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Abstract: 

Background: Acute myeloid leukemia (AML) accounts for a fifth of childhood leukemia. 

Although survival rates for AML have greatly improved over the past few decades, they vary 

depending on demographic and AML type factors.  

Objectives: To predict the five-year survival among pediatric AML patients using machine 

learning algorithms and deploy the best performing algorithm as an online survival prediction 

tool. 

Materials and methods: Pediatric patients (0 to 14 years) with a microscopically confirmed 

AML were extracted from the Surveillance Epidemiology and End Results (SEER) database 

(2000-2011) and randomly split into training and test datasets (80/20 ratio). Four machine 

learning algorithms (logistic regression, support vector machine, gradient boosting, and K 

nearest neighbor) were trained on features to predict five-year survival. Performances of the 

algorithms were compared, and the best performing algorithm was deployed as an online 

prediction tool.    

Results: A total of 1,477 patients met our inclusion criteria. The gradient boosting algorithm was 

the best performer in terms of discrimination and predictive ability. It was deployed as the online 

survival prediction tool named OSPAM-C (https://ashis-das.shinyapps.io/ospam/). 

Conclusions: Our study provides a framework for the development and deployment of an online 

survival prediction tool for pediatric patients with AML. While external validation is needed, our 

survival prediction tool presents an opportunity to reach informed clinical decision-making for 

AML patients. 
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1. Introduction 

Acute myeloid leukemia (AML) is a heterogenous hematological cancer with expansion of 

abnormally differentiated myeloid hematopoietic progenitor cells and it accounts for a fifth of 

childhood leukemia [1,2]. The overall survival of children due to AML has improved in the 

recent decades due to advancements in therapy and it is currently around 70% [3–5]. However, 

survival rates vary depending on demographic and AML type factors [6–9]. Therefore, it is 

essential to understand the prognostic factors for AML outcomes for effective planning of 

treatment and rehabilitation modalities. While there have been few studies translating the 

prognostic factors to predictive models on AML, they have focused on adult patients and none 

have used machine learning specifically for predicting pediatric patient survival [10,11].   

Machine learning consists of a group of artificial intelligence techniques, where the algorithms 

learn the patterns in the data without being explicitly programmed to carry out specific 

applications. Learning from a set of data (training data), machine learning algorithms apply a 

predictive model to unseen data (test data) [12]. Utilizing the already available data from 

hospitals and medical databases, machine learning has the potential to diagnose health 

conditions, predict appropriate treatment methods and patient survival to improve overall quality 

of life. There have been several applications of machine learning in healthcare, such as 

predicting diseases, health events and drug response, survival prediction, clustering of patients 

based on risk classification, analyzing genetics data and medical imaging [13–17]. In the field of 

cancer research, a few studies have utilized machine learning for predicting cancer survival from 

hospital records and registries [18–23]. The Surveillance Epidemiology and End Result (SEER) 

database is the largest publicly available source of cancer statistics in the United States and it 

includes approximately 28% of the population [24]. Though several studies have applied 
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machine learning on predicting patient survival on various cancers from SEER database, none 

have applied it on AML for pediatric patients [20–22]. 

Our study had two objectives, (1)  predict the five-year survival among pediatric (0 to 14 

years) AML patients using machine learning algorithms, and (2) deploy the best performing 

algorithm as a web application for future validation and clinical use. 

2. Material and methods 
2.1. Patients 

Patients for this study were selected from the Surveillance Epidemiology and End Result (SEER) 

database (1975-2016) [25]. The standard for case completeness for the SEER database is 98% 

and all patients were followed up for 10 years after routine treatment until death or loss to fol-

low-up [26]. The database includes patient details from 1975 through 2016 and reports their 

demographic background, cancer characteristics, and survival. The available variables on AML 

were age, sex, race, marital status, AML histologic subtype, AML grade, SEER registry details 

(name, state and county), year of diagnosis, and survival in months.  

Our inclusion criteria for this study were microscopically confirmed AML for patients aged 14 or 

younger. We excluded patients without microscopically confirmed AML, with unknown survival 

time and those with their years of diagnosis before 2000. So as to have adequate follow up period 

after the diagnosis, we considered the patients diagnosed between 2000 and 2011 as our sample. 

A total of 76,382 AML patients were diagnosed with AML between 1975 and 2016 across all 

age groups. After excluding patients that did not meet our inclusion criteria, 1,477 pediatric 

AML patients were included in our study. 
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2.2. Outcome variable 

Our outcome variable was survival of five years or more among AML patients. In the SEER 

database, survival is a continuous variable with units in months. So, we created a binary variable 

where any patient with a survival of 60 months or more was coded “yes”, or otherwise “no”.  

2.3 Predictors 

We considered individual patient level demographic and disease variables as predictors. 

Demographic predictors were sex, age (years at diagnosis), and race. There were six races – 

“Hispanic”, “non-Hispanic American Indian/Alaska native”, “non-Hispanic Asian or Pacific 

Islander”, “non-Hispanic black”, “non-Hispanic white” and “non-Hispanic unknown”.  

Disease variables that were available in the database were AML sub-type and grade. In our 

sample, there were 14 AML subtypes available according to the 3rd edition of the International 

Classification of Diseases for Oncology (ICD-O-3) [27]. The AML subtypes were the following: 

9840/3 – acute erythroid leukemia; 9861/3 – AML, NOS; 9866/3 – acute promyelocytic 

leukemia (AML with t (15;17) (q22; q12)) PML/RARA; 9867/3 – acute myelomonocytic 

leukemia; 9871/3 – AML with inv (16)(p13.1q22) or t (16;16) (p13.1;q22), CBFB-MYH11; 

9872/3 – AML with minimal differentiation; 9873/3 – AML without maturation; 9874/3 – AML 

with maturation; 9895/3 – AML with myelodysplasia-related changes; 9896/3 – AML, t 

(8;21)(q22;q22) RUNX1-RUNX1T1; 9897/3 – AML with t (9;11) (p22;q23), MLLT3-MLL; 

9898/3 – AML with Down Syndrome; 9910/3 – acute megakaryoblastic leukemia; and 9920/3 – 

therapy related myeloid neoplasm. A vast majority of patients (93 percent) had unknown AML 

grade. Thus, we excluded this variable from our analysis.   
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2.4 Statistical Methods 

2.4.1 Descriptive Analysis 

We performed descriptive analyses for the predictors stratified by their classes. The correlation 

was tested among all predictors with Pearson’s correlation coefficient.  

2.4.2 Predictive Analysis 

We employed machine learning to predict the determinants of five-year survival to AML. We 

applied four commonly used supervised machine learning algorithms in cancer research – 

logistic regression, support vector machine, K neighbor classification, and gradient boosting – to 

understand which algorithm provides higher accuracy of prediction. We ran the best-fitting 

model for each algorithm to derive the predictions. The best-fit was derived through optimization 

techniques as described under each algorithm below.  

2.4.2.1 Logistic Regression (LR) 

Logistic regression is used for classification problems, i.e. binary or categorical output. The 

algorithm fits the best model to describe the relationship between the output and input (predictor) 

variables [28]. We used the grid search function to identify the best fit parameters, which were 

L2 regularization and a penalty strength of 1.  

2.4.2.2 Support Vector Machine (SVM) 

The data is classified into two classes in support vector machine (SVM) based on the output 

variable over a hyperplane [23]. The algorithm tries to maximize the distance between the 

hyperplane and the two closest data points from each class. There are three critical parameters in 

SVM – kernel (transforms data into a spatial form such as linear, radial, sigmoid, or polynomial), 
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penalty (an error term, also called regularization) and gamma (a measure of model fitting). Using 

grid search feature for optimization, the best parameters in our model for kernel, penalty and 

gamma were radial, 1 and 0.1 respectively.  

2.4.2.3 K Nearest Neighbors (KNN) 

The class of a new observation is decided by the majority class among its neighbors in KNN 

algorithm [29]. There are three important parameters for KNN – number of nearest neighbors, 

distance metric and weights. Number of nearest neighbors refers to the number of data points a 

new observation is assigned to. Distance metric is a measure of the distance between the new 

observation and the nearest neighbors. There are three possible distance metrics – Euclidean, 

Manhattan and Minkowski. Weight is a measure to test the contribution of the members in the 

neighborhood. The members can be weighted equally (uniform weight) or higher weights for 

nearest members (distance weight). Using grid search feature for optimization, the best 

parameters in our model were 15 nearest neighbors, Manhattan metric and uniform weights.  

2.4.2.4 Gradient Boosting 

Gradient boosting is an algorithm that uses a combination of shallow and successive decision 

trees [30]. Decision trees consist of recursively partitioning (also known as splitting) of the 

predictors. Each decision tree learns successively and improves on the previous (learning rate). 

One must define the maximum depth for each decision tree (number of levels up to which 

splitting continues) and minimum leaf sample to split (minimum number of observations 

required in a node to be considered for splitting). Eventually, predictions are based on a weighted 

combination of these trees. We used grid search feature to optimize model parameters. The best 
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fit parameters were – 80 decision trees, maximum depth of three for each tree, minimum leaf 

samples of seven to split, three maximum features and 0.15 learning rate.  

2.4.2.5 Evaluation of the performance of the algorithms 

The data was split into training (80 percent) and test segments (20 percent) for all algorithms. 

First, the algorithms were trained on the training segment and then were validated on the test 

segment for determining predictions. The data was 10-fold cross-validated with the data split into 

80% training and 20% test observations randomly ten times for all algorithms. The average of 

the cross-validations was taken as the final result. The models were evaluated with accuracy 

(correct prediction of survived patients as survived and non-survived patients as non-survived), 

precision (ratio of correctly predicted survived patients to the total predicted survived patients), 

recall (ratio of correctly predicted survived patients to the all patients), F1 score (weighted 

average of precision and recall), and area under the receiver operating characteristics curve 

(AUC) [35]. A receiver operator characteristic (ROC) curve presents a plot of the true positive 

rate (y-axis) against the false positive rate (x-axis) for each individual algorithm. AUC measures 

the area under the ROC curve, and it ranges from 0.50 to 1.0 where 0.50 indicates the lowest 

discriminating score and 1.0 indicates the highest discriminating score.  

The statistical analyses were performed using Python programming language Version 3.7 

(Python Software Foundation, Wilmington, DE, USA) and the deep neural network was 

implemented on the TensorFlow platform [36]. The web application was built using the Shiny 

package for R and deployed with Shiny server (R Foundation for Statistical Computing, Vienna, 

Austria).  
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3. Results 
 
In this section, we present the profile of patients, performance of the algorithms and our online 

survival prediction tool.  

3.1 Patient profile 

The demographic profile of the patients is presented in Table 1. The mean age of the patients was 

6.1 years with a standard deviation of 5. Slightly above half were males (52.9%). Among various 

races, non-Hispanic whites were the majority (43.4%) followed by Hispanics (31.8%) and non-

Hispanic blacks (13.7%). Out of all AML subtypes, patients with AML not otherwise specified 

(NOS) were the majority group (39.2%). Closer to 60% of the patients in our sample had a 

survival of five or more years. The correlation coefficients between the predictors ranged from -

0.14 to 0.02.  
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Table 1. Patient profile 
 

# Mean; * Standard deviation 
 

 

 

Variable Number 
 

Proportion 
(%) 

Age (years) 6.1# 5.0* 

Sex   
Female 696 47.1 

Male 781 52.9 
Race   

Hispanic 469 31.8 
Non-Hispanic American Indian/Alaska native 21 1.4 

Non-Hispanic Asian or Pacific Islander 137 9.3 
Non-Hispanic black 203 13.7 

Non-Hispanic unknown 6 0.4 
Non-Hispanic white 641 43.4 

AML subtype   
9840/3 – acute erythroid leukemia 30 2.0 

9861/3 – AML, NOS 579 39.2 
9866/3 – acute promyelocytic leukemia (AML with t (15;17) (q22; 

q12)) PML/RARA 145 9.8 
9867/3 – acute myelomonocytic leukemia 131 8.9 

9871/3 – AML with inv (16) (p13.1q22) or t (16;16) (p13.1; q22), 
CBFB-MYH11 30 2.0 

9872/3 – AML with minimal differentiation 71 4.8 
9873/3 – AML without maturation 72 4.9 

9874/3 – AML with maturation 114 7.7 
9895/3 – AML with myelodysplasia-related changes 20 1.4 

9896/3 – AML, t (8;21) (q22; q22) RUNX1-RUNX1T1 44 3.0 
9897/3 – AML with t (9;11) (p22; q23), MLLT3-MLL 25 1.7 

9898/3 – AML with Down Syndrome 15 1.0 
9910/3 – acute megakaryoblastic leukemia 169 11.4 

9920/3 – therapy related myeloid neoplasm 32 2.2 
Five-year survival   

Yes 876 59.3 
No 601 40.7 
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3.2 Performance of the algorithms 

The performance metrics of the algorithms (logistic regression, support vector machine, K 

nearest neighbor, and gradient boosting) are shown in table 2. The accuracy of gradient boosting 

was the highest (0.681) followed by KNN (0.635), SVM (0.618), and logistic regression (0.588). 

F1-score (harmonic mean of precision and recall) was the highest for the gradient boosting 

(0.692), followed by SVM (0.672), logistic regression (0.664), and KNN (0.663). Area under 

receiver operating characteristic curve (AUC) ranged from 0.561 to 0.726 with the highest score 

for the gradient boosting algorithm. Considering all the performance metrics, gradient boosting 

was the best performer.  

Table 2. Performance metrics of the algorithms 
 
Metrics Logistic 

regression 
Support 
vector 
machine 

K nearest 
neighbor 

Gradient 
boosting 

Accuracy 
(SD*) 

0.588 
(0.077) 

0.618 
(0.047) 

0.635 
(0.037) 

0.681 
(0.047) 

Precision 0.721 0.713 0.688 0.692 
Recall 0.615 0.636 0.639 0.692 
F1-score 0.664 0.672 0.663 0.692 
AUC 0.635 0.561 0.665 0.726 

* Standard deviation of 10-fold cross-validated accuracy  

3.3 Online survival prediction tool – OSPAM-C 

The best performing model, gradient boosting was deployed as the online survival prediction tool 

named as “Online Survival Prediction tool for Acute Myeloid Leukemia in children” - 

“OSPAM-C” (https://ashis-das.shinyapps.io/ospam/). As shown in figure 1, the user interface has 

four boxes to select input features as drop-down menus. The features are age (fourteen options – 

0 through 14 years), sex (two options – male and female), race (six options – Hispanic, non-

Hispanic American Indian/Alaska native, non-Hispanic Asian or Pacific Islander, non-Hispanic 
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Black, non-Hispanic white and unknown) and AML sub-type (seventeen options according to the 

3rd edition of the ICD-O-3 and WHO 2008 definitions). A user has to select one option each 

from the feature boxes and click the submit button to estimate the five-year survival probability 

in percentages. For instance, the tool gives a five-year survival prediction of 57.4 % for a 12-year 

old female Hispanic patient suffering from AML with maturation (9874/3). 

 

Figure 1. OSPAM-C online survival prediction tool for pediatric AML patients  

Discussion 

In this study, we utilized machine learning algorithms to predict five-year survival among 

pediatric AML patients. Among all our algorithms, gradient boosting performed the best and was 

deployed as an online survival prediction tool for pediatric AML named OSPAM-C. 

Acute myeloid leukemia is one of the most common malignancies among children. While the 

overall survival has improved for children in recent times, it still has one of the worst survival 

probabilities among the leading pediatric cancers. AML is also a heterogenous condition with 

several biological, clinical and genetic factors influencing treatment response and prognosis [37]. 

While few have explored the predictors of AML survival among children applying conventional 

analytic methods on SEER database, none have applied machine learning yet [7,38,39].  
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There are a few predictive web applications to estimate survival for other cancers from SEER 

database such as chondrosarcoma, spinal chordoma, and glioblastoma [21,40,41]. However, we 

believe this is the first web-based survival prediction model for pediatric AML patients. Using 

SEER database, Thio et al. and Karhade et al. applied machine learning algorithms respectively 

to 1,554 chondrosarcoma and 265 spinal chordoma patients to predict five-year survival [21,40]. 

They utilized decision tree, support vector machine, Bayes point machine and neural networks. 

Among their algorithms in both studies, Bayes point machine was the best performer that was 

deployed for the web application. Similarly, Senders et al applied 15 machine learning and 

statistical algorithms – accelerated failure time (AFT), bagged decision trees, boosted decision 

trees, boosted decision trees survival, Cox proportional hazards regression (CPHR), extreme 

boosted decision trees, k-nearest neighbors, generalized linear models, lasso and elastic-net 

regularized generalized linear models, multilayer perceptron, naïve Bayes, random forests, 

random forest survival, recursive partitioning, and support vector machines [41]. The AFT 

algorithm was deployed as the online prediction tool. The C-statistics (AUC) were 0.868, 0.8 and 

0.7 respectively for chondrosarcoma, spinal chordoma, and glioblastoma predictions with their 

best performing models, whereas it was 0.726 in our best performing model.  

 
Our study has several potential limitations. First, as we used SEER data, there were certain 

missing clinical features such as treatment type, response to initial therapy, stage and extent of 

disease. Moreover, due to unavailability of meaningful responses, we had to drop the grade of 

AML. Second, the database does not collect information on key socio-demographic features such 

as geographic location, household education and economic status. Third, there was no 

information in the database on molecular biology, genomics, proteomics, or metabolomics 

factors. All these additional clinical and socio-demographic factors are known to influence 
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survival in AML patients. Inclusion of these additional features may improve the accuracy and 

reliability of the model.  

Our survival prediction tool is the first of its kind for pediatric AML. Although we used data 

from the largest cancer database in the US, the tool is yet to be validated. Therefore, we advise 

caution for clinicians and patients who intend to use this tool as a predictive guide for 

ascertaining survival for pediatric AML patients. Clinical experts must balance the predictions 

from this tool against their clinical experience, genomics and other relevant clinical information. 

We hope this tool will further be validated and possibly reoptimized using heterogenous data 

from various cohorts in multiple practice settings. While external validation is needed, our 

survival prediction tool presents an opportunity to inform clinical decision-making for AML 

patients. 
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