Number_Flight_O	NoFlight_Origins	0.2202	0.0669	3.2937	0.0009	-46.1750	psi	-3.7E-05	0.999
						rho	0.5724	4.1E-0	
							phi	0.0062	0.999
	Flight_Number x NoFlight_Origins	0.0771	0.0249	3.0976	0.0019	-46.7015	psi	3.3E-05	0.999
							rho	0.5774	2.8E-0
spatial									
errors =	Median Household Income (MHY)								
sem2srre	spreml(Case Rate ~ MHY)						phi	0.0132	0.999
method=	MHY	0.8713	0.6455	1.3498	0.1771	-50.1873	psi	1.6E-05	0.999
BFGS							rho	0.5303	0.000
initval=									
zeros									
spatial	Race								
errors =	spreml(Case Rate ~ White + Black + Hispanic + Asian + A	4IAN + NHP	<i>I</i>)					1	
sem2srre	Asian	0.4132	0.1432	2.8865	0.0039	-46.9494	phi	0.2250	NA
method=	Native Hawaiian / Pacific Islander	-0.2238	0.1008	-2.2208	0.0264		psi	1.3E-05	0.999

1 uge 50 01 50	Page	36	of 58	
----------------	------	----	-------	--

1	
2 3	
5 4	
5	
6	
7 8	
9	
10 11	
11	
12 13	
14	
15	
16 17	
18	
19	
20	
21 22	
23	
24	
25 26	
27	
28	
29 30	
30 31	
32	
33	
34 35	
36	
37	
38 39	
39 40	
41	
42	
43	
44 45	
45 46	

BFGS							rho	0.4691	0.0063
initval=									
zeros									
spatial	Population								
errors =	spreml(Case_Rate ~ Population)						phi	0.0169	0.9975
sem2srre	Population	0.2242	0.0865	2.5906	0.0096		psi	-2.40E- 05	0.9999
method=							rho	0.5938	1.0E-05
BFGS									
initval=									
zeros	spreml(Case Rate ~ Population Density)								
	Population_Density	0.2278	0.0807	2.8233	0.0048		phi	0.1134	0.9975
							psi	3.1E-06	0.9999
							rho	0.5086	1.0E-05
spatial	Drugs								
errors =	spreml(Case_Rate ~ cigmon * mrjmon * PainRelyr *Analy	yr + BngAlc -	+ Cocyr + An	nphetYr)					
sem2srre	PainRelyr	-25.2873	5.4440	-4.6450	3.4E-06	-33.0965	phi	0.1099	NA
method=	cigmon: PainRelyr	-5.3952	1.2469	-4.3270	1.5E-05		psi	7.0E-06	1
BFGS	cigmon: mrjmon	5.6747	1.3297	4.2676	2.0E-05		rho	0.6898	2.56E- 07
initval=	mrjmon: PainRelyr	-2.0573	0.5150	-3.9947	6.5E-05				
zeros	mrjmon	18.1706	4.6906	3.8738	0.0001				
	cigmon: mrjmon: anlyr	1.0786	0.2798	3.8550	0.0001				
	cigmon: PainRelyr: anlyr	-0.8933	0.2474	-3.6107	0.0003				
	mrjmon: anlyr	3.8312	1.2411	3.0870	0.0020				
	PainRelyr: anlyr	-3.7812	1.2458	-3.0351	0.0024				
	cigmon: mrjmon: PainRelyr	-0.1486	0.0523	-2.8445	0.0044				
	mrjmon: PainRelyr: anlyr	-0.1652	0.0587	-2.8151	0.0049				

spatial	spreml(Case_Rate ~ mrjmon * mrjmdays * PainRe	elyr *Analyr + Cigmo	n + BngAlc	+ Cocyr + A	mphetYr)				
errors =	mrjmon	2.9736	0.7168	4.1486	3.3E-05	-39.9885	phi	0.5934	(
sem2srre	mrjmdays	-4.2851	1.1334	-3.7807	0.0002		psi	-1.1E-05	
method=	PainRelyr	-4.3181	1.1493	-3.7572	0.0002		rho	0.6638	7
BFGS	mrjmdays: PainRelyr	-1.3727	0.3956	-3.4702	0.0005				
initval=	mrjmon: mrjmdays: PainRelyr	-0.1028	0.0297	-3.4561	0.0005				
zeros									
spatial	spreml(Case_Rate ~ Cigmon * mrjmon * mrjmday	rs * PainRelyr + Anal	yr + Cigmon	a + BngAlc +	Cocyr + Am	phetYr)			
errors =	mrjmon	10.9208	2.2199	4.9196	8.7E-07	- 32.4261	phi	0.1992	(
sem2srre	PainRelyr	-19.1743	4.7785	-4.0126	6.0E-05		psi	4.4E-07	
method=	mrjmdays: PainRelyr	-4.2636	1.1674	-3.6522	0.0003		rho	0.7477	5
BFGS	cigmon: mrjmon: PainRelyr	-0.3949	0.1224	-3.2260	0.0013				
initval=	mrjmon: mrjmdays	2.7491	0.9117	3.0152	0.0026				
zeros	cigmon: PainRelyr	-4.3450	1.6255	-2.6730	0.0075				
	cigmon	-7.8301	3.0909	-2.5333	0.0113				
	cigmon: mrjmon: mrjmdays	0.3557	0.1427	2.4919	0.0127				
	cigmon: mrjmdays: PainRelyr	-0.6716	0.2884	-2.3290	0.0199				
	mrjmdays	-3.3133	1.4962	-2.2144	0.0268				

Abbreviations:

No. Fl Origins mrjmon mrjmdays PainRelyr 6 Races

- Number of Flight Origins arriving at airport

- Percent using cannabis within the previous month
- Percent using cannabis on all or most days of the month defined as ≥ 20 days per month
- Pain Reliever Misuse Use Recoded
- White + African American + Asian + Hispanic + American Indian / Alaskan Native +

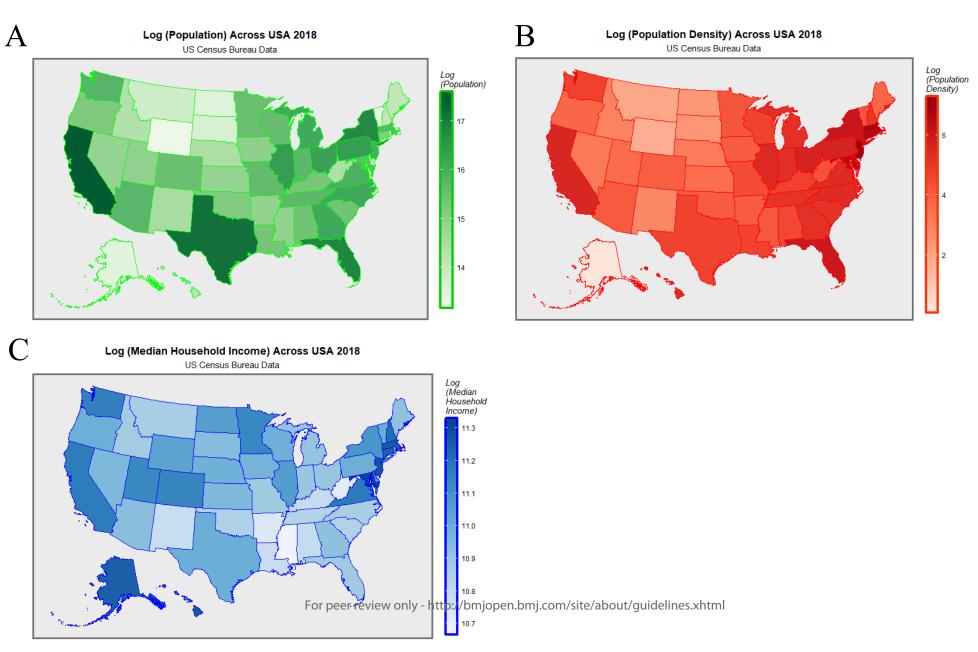
Page 37 of 58

	Native_Hawaiian_/_Pacific_Islander
g2s1s	- generalized 2-step spatial least squares error estimation
sem2srre	- spatial error model with errors estimated by Kapoor, Kalejian, and Prucha, serially correlated remainder errors and random effects
KKP	- Kapoor, Kalejian, and Prucha ³²
BFGS	- Errors estimated by the method of Baltagi, Pfaffermayr, Le Gallo and Song ^{30,31,44}
logLik	- Log of Maximum likelihood ratio
initval	- Initial value
spml	- Spatial papel maximum likelihood estimation
spgm	- Spatial Panel Generalized Method of Moments Estimation
spreml	- Spatial Panel Random Effects Maximum Likelihood Estimation
- I	 Spatial Panel Generalized Method of Moments Estimation Spatial Panel Random Effects Maximum Likelihood Estimation

Supplementary Table 4.: Additive Geospatial Regressions

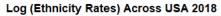
General		Paramet	Model						
Technique	Parameter	Estimate	Std. Error	t value	P-Value	LogLik	Parameters	Value	P-Value
	spreml(Case_Rate ~ No 6_Races + Population + P			ndays + Pa	uinRelyr + Bi	ingAlc + Co	cyr + AmphetY	r + AnalYr -	+ <i>MHY</i> +
spreml	NoFlight_Origins	0.2202	0.0669	3.2937	0.0010	- 46.17505	phi	0.0216	0.9979
spatial		C					psi	-3.7E-05	0.9998
errors =							rho	0.5724	4.10E-05
sem2srre									
method=			Č Č						
BFGS									
initval=									
zeros									
lag=									
false						5			
	spml(Case_Rate ~ NoFl 6_Races + Population + P			lays + Pain	Relyr + Bing	gAlc + Cocy	r + AmphetYr	+ AnalYr + J	<i>MHY</i> +
spml	NoFlight_Origins	0.178156	0.070553	2.5251	0.01157	- 44.4226	phi	4.9E-08	0.984294
model=	Population_Density	0.152799	0.084397	1.8105	0.07022		rho	0.5366	0.00028
random									
effect=									
individual									

spatial.	I	1							
error=								-	
KKP									
								-	
lag= false								-	
laise									
	spgm(Case_Rate ~ NoF) 6_Races + Population + P			days + Pain	nRelyr + Bin	gAlc + Coc	yr + AmphetY	r + AnalYr +	+ <i>MHY</i> +
spgm	NoFlight_Origins	0.1768	0.0757	2.3357	0.0195				
lag=	Population_Density	0.1616	0.0786	2.0550	0.0399				
false									
model=		C							
random									
method=									
g2sls									
moments=									
initial									
spatial.									
error=									
true						S			
	spgm(Case_Rate ~ NoF Population + Population_	lights + mrjmon - Density)	+ mrjmdays + 1	PainRelyr +	- BingAlc + (Cocyr + Am	phetYr + Ana	lYr + MHY -	+ 6_Races
spgm	mrjmon	0.7618	0.2869	2.6549	0.0079				
lag=	PainRelyr	-0.5935	0.2922	-2.0308	0.0423				
false	White	-1.3307	0.5586	-2.3820	0.0172				
model=	Native_Hawaiian_/_ Pacific Islanders	-0.2375	0.1104	-2.1510	0.0315				
random									

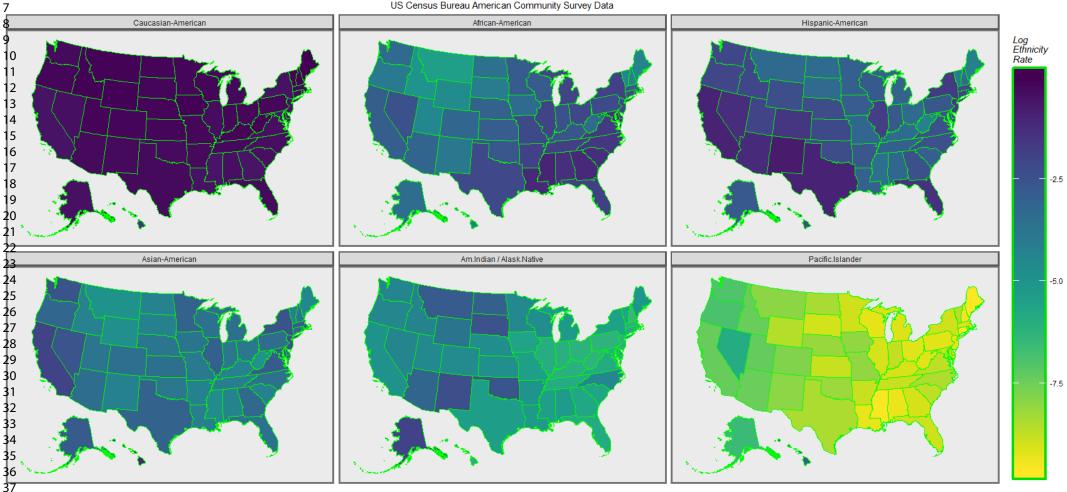

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

method=					
g2sls					
moments=					
initial					
spatial.					
error=					
true					

Abbreviations:

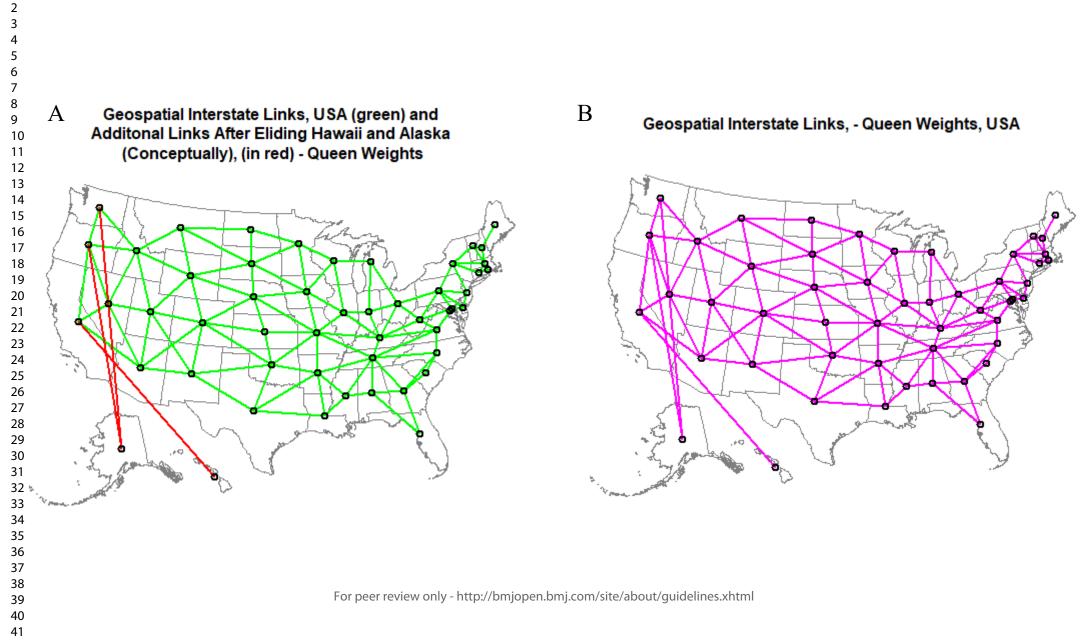

iations:	
NoFl_Origins	- Number of Flight Origins arriving at airport
mrjmon	- Percent using cannabis within the previous month
mrjmdays	- Percent using cannabis on all or most days of the month defined as ≥ 20 days per month
PainRelyr	- Pain Reliever Misuse Use – Recoded
6_Races	 White + African_American + Asian + Hispanic + American_Indian_/_Alaskan_Native + Native_Hawaiian / Pacific_Islander
g2sls	- generalized 2-step spatial least squares error estimation
sem2srre	- spatial error model with errors estimated by Kapoor, Kalejian, and Prucha, serially correlated remainder error and random effects
KKP	- Kapoor, Kalejian, and Prucha ³²
BFGS	- Errors estimated by the method of Baltagi, Pfaffermayr, Le Gallo and Song ^{30,31,44}
logLik	- Log of Maximum likelihood ratio
initval	- Initial value
spml	- Spatial panel maximum likelihood estimation
spgm	- Spatial Panel Generalized Method of Moments Estimation
spreml	- Spatial Panel Random Effects Maximum Likelihood Estimation

SF1 - MHY, Pop, PopDens



q

SF2 - Ethnicity



US Census Bureau American Community Survey Data

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open SF3 – Geospatial Links

1 2	medRxiv preprint doi: http Sta twhich was not certifi	os://doi.org/	(10.1101/20 Deaths)20.04.17.	20069021;	this versior	n posted April	22, 2020.	The copyright h	older for this	s preprint
2 3	New York	44635	It is mage	avajjaple	undenao	-BX-N614.	0 International		0.044	0.061	Jetuity.
4	New Jersey	6876	81	0.025	0.029	0.022	0.021	0.027	0.022	0.025	
5	Louisiana	2744	119	0.018	0.015	0.011	0.01	0.017	0.018	0.015	
6	Washington	3207	150	0.010	0.02	0.011	0.048	0.029	0.010	0.026	
7	District of Columbia	271	3	0.0025	0.003	0.004	0.002	0.004	0.0021	0.004	
8 9	Massachusetts	2417	25	0.002	0.005	0.029	0.002	0.043	0.002	0.038	
9 10	Michigan	2844	61	0.02	0.028	0.02	0.028	0.045	0.01)	0.038	
11	Connecticut	1012	21	0.001	0.014	0.013	0.011	0.020	0.011	0.013	
12	Colorado	1430	24	0.016	0.022	0.013	0.012	0.021	0.025	0.014	
13	Vermont	1450	9	0.010	0.022	0.001	0.005	0.021	0.023	0.003	
14	Illinois	2540	26	0.002	0.002	0.004	0.005	0.004	0.002	0.005	
15 16	Mississippi	579	8	0.030	0.043	0.006	0.007	0.022	0.027	0.040	
10	Nevada	536	10	0.013	0.008	0.000	0.007	0.012	0.011	0.008	
18		2218	22	0.012	0.009	0.014	0.013	0.012	0.014	0.007	
19	Pennsylvania Tennessee	1153	3	0.044	0.045	0.034	0.038	0.048	0.038	0.041	
20	Delaware	163	2	0.023	0.010	0.007	0.003	0.010	0.013	0.018	
21		1642	56	0.003	0.003	0.003	0.003	0.004	0.003	0.003	
22	Georgia Rhode Island	1642			0.028	0.027	0.021	0.010		0.034	
23 24			0	0.003					0.003		
25	Indiana Elarida	979	24	0.025	0.02	0.021	0.017	0.032	0.027	0.023	
26	Florida	2900	35	0.063	0.062	0.063	0.069	0.084	0.079	0.051	
27	Utah Mamulan d	396	1	0.006	0.005	0.005	0.006	0.006	0.008	0.009	
28	Maryland	775	5	0.016	0.019	0.019	0.016	0.013	0.017	0.018	
29	Wisconsin	732	10	0.019	0.023	0.015	0.018	0.02	0.02	0.025	
30 31	Maine	168	1	0.005	0.004	0.007	0.009	0.004	0.004	0.004	
31	Wyoming	70	0	0.002	0.002	0.001	0.001	0.001	0.001	0.001	
33	New Hampshire	158	1	0.004	0.005	0.006	0.006	0.007	0.004	0.005	
34	Arkansas	351	2	0.013	0.007	0.008	0.008	0.015	0.013	0.012	
35	Idaho	192	3	0.005	0.005	0.004	0.005	0.009	0.006	0.004	
36	Alabama	540	3	0.021	0.014	0.012	0.013	0.016	0.02	0.017	
37 38	California	4203	85	0.082	0.12	0.148	0.141	0.086	0.122	0.088	
39	Montana	109	1	0.004	0.004	0.005		0.005	0.003	0.005	
40	Arizona	665	13	0.021	0.019	0.025	0.029	0.036	0.024	0.017	
41	South Carolina	456	9	0.02	0.017	0.013		0.015	0.015	0.019	
42	Missouri	520	9	0.023	0.019	0.017		0.018	0.02	0.016	
43	North Dakota	64	0	0.003	0.003	0.002		0.001	0.002	0.002	
44 45	Oklahoma	322	8	0.015	0.011	0.009		0.017		0.008	
45 46	North Carolina	832	4	0.036	0.027	0.024	0.026		0.026	0.029	
47	Alaska	58	1	0.002	0.002	0.004	0.004		0.003	0.002	
48	Oregon	317	11	0.011	0.013	0.025	0.027	0.013	0.017	0.018	
49	Iowa	235	3	0.011	0.011	0.007	0.006	0.009	0.01	0.011	
50	Ohio	871	15	0.045	0.036	0.031	0.034		0.041	0.042	
51 52	Hawaii	106	0	0.003	0.004	0.004	0.004		0.004	0.002	
52 53	Virginia	606	10	0.023	0.024	0.019	0.018	0.027	0.023	0.025	
55 54	South Dakota	57	1	0.003	0.003	0.002	0.001	0.005	0.003	0.003	
55	New Mexico	136	1	0.007	0.006	0.009	0.008	0.005	0.006	0.002	
56	Minnesota	344	2	0.016	0.019	0.017	0.016	0.005	0.016	0.029	
57	Texas	1683	24	0.082	0.083	0.052	0.053	0.031	0.08	0.058	
58 50	Kansas	174	4	0.009	0.01	0.006	0.005	0.008	0.009	0.011	
59 60	Kentucky	247	5	0.021	0.011	0.012	0.011	0.027	0.015	0.01	
	Nebraska	82	0	0.006	0.007	0.005	0.006	0.005	0.005	0.007	

medRxiv preprint doi: https://doi.org/10.1101/2020.04.17.20069021; this version posted April 22, 2020. The copyright holder for this preprint W (Sinch 243 not certified by peer review) is the author/funder, who has granted medRXN a license to display the preprint in perpetuity. It is made available under a CC-BY-NC 4.0 International license.

For beer review only

10	0.026	0./8519/	0.138130	0.050002	0.030570	0.005346	1.09E-04	995/488	
11	0.011	0.763612	0.105615	0.156859	0.044344	0.002708	6.84E-05	3581504	
12	0.035	0.841704	0.041210	0.214204	0.031222	0.009850	4.04E-04	5531141	
13 14	0.004	0.943308	0.012893	0.018684	0.016927	0.003370	1.82E-04	624977	
14	0.043	0.716701	0.142271	0.169625	0.053880	0.002485	1.23E-04	12821497	
16	0.005	0.585926	0.376689	0.030278	0.009473	0.004580	7.16E-05	2988762	
17	0.01	0.662061	0.089339	0.284516	0.080296	0.012264	0.002658023	2922849	
18	0.039	0.808482	0.111273	0.070764	0.033452	0.001943		12791181	
19	0.017	0.776750	0.168016	0.052984	0.016977	0.002683	1.51E-04	6651089	
20	0.003	0.689740	0.221056	0.090906	0.038676	0.003639	1.47E-04	949495	
21 22	0.028	0.590433	0.314572	0.094049	0.039087	0.003252		10297484	
23	0.005	0.808720	0.065544	0.150347	0.033752	0.005190	2.08E-04	1056611	
24	0.019	0.835908	0.093330	0.067838	0.021844	0.002249	1.60E-04	6637426	
25	0.061	0.753908	0.161004	0.251708	0.027147	0.002822		20598139	
26	0.007	0.864287	0.011776	0.138612	0.022923	0.010724	6.35E-04	3045350	
27	0.007	0.561875	0.297844	0.098096	0.062344	0.002606	1.37E-04	6003435	
28 29	0.021	0.855941	0.063814	0.066762	0.0027578	0.002000	9.74E-05	5778394	
29 30	0.004	0.944781	0.003814	0.000702	0.027578	0.006229	6.98E-05	1332813	
31	0.004	0.914361	0.009522	0.010072	0.008174	0.000223	1.94E-04	581836	
32	0.001	0.930332	0.009322	0.037907	0.026886	0.024133	7.59E-05	1343622	
33	0.005	0.930332	0.015209	0.073245	0.020880	0.001333	1.47E-04	2990671	
34	0.003	0.770019	0.134130	0.073243	0.014708	0.000700	6.01E-04	1687809	
35									
36 37	0.013	0.681947	0.265832	0.041759	0.013281	0.005257	8.86E-05	4864680	
38	0.164	0.601017	0.057930	0.388814	0.143155	0.007573		39148760	
39	0.003	0.888561	0.004445	0.037456	0.007629	0.064593	3.51E-04	1041732	
40	0.022	0.772187	0.043943	0.311416	0.032949	0.044565	5.87E-04	6946685	
41	0.015	0.672526	0.270254	0.055627	0.015150	0.003367	1.73E-04	4955925	
42	0.009	0.822379	0.115745	0.040904	0.019166	0.004426	3.21E-04	6090062	
43	0.001	0.871134	0.027180	0.035268	0.014376	0.052462	2.35E-04	752201	
44 45	0.01	0.724266	0.073494	0.104009	0.021284	0.075208	2.83E-04	3918137	
45	0.028	0.688706	0.214622	0.092161	0.027794	0.011949		10155624	
47	0.002	0.648373	0.032672	0.069309	0.063040		0.001440727	738516	
48	0.019	0.844189	0.019057	0.128359	0.042752		0.001028922	4081943	
49	0.005	0.902758	0.035087	0.058514	0.023969	0.003687	3.19E-04	3132499	
50	0.026	0.815146	0.123543	0.037050	0.021452	0.002024		11641879	
51 52	0.004	0.250074	0.018471	0.104050	0.377518	0.002101	0.062506461	1422029	
52 53	0.024	0.680154	0.191743	0.091656	0.063171	0.002730	1.73E-04	8413774	
55	0.001	0.844697	0.018791	0.037019	0.014648	0.087160	1.30E-04	864289	
55	0.006	0.745011	0.020553	0.485440	0.015060	0.095533	3.44E-04	2092434	
56	0.021	0.833317	0.061908	0.052966	0.047466	0.010671	1.34E-04	5527358	
57	0.056	0.743071	0.120701	0.391661	0.046916	0.004879	2.19E-04	27885195	
58	0.006	0.845929	0.058375	0.117099	0.028717	0.008268	1.51E-04	2908776	
59 60	0.012	0.870833	0.079751	0.035752	0.014144	0.002227	1.20E-04	4440204	
60	0.005	0.874894	0.047702	0.106723	0.023155	0.009073	2.90E-04	1904760	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

medRxix preprint doi: https://doi.org/10.1101/2020.04.17.20069021; this version posted April 22, 2020. The copyright holder for this preprint COQWhich west on certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 0.079 0.637917 0.156588 adde available under strategy of a CC-0.085102 International display to the preprint in perpetuity.

0.093720

0.017127

0.083274

0.039033

0.064797

0.030570

0.002100

0.005633

0.013030

0.002912

0.002122

0.005346

9.91E-05

9.35E-05

9.33E-04

1.59E-04

1.06E-04

1.09E-04

8881845

4663616

7294336

6830193

9957488

684498

0.199060

0.050373

0.124970

0.109242

0.115535

0.050002

0.02

0.008

0.027

0.006

0.032

0.026

0.679110

0.622072

0.760316

0.409744

0.784752

0.785197

0.134743

0.322264

0.036995

0.469420

0.074750

0.138130

1

2

3

4

5

6

7

8

Korbeerterier ont

1 2	MHQRx	iv preprint doi: https://d ch was not bettified by	bi.org/10.1101/202	20,04.17,20069021; thi	s version posted April	22,2020	The copyright	holder for this preprint
3		2015 (0.0968,0.1	221 dusmale	vailable 17,6. P139-B	^Y Dectimination		· 208	877344
4		2015 [0.0472,0.0			Illegal	2539	214	543346
5		2015 [0.0472,0.0		(0.064,0.0743]	Illegal	163	47	7661
6		2015 (0.0968,0.1		6 (0.113,0.171]	Legal	1208	89	107512
7 8	82604	2015 (0.0968,0.1		6 (0.113,0.171]	Legal	NA I	NA	NA
9		2015 (0.0968,0.1		6 (0.113,0.171]	Legal	1414	136	192304
10	54938	2015 (0.0968,0.1	22] Quintile 3	6 (0.0817,0.113]	Legal	851	80	68080
11	76106	2015 (0.0968,0.1	22] Quintile 3	6 (0.0817,0.113]	Decriminalized	92	25	2300
12	68811	2015 (0.146,0.17	[] Quintile 5	6 (0.113,0.171]	Legal	835	74	61790
13 14	60076	2015 (0.146,0.17	[] Quintile 5	6 (0.113,0.171]	Legal	11	8	88
15	63575	2015 (0.072,0.09	58] Quintile 2	2 (0.0743,0.0817]	Legal	3019	140	422660
16	43567	2015 [0.0472,0.0	72] Quintile 1	[0.0472,0.064]	Decriminalized	14	12	168
17	57598	2015 (0.072,0.09	58] Quintile 2	2 (0.0743,0.0817]	Legal	779	60	46740
18	59445	2015 (0.072,0.09	58] Quintile 2	2 (0.0743,0.0817]	Illegal	949	73	69277
19 20	50972	2015 [0.0472,0.0	72] Quintile 1	[0.0472,0.064]	Misdemeanor	651	72	46872
20 21	65627	2015 (0.072,0.09	58] Quintile 2	2 (0.0743,0.0817]	Decriminalized	6	3	18
22	55679	2015 (0.072,0.09	68] Quintile 2	2 (0.0743,0.0817]	Illegal	1965	130	255450
23	63296	2015 (0.122,0.14	6] Quintile 4	(0.113,0.171]	Decriminalized	47	18	846
24	54325	2015 (0.072,0.09	58] Quintile 2	(0.0817,0.113]	Misdemeanor	226	41	9266
25	53267	2015 (0.072,0.09	58] Quintile 2	(0.0743,0.0817]	Illegal	9108	257	2340756
26 27	68374	2015 [0.0472,0.0	72] Quintile 1	[0.0472,0.064]	Misdemeanor	226	21	4746
27	81868	2015 (0.072,0.09	58] Quintile 2	2 (0.0817,0.113]	Decriminalized	334	39	13026
29	59209	2015 [0.0472,0.0	72] Quintile 1	(0.064,0.0743]	Illegal	110	31	3410
30	55425	2015 (0.122,0.14	6] Quintile 4	(0.113,0.171]	Legal	99	56	5544
31	62268	2015 [0.0472,0.0	72] Quintile 1	[0.0472,0.064]	Misdemeanor	31	16	496
32	74057	2015 (0.122,0.14	6] Quintile 4	(0.113,0.171]	Decriminalized	32	23	736
33 34	45726	2015 (0.072,0.09	58] Quintile 2	2 (0.064,0.0743]	Illegal	13	6	78
35	53089	2015 [0.0472,0.0	72] Quintile 1	[0.0472,0.064]	Misdemeanor	23	13	299
36	48486	2015 [0.0472,0.0	72] Quintile 1	[0.0472,0.064]	Illegal	93	30	2790
37	71228	2015 (0.0968,0.1	22] Quintile 3	6 (0.0817,0.113]	Legal	6734	217	1461278
38	52559	2015 (0.0968,0.1	22] Quintile 3	6 (0.0817,0.113]	Illegal	28	12	336
39 40	56213	2015 (0.072,0.09	58] Quintile 2	2 (0.0817,0.113]	Illegal	676	51	34476
40	51015	2015 (0.072,0.09	58] Quintile 2	2 (0.0817,0.113]	Misdemeanor	113	45	5085
42	53560	2015 (0.072,0.09	58] Quintile 2	2 (0.0743,0.0817]	Illegal	220	43	9460
43	63473	2015 [0.0472,0.0	72] Quintile 1	[0.0472,0.064]	Decriminalized	33	15	495
44	51424	2015 [0.0472,0.0	72] Quintile 1	[0.0472,0.064]	Illegal	15	12	180
45 46	52413	2015 (0.072,0.09	68] Quintile 2	2 (0.064,0.0743]	Decriminalized	890	78	69420
40 47	76715	2015 (0.146,0.17	I] Quintile 5	5 (0.113,0.171]	Legal	1553	82	127346
48	59393	2015 (0.122,0.14	6] Quintile 4	(0.113,0.171]	Legal	204	19	3876
49	58580	2015 [0.0472,0.0	72] Quintile 1	[0.0472,0.064]	Illegal	14	11	154
50	54533	2015 (0.072,0.09	68] Quintile 2	2 (0.0743,0.0817]	Decriminalized	346	70	24220
51	78084	2015 (0.072,0.09	68] Quintile 2	2 (0.0743,0.0817]	Decriminalized	752	66	49632
52 53	71564	2015 [0.0472,0.0	72] Quintile 1	(0.064,0.0743]	Misdemeanor	1375	124	170500
55 54		2015 [0.0472,0.0		· · ·	Misdemeanor	31	6	186
55		2015 (0.0968,0.1		· · ·	Decriminalized	24	8	192
56		2015 (0.072,0.09		· · ·	Decriminalized	669	56	37464
57		2015 [0.0472,0.0			Illegal	4591	159	729969
58 59		2015 (0.072,0.09		· · ·	Misdemeanor	13	10	130
59 60		2015 [0.0472,0.0		· · ·	Misdemeanor	621	44	27324
	59116	2015 [0.0472,0.0	72] Quintile 1	[0.0472,0.064]	Decriminalized	31	17	527

medRxiv preprint doi: https://doi.org/10.1101/2020.04.17.20069021; this version posted April 22, 2020. The copyright holder for this preprint 44 (which was not certified by peer wellew) is the authomiunder who has spanled mediative a license to display the preprint in perpetuity. It is made available under a CC-BY-NC 4.0 International license .

For peer terien only

1	amedRxiv preprin	t-doi: .https://d	loi.ora/10.1101/2020.04.17.20069	021: this version	posted April-22- 2	2020. The copyright holder for this prepri	int
2	Case Kitch was n	ov certified b	Appet Keview) is the Huthor Andre	er, WHUTAASUGTAH		2020. The copyright holder for this prepri	-
3			0.01 16277846 available lenger				
4 5			0.011780105 Quintile 5	Quintile 2	Quintile 4	Quintile 1	
6			0.043367347 Quintile 5	Quintile 3	Quintile 4	Quintile 1	
7			0.046772685 Quintile 4	Quintile 1	Quintile 5	Quintile 1	
8			0.011070111 Quintile 5	Quintile 5	Quintile 5	Quintile 1	
9		3.66E-06	•	Quintile 2	Quintile 5	Quintile 1	
10 11			0.021448664 Quintile 4	Quintile 1	Quintile 5	Quintile 1	
12			0.020750988 Quintile 5	Quintile 3	Quintile 5	Quintile 1	
13		4.34E-06		Quintile 1	Quintile 5	Quintile 1	
14			0.056962025 Quintile 5	Quintile 5	Quintile 5	Quintile 1	
15		2.03E-06	0.01023622 Quintile 4	Quintile 1	Quintile 5	Quintile 2	
16		2.68E-06		Quintile 4	Quintile 5	Quintile 2	
17 18		3.42E-06		Quintile 3	Quintile 5	Quintile 2	
18 19			0.009918846 Quintile 4	Quintile 1	Quintile 5	Quintile 2	
20		4.51E-07		Quintile 2	Quintile 5	Quintile 2	
21			0.012269939 Quintile 5	Quintile 5	Quintile 5	Quintile 2	
22		5.44E-06	0.03410475 Quintile 5	Quintile 2	Quintile 5	Quintile 2	
23	1.56E-04	0	0 Quintile 5	Quintile 5	Quintile 5	Quintile 2	
24 25			0.024514811 Quintile 5	Quintile 2	Quintile 5	Quintile 2	
25 26	1.41E-04	1.70E-06	0.012068966 Quintile 3	Quintile 1	Quintile 5	Quintile 2	
20	1.30E-04	3.28E-07	0.002525253 Quintile 5	Quintile 5	Quintile 5	Quintile 3	
28	1.29E-04	8.33E-07	0.006451613 Quintile 5	Quintile 3	Quintile 5	Quintile 3	
29	1.27E-04	1.73E-06	0.013661202 Quintile 5	Quintile 2	Quintile 5	Quintile 3	
30	1.26E-04	7.50E-07	0.005952381 Quintile 5	Quintile 3	Quintile 5	Quintile 3	
31	1.20E-04	0	0 Quintile 5	Quintile 5	Quintile 5	Quintile 3	
32 33	1.18E-04	7.44E-07	0.006329114 Quintile 5	Quintile 5	Quintile 5	Quintile 3	
34	1.17E-04	6.69E-07	0.005698006 Quintile 5	Quintile 4	Quintile 5	Quintile 3	
35	1.14E-04	1.78E-06	0.015625 Quintile 5	Quintile 5	Quintile 5	Quintile 3	
36	1.11E-04	6.17E-07	0.005555556 Quintile 5	Quintile 3	Quintile 5	Quintile 3	
37	1.07E-04	2.17E-06	0.02022365 Quintile 1	Quintile 1	Quintile 5	Quintile 3	
38	1.05E-04	9.60E-07	0.009174312 Quintile 5	Quintile 5	Quintile 5	Quintile 4	
39 40	9.57E-05	1.87E-06	0.019548872 Quintile 4	Quintile 2	Quintile 5	Quintile 4	
41	9.20E-05	1.82E-06	0.019736842 Quintile 5	Quintile 3	Quintile 5	Quintile 4	
42	8.54E-05	1.48E-06	0.017307692 Quintile 5	Quintile 3	Quintile 5	Quintile 4	
43	8.51E-05	0	0 Quintile 5	Quintile 5	Quintile 5	Quintile 4	
44	8.22E-05	2.04E-06	0.02484472 Quintile 5	Quintile 4	Quintile 5	Quintile 4	
45	8.19E-05	3.94E-07	0.004807692 Quintile 5	Quintile 2	Quintile 5	Quintile 4	
46 47	7.85E-05	1.35E-06	0.017241379 Quintile 5	Quintile 5	Quintile 5	Quintile 4	
48	7.77E-05	2.69E-06	0.034700315 Quintile 5	Quintile 2	Quintile 5	Quintile 4	
49	7.50E-05	9.58E-07	0.012765957 Quintile 5	Quintile 5	Quintile 5	Quintile 4	
50	7.48E-05	1.29E-06	0.017221584 Quintile 4	Quintile 1	Quintile 5	Quintile 5	
51	7.45E-05	0	0 Quintile 5	Quintile 5	Quintile 5	Quintile 5	
52	7.20E-05	1.19E-06	0.01650165 Quintile 5	Quintile 2	Quintile 5	Quintile 5	
53 54	6.60E-05	1.16E-06	0.01754386 Quintile 5	Quintile 5	Quintile 5	Quintile 5	
55	6.50E-05	4.78E-07	0.007352941 Quintile 5	Quintile 4	Quintile 5	Quintile 5	
56	6.22E-05	3.62E-07	0.005813953 Quintile 5	Quintile 3	Quintile 5	Quintile 5	
57	6.04E-05	8.61E-07	0.01426025 Quintile 4	Quintile 1	Quintile 5	Quintile 5	
58	5.98E-05	1.38E-06	0.022988506 Quintile 5	Quintile 5	Quintile 5	Quintile 5	
59 60	5.56E-05	1.13E-06	0.020242915 Quintile 5	Quintile 3	Quintile 5	Quintile 5	
60	4.31E-05	0	0 Quintile 5	Quintile 5	Quintile 5	Quintile 5	

to beet teries only

1	
1	steed Rxiv preprint doi: https://doi.org/10.1101/2020.04.17.20069021; this version posted April 22, 2020. The copyright holder for this preprint
2	State was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. Decriminalized It is made available under a CC-BY-NC 4.0 International license .
3	Deerminianzea
4	Illegal
5	Illegal
6	Legal
7	Legal
8	Legal
9	-
10 11	Legal
11	Decriminalized
12	Legal
13	Legal
15	Legal
16	-
17	Legal
18	
10	Illegal
20	Illegal
21	Decriminalized
22	Illegal
23	Decriminalized
24	Decriminalized Legal Illegal Decriminalized Illegal Decriminalized Illegal
25	Illegal
26	Illegal
27	Illegal
28	Decriminalized
29	Illegal
30	Legal
31	Illegal
32	Decriminalized
33	Illegal
34	Illegal
35	Illegal
36	Illegal
37	Legal
38	Illegal
39	Illegal
40	Illegal Illegal Decriminalized Illegal
41	Illegal
42 43	Decriminalized
43 44	
44 45	
43 46	Decriminalized
47	Legal
47	Legal
49	Illegal
50	Decriminalized
51	Decriminalized
52	
53	Illegal
54	Illegal
55	Decriminalized
56	Decriminalized
57	Illegal
58	Illegal
59	Illegal
60	Decriminalized

In edRxiv preprint doi: https://doi.org/10.1101/2020.04.17.20069021; this version posted April 22, 2020. The copyright holder for this preprint is preprint was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC 4.0 International license.

For peer terien only

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	a medRxiv preprint do	i: https://de	oi.org/10.1	101/2020.(04.17.200690	21; this vers	sion posted	April 22, 2020	. The cop	vright holder for this preprint
2		ertified by	o odtijs	hel the lange	auihol910ndei ilable-under a	ſ,WAGAYASg ICCABY+NC	Allied med	RXIVEIVEnsel	nophisplay	vright holder for this preprint PME preprint in perpetuity.
3 4	Alabama	2019								
5	Alaska	2019	0.002	0.002	0.004	0.004		0.003		0.002
6	Arizona	2019	0.021	0.019	0.025	0.029	0.036	0.024		0.022
7	Arkansas	2019	0.013	0.007	0.008	0.008	0.015	0.013	0.012	0.005
8	California	2019	0.082	0.12	0.148	0.141	0.086	0.122	0.088	0.164
9	Colorado	2019	0.016	0.022	0.031	0.03	0.021	0.025	0.03	0.035
10 11	Connecticut	2019	0.01	0.014	0.013	0.012	0.011	0.011	0.014	0.011
12	Delaware	2019	0.003	0.003	0.003	0.003	0.004	0.003	0.003	0.003
13	Florida	2019	0.063	0.062	0.063	0.069	0.084	0.079	0.051	0.061
14	Georgia	2019	0.031	0.028	0.027	0.021	0.016	0.029	0.034	
15	Hawaii	2019	0.003	0.004	0.004	0.004	0.005	0.004	0.002	0.004
16	Idaho	2019	0.005	0.005	0.004	0.005	0.009	0.006		0.002
17	Illinois	2019	0.036	0.045	0.038	0.036		0.027	0.046	0.043
18 19	Indiana	2019	0.025	0.02	0.021	0.017	0.032	0.027	0.023	0.019
20	Iowa	2019	0.011	0.011	0.007	0.006	0.009	0.01	0.011	0.005
21	Kansas	2019	0.009	0.01	0.006	0.005	0.008	0.009	0.011	0.006
22	Kentucky	2019	0.021	0.011	0.012	0.011	0.027	0.015	0.01	0.012
23	Louisiana	2019	0.018	0.015	0.011	0.01	0.017	0.018	0.015	0.008
24	Maine	2019	0.005	0.004	0.007	0.009	0.004	0.004	0.004	0.004
25 26	Maryland	2019	0.016	0.019	0.019	0.016	0.013	0.017	0.018	0.016
26 27	Massachusetts	2019	0.02	0.028	0.029	0.028	0.043	0.019	0.038	0.032
28	Michigan	2019	0.034	0.033	0.04	0.044	0.026	0.031	0.045	0.026
29	Minnesota	2019	0.016	0.019	0.017	0.016	0.005	0.016	0.029	0.021
30	Mississippi	2019	0.013	0.008	0.006	0.007	0.012	0.011	0.008	0.005
31	Missouri	2019	0.023	0.019	0.017	0.013	0.018	0.02	0.016	0.009
32	Montana	2019	0.004	0.004	0.005	0.006	0.005	0.003	0.005	0.003
33 34	Nebraska	2019	0.006	0.007	0.005	0.006	0.005	0.005	0.007	0.005
35	Nevada	2019	0.012	0.009	0.014	0.015	0.012	0.014	0.007	0.01
36	New Hampshire	2019	0.004	0.005	0.006	0.006	0.007	0.004	0.005	0.005
37	New Jersey	2019	0.025	0.029	0.022	0.021	0.027	0.022	0.025	0.02
38	New Mexico	2019	0.007	0.006	0.009	0.008	0.005	0.006	0.002	0.006
39	New York	2019	0.05	0.059	0.061	0.052		0.044	0.061	0.079
40	North Carolina	2019	0.036	0.027	0.024	0.026		0.026	0.029	0.028
41 42	North Dakota	2019	0.003	0.003	0.002	0.002	0.001	0.002	0.002	0.001
43	Ohio	2019	0.045	0.036	0.031	0.034		0.041	0.042	0.026
44	Oklahoma	2019	0.015	0.011	0.009	0.007	0.017	0.012	0.008	0.01
45	Oregon	2019	0.011	0.013	0.025	0.027	0.013	0.017	0.018	
46	Pennsylvania	2019	0.044	0.043	0.034	0.038	0.048	0.038	0.041	0.039
47	Rhode Island	2019	0.003	0.004	0.005	0.006		0.003		0.005
48 49	South Carolina	2019	0.005	0.004	0.003	0.000		0.005		0.005
49 50	South Dakota	2019	0.002	0.003	0.015	0.001	0.005	0.003	0.003	0.001
51	Tennessee	2019	0.005	0.005	0.002	0.001	0.016	0.005	0.005	0.017
52		2019	0.023	0.010	0.017	0.017	0.010	0.019	0.018	
53	Texas Utah	2019	0.082	0.085	0.032	0.033	0.031	0.08	0.038	0.038
54		2019	0.000	0.003	0.003	0.000	0.000	0.008	0.009	0.007
55	Vermont			0.002			0.004			
56 57	Virginia Washington	2019	0.023		0.019	0.018		0.023	0.025	0.024
58	Washington	2019	0.025	0.02	0.04	0.048	0.029	0.024	0.026	0.027
59	West Virginia	2019	0.009	0.004	0.005	0.006	0.008	0.005	0.003	0.005
60	Wisconsin	2019	0.019	0.023	0.015	0.018	0.02	0.02	0.025	0.021
	Wyoming	2019	0.002	0.002	0.001	0.001	0.001	0.001	0.001	0.001

BMJ	Open
-----	------

With was not certified by peer teview) is the author/funder, who has granted med Rxiv alleer to display the preprint in perpetuity. 0.681947 0.265832 It is 0.04 provide under 3281Y-NC 4.0.0572419 alleer 8.86E-05 48486 93

3	0.681947	0.265832	It is made available u	underba 66 BY	-NC 4.6 Mternation	al liceree 86E-05	48486	93	Je
4	0.648373	0.032672	0.069309	0.063040		0.001440727			
5	0.772187	0.043943	0.311416	0.032949	0.044565	5.87E-04		676	
6	0.770019	0.154136	0.073245	0.014708	0.006700	1.47E-04		13	
7	0.601017	0.057930	0.388814	0.143155	0.007573	6.26E-04			
8 9	0.841704	0.041210	0.214204	0.031222	0.009850	4.04E-04		835	
9 10	0.763612	0.105615	0.156859	0.044344	0.002708	6.84E-05		92	
11	0.689740	0.221056	0.090906	0.038676	0.002700	1.47E-04		6	
12	0.753908	0.161004	0.251708	0.027147	0.002822	1.40E-04			
13	0.590433	0.314572	0.094049	0.039087	0.002322	1.40E-04 1.24E-04			
14	0.250074	0.018471	0.104050	0.377518	0.003232	0.062506461		752	
15 16	0.904878	0.006835	0.123872	0.014076	0.013503	6.01E-04		23	
17	0.716701	0.142271	0.169625	0.053880	0.002485	1.23E-04			
18	0.835908	0.093330	0.067838	0.021844	0.002483	1.60E-04		226	
19	0.902758	0.035087	0.058514	0.023969	0.00224)	3.19E-04		14	
20	0.845929	0.058375	0.117099	0.023707	0.008268	1.51E-04		13	
21	0.870833	0.079751	0.035752	0.023717	0.003203	1.20E-04		621	
22 23	0.622072	0.322264	0.0503732	0.014144	0.005633	9.35E-05		163	
23 24	0.944781	0.013416	0.016072	0.01/12/	0.006229	6.98E-05		99	
25	0.561875	0.297844	0.098096	0.062344	0.002606	1.37E-04		334	
26	0.784752	0.074750	0.115535	0.064797	0.002122	1.06E-04		1414	
27	0.785197	0.138130	0.050002	0.030570	0.005346	1.00E-04 1.09E-04		851	
28 29	0.833317	0.061908	0.052966	0.030370	0.0003340	1.34E-04		669	
29 30	0.585926	0.376689	0.030278	0.009473	0.004580	7.16E-05		14	
31	0.822379	0.115745	0.040904	0.009475	0.004330	3.21E-04		220	
32	0.888561	0.004445	0.037456	0.007629	0.064593	3.51E-04		220	
33	0.874894	0.047702	0.106723	0.023155	0.009073	2.90E-04		31	
34	0.662061	0.089339	0.284516	0.020100	0.012264	0.002658023		779	
35 36	0.930332	0.087557	0.035989	0.026886	0.0012204	7.59E-05		32	
37	0.679110	0.134743	0.199060	0.093720	0.001355	9.91E-05			
38	0.745011	0.020553	0.485440	0.015060	0.095533	3.44E-04		2337	
39	0.637917	0.156388	0.188883	0.013000	0.004060				
40	0.688706	0.214622	0.092161	0.027794	0.011949	2.12E-04		890	
41	0.871134	0.027180	0.035268	0.014376	0.052462	2.12E-04 2.35E-04		33	
42 43	0.815146	0.123543	0.037050	0.014370	0.00202402	1.05E-04		346	
44	0.724266	0.073494	0.104009	0.021432	0.075208	2.83E-04		15	
45	0.844189	0.019057	0.128359	0.021284	0.011505	0.001028922		204	
46	0.808482	0.111273	0.070764	0.033452	0.001943	1.03E-04		204 949	
47	0.808720	0.065544	0.150347	0.033752	0.001743	2.08E-04		47	
48 40	0.672526	0.270254	0.055627	0.015150	0.003367	1.73E-04		113	
49 50	0.844697	0.018791	0.037019	0.013130	0.003307	1.30E-04		31	
50	0.776750	0.168016	0.052984	0.014048	0.002683	1.50E-04 1.51E-04		651	
52	0.743071	0.108010	0.391661	0.010977	0.002083	2.19E-04			
53	0.864287	0.120701	0.138612	0.022923	0.010724	6.35E-04		226	
54	0.943308	0.011770	0.018684	0.022923	0.010724	0.33E-04 1.82E-04		11	
55 56	0.680154	0.012893	0.091656	0.010927	0.003370	1.82E-04 1.73E-04			
56 57	0.760316	0.191743	0.124970	0.083274	0.002730	9.33E-04			
58	0.931818	0.036993	0.124970 0.015047	0.083274	0.013030	9.33E-04 1.02E-04		1208	
59	0.855941	0.036482	0.013047	0.007946	0.002005	9.74E-05		110	
60						9.74E-03 1.94E-04			
	0.914361	0.009522	0.097907	0.008174	0.024153	1.94E-04	02208	31	

1	, med Rxiv.prepf	int doi: <u>https://</u> d	doi.org/10.1101/20	20.04.17.20069021; this version po the suttion/function who has granted	osted April 22, 20	20. The copyri	ght holder for this preprint
2 3	NF (White Wash 30	h dte<u>er</u>tifled b 2790	jy-j <mark>ejeentreview)</mark> is t 1 lt₁is made	available under a CC1BY-NC 4.0 Ir available under a CC1BY-NC 4.0 Ir	d meen xiv a licen: nternational licens	se€∯oPdisplay th <mark>e</mark> ⊡1864680	ጅØየዊዎ/ਯੋਜੀ\$n perpetuity. 96.0539
4	82	127346		1.35E-06 Legal	570640.95	738516	1.2942
5	51	34476		1.87E-06 Illegal	113594.084	6946685	61.1536
6	6	78		6.69E-07 Illegal	52035.477	2990671	57.4737
7	217	1461278		2.17E-06 Legal	155779.22		251.3093
8	74	61790		4.34E-06 Legal	103641.888	5531141	53.3678
9 10	25	2300		5.86E-06 Decriminalized	4842.355	3581504	739.6203
10	3	18		2.11E-06 Decriminalized	1948.543	949495	487.2846
12	257	2340756		1.70E-06 Illegal	53624.759		384.1162
13	130	255450		5.44E-06 Illegal	57513.485		179.0447
14	66	49632	7.45E-05	0 Decriminalized	6422.628	1422029	221.4092
15 16	13	299		1.78E-06 Illegal	82643.117	1687809	20.4229
10	140	422660		2.03E-06 Legal		12821497	230.9392
18	41	422000 9266		3.62E-06 Illegal	35826.109	6637426	185.2678
19	11	154		9.58E-07 Illegal	55857.13	3132499	56.0806
20	10	134		1.38E-06 Illegal	81758.717	2908776	35.5776
21	44	27324		1.13E-06 Illegal	39486.338	4440204	112.4491
22 23	44 47	7661		2.55E-05 Illegal	43203.905	4663616	107.9443
23 24	56	5544		7.50E-07 Legal	30842.923	1332813	43.2129
25	30 39	13026		8.33E-07 Decriminalized	9707.241	6003435	618.4492
26	136	192304		3.66E-06 Legal	7800.058	6830193	875.6593
27	80	68080		6.13E-06 Legal	56538.901	9957488	176.1175
28	80 56	37464		3.62E-07 Decriminalized	79626.743	5527358	69.4158
29 30	12	168		2.68E-06 Decriminalized	46923.274	2988762	63.6947
31	43	9460		1.48E-06 Illegal	68741.522	6090062	88.5936
32	43 12	336		9.60E-07 Illegal	145545.801	1041732	7.1574
33	12	527	4.31E-05	0 Decriminalized	76824.171	1041732 1904760	24.7938
34	60	46740		3.42E-06 Legal	109781.18	2922849	26.6243
35 36	23	736		7.44E-07 Decriminalized	8952.651	1343622	150.0809
30 37	23	543346		9.12E-06 Illegal		8881845	1207.7209
38	8	192		4.78E-07 Decriminalized	121298.148		17.2503
39	208			2.65E-05 Decriminalized	47126.399		416.2943
40	208 78	69420		3.94E-07 Decriminalized	48617.905		208.8865
41	15	495	8.19E-05 8.51E-05	0 Decriminalized	69000.798		10.9013
42 43	13 70	24220		1.29E-06 Decriminalized	40860.694		284.9163
44	12	180		2.04E-06 Illegal	68594.921		57.1199
45	12	3876		2.69E-06 Legal	95988.013	4081943	42.5255
46	73	69277		1.72E-06 Illegal	44742.703		285.8831
47	18	846	1.56E-04	0 Decriminalized	1033.814		1022.0514
48 40	45	5085		1.82E-06 Illegal	30060.696	4955925	164.8639
49 50		186		1.16E-06 Illegal	75811	864289	11.4006
51	72	46872		4.51E-07 Illegal	41234.896		161.2976
52	159	729969		8.61E-07 Illegal	261231.711		106.7451
53	21	4746		3.28E-07 Illegal	82169.62	3045350	37.0618
54	8	4740		1.44E-05 Legal	9216.657	624977	67.8095
55 56	124	170500		1.19E-06 Illegal	39490.086	8413774	213.0604
50 57	89	107512		2.06E-05 Legal	66455.521	7294336	109.7627
58	89 1	107312		5.47E-07 Illegal	24038.21	1829054	76.0894
59	31	3410		1.73E-06 Illegal	54157.805	5778394	106.6955
60	16	496	1.27E-04 1.20E-04	0 Illegal	97093.141	581836	5.9926
	10	470	1.2012-04	0 mcgai	JIUJJ.141	501050	5.7740

medRxiv preprint doi: https://doi.org/10.1101/2020.04.17.20069021; this version posted April 22, 2020. The copyright holder for this preprint STROB Statemetind becket with studies with the preprint determined becket with the preprint is made available under a CC-BY-NC 4.0 International license.

	Item No	Recommendation	Pag No
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract	1
		(<i>b</i>) Provide in the abstract an informative and balanced summary of what	3-4
		was done and what was found	
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	6-7
Objectives	3	State specific objectives, including any prespecified hypotheses	7
Methods			
Study design	4	Present key elements of study design early in the paper	8
Setting	5	Describe the setting, locations, and relevant dates, including periods of	8
		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Cohort study—Give the eligibility criteria, and the sources and	8
		methods of selection of participants. Describe methods of follow-up	
		Case-control study—Give the eligibility criteria, and the sources and	
		methods of case ascertainment and control selection. Give the rationale	
		for the choice of cases and controls	
		Cross-sectional study—Give the eligibility criteria, and the sources and	
		methods of selection of participants	
		(b) Cohort study—For matched studies, give matching criteria and	
		number of exposed and unexposed	
		Case-control study—For matched studies, give matching criteria and the	
		number of controls per case	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders,	8-9
		and effect modifiers. Give diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of methods	8-9
measurement		of assessment (measurement). Describe comparability of assessment	
		methods if there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	8-9
Study size	10	Explain how the study size was arrived at	8-9
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If	8-9
		applicable, describe which groupings were chosen and why	
Statistical methods	12	(<i>a</i>) Describe all statistical methods, including those used to control for	8-9
		confounding	
		(b) Describe any methods used to examine subgroups and interactions	8-9
		(c) Explain how missing data were addressed	8-9
		(d) Cohort study—If applicable, explain how loss to follow-up was	8-9
		addressed	
		Case-control study—If applicable, explain how matching of cases and	
		controls was addressed	
		Cross-sectional study—If applicable, describe analytical methods taking	
		account of sampling strategy	
		(<u>e</u>) Describe any sensitivity analyses	8-9

Continued on next page

Participants	13*	 //doi.org/10.1101/2020.04.17.20069021; this version posted April 22, 2020. The copyright holder for by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in It is made available under a CC-BY-NC 4.0 International license. (a) Report numbers of individuals at each stage of study—eg numbers potentially 	11-
-		eligible, examined for eligibility, confirmed eligible, included in the study,	13
		completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	11-
			13
		(c) Consider use of a flow diagram	N/2
Descriptive	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and	11-
data		information on exposures and potential confounders	13
		(b) Indicate number of participants with missing data for each variable of interest	11-
			13
		(c) <i>Cohort study</i> —Summarise follow-up time (eg, average and total amount)	11-
			13
Outcome data	15*	Cohort study-Report numbers of outcome events or summary measures over time	
		Case-control study—Report numbers in each exposure category, or summary	
		measures of exposure	
		Cross-sectional study—Report numbers of outcome events or summary measures	11-
			13
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and	11-
		their precision (eg, 95% confidence interval). Make clear which confounders were	13
		adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	11-
			13
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a	11-
		meaningful time period	13
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and	12-
		sensitivity analyses	13
Discussion		4	
Key results	18	Summarise key results with reference to study objectives	14
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or	16-
		imprecision. Discuss both direction and magnitude of any potential bias	17
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,	14,
		multiplicity of analyses, results from similar studies, and other relevant evidence	16
Generalisability	21	Discuss the generalisability (external validity) of the study results	15
Other informati	on		
Funding	22	Give the source of funding and the role of the funders for the present study and, if	17

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.