Hydroxychloroquine for the management of COVID-19: Hope or Hype?

A Systematic review of the current evidence

Umesh Devappa Suranagi*, Harmeet Singh Rehan#, Nitesh Goyal#

#Department of Pharmacology, Lady Hardinge Medical College and Associated Hospitals, New Delhi, India

Running title: HCQ in COVID-19- a systematic review

*Corresponding author Name: Dr. Umesh Devappa Suranagi

Address: Department of Pharmacology, Lady Hardinge Medical College and Associated Hospitals, New Delhi, India 110001

Email ID: uuu.bliss@gmail.com

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Hydroxychloroquine for the management of COVID-19: Hope or Hype?

A Systematic review of the current evidence

ABSTRACT

Purpose: The COVID-19 Pandemic has literally left the world breathless in the chase for Pharmacotherapy. With the vaccine approval likely more than a year away and novel drugs in early clinical trials, repurposing of existing drugs takes the center stage. A potential drug discussed both in geopolitical and global scientific community is hydroxychloroquine (HCQ). We intend to systematically weigh and analyze the existing evidence of HCQ in the light of published and pre-print data available so far.

Methods: PubMed Ovid MEDLINE, EMBASE, Google scholar databases and official clinical trial Registries of the United States, China, WHO ICTRP were electronically searched for studies for the use of HCQ in patients with COVID-19. Pre-proof article repositories like MedRxiv, BioRxiv, and ChemRxiv were also included in the search. The literature was critically appraised.

Results: Total 71 articles were available as of 15th April of which articles of relevance (three in-vitro studies, two open label non-randomized trials, two open label randomized control trials, one follow-up study, three reviews, ten short communications) and 88 clinical trials registered in three clinical trial registries were analyzed. HCQ seems to be efficient in inhibiting of SARS-CoV-2 in in-vitro cell lines; there is lack of strong evidence from human studies.

Conclusions: The in-vitro cell culture based data of viral inhibition does not suffice for the use of hydroxychloroquine in the patients with COVID-19. Currently literature shows inadequate, low level evidence in human studies. Scarcity of safety and efficacy data warrants medical communities, health care agencies and governments across the world against the widespread use of HCQ in COVID-19 prophylaxis and treatment, until robust evidence becomes available.

Keywords: Hydroxychloroquine, SARS-CoV-2, COVID-19, Corona virus, nCov2, systematic review
Introduction

The ongoing Coronavirus disease 2019 (COVID-19) pandemic has affected most of the countries in the world with unimagined infectious disease morbidity and mortality. Since its first detection in China in late December 2019, COVID-19 has now spread to over 210 countries/territories, with reports of local transmission happening across the world. As per WHO (as of 15th April, 2020), there has been a total of 1,914,916 confirmed cases and 123,010 deaths due to COVID-19 worldwide. However, no specific drug has been approved for the treatment of COVID-19. As most of the affected countries are fighting everyday to flatten the curve by rigorous public health measures and political resolutions, world is eagerly looking for the vaccine or a specific treatment. Recent updates indicate the vaccine quest is at least a year away. Building on experience from past Ebola and MERS pandemics, various human trials on novel pharmacotherapeutics are in progress. Drugs such as remdesivir and favipiravir are in exploratory phases of clinical trials, and need more time to complete phase 3 clinical trials. In these unprecedented times, there is a pursuit for repurposing of existing drugs for treatment of the SARS- coronavirus 2 (SARS-Cov-2) infection on urgent basis. More than 20 drugs such as chloroquine, hydroxychloroquine, lopinavir, ritonavir, human immunoglobulin, arbidol, oseltamivir, methylprednisolone, bevacizumab, interferons and traditional Chinese medicines are aimed to be repositioned for COVID-19 treatment. Forerunners among these are antimalarial drugs chloroquine and hydroxychloroquine which are used extensively in treatment of malaria and elsewhere since many decades. These drugs are 4-aminoquinoline derivatives exhibiting wide range of in-vitro activity against viruses. Wide clinical usage experiences, affordability, feasibility of bulk production are the additional advantages. Their antiviral efficacy has been attributed to many different mechanisms. Studies have demonstrated that chloroquine confers its considerable broad-spectrum antiviral effects by interfering with the fusion process of viruses by increasing the local pH. Other mechanisms may include raise in endosomal pH in host cells thereby inhibiting auto-lysosome fusion and disrupting the enzymes needed for the viral replication.

Hydroxychloroquine (HCQ) is synthesized by N-hydroxyethyl side chain substitution of chloroquine. This modification renders HCQ more soluble than chloroquine which may confer advantage of relative lesser toxicity. Similar to chloroquine, HCQ increases the pH and confers antiviral activity. Although the antimalarial activity of HCQ is equivalent to that of chloroquine, HCQ is preferred over chloroquine owing to its lower ocular toxicity. It is also used in the treatment of rheumatoid arthritis, chronic discoid lupus erythematosus, and systemic lupus erythematosus. In addition to endosomal pH increase mentioned above, HCQ is also said to inhibit terminal glycosylation of ACE2 receptor, which is considered to be the target of SARS-CoV and SARS-CoV-2 cell entry. The non-glycosylated ACE2 receptor might interact
inefficiently with the SARS-CoV-2 spike protein, thus inhibiting the viral entry.\textsuperscript{13} These myriad mechanisms of HCQ and its relative lesser toxicity profile as compared to chloroquine make it an attractive candidate in the pursuit of drug repositioning. In this highly demanding scenario of huge unmet need and steeply increasing morbidity and mortality of COVID-19, many government bodies and expert panels have recommended the use of chloroquine and HCQ for the prophylaxis and treatment of COVID-19.\textsuperscript{14-18} Recent geopolitical and media coverage of the possibility of this drug usage in COVID-19 has caused a huge stir and expectations among laymen and medical fraternity alike. This has lead to countries engaging in mass production, exports and imports of this drug. In this situation of urgency, there is a need to explore the current literature and critically analyze the existing evidence. We intend to conduct a systematic search analysis of current literature and propose our findings.

\textbf{Materials and methods}

\textbf{Data sources}

An electronic search of the published literature was done independently by each author to find the role of HCQ in COVID-19 disease. PubMed Ovid MEDLINE, EMBASE, Google scholar databases were searched for existing literature from 2019 to 15\textsuperscript{th} April 2020. The clinical trial Registries of the United States (Clinicaltrials.gov), Chinese Clinical Trial Registry, WHO International clinical trial registry platform (ICTRP) were searched for ongoing registered studies. For preprint/pre-proof articles, repositories like BioRxiv, MedRxiv and ChemRxiv were searched.

\textbf{Literature search}

Search words included MeSH Terms (hydroxychloroquine or HCQ) AND (COVID-19 OR Coronavirus or nCov2 or SARS-CoV2). Search terms were used in various combinations as per feasibility in different databases. In the view of possible limited data, Google Scholar search terms were kept flexible to encompass wider literature so as to capture all the potential relevant studies. No language, time, study type and demographic filters were used. The search expansion was done using a snowballing method applied to the authors and references of selected publications. The publications selected in this analysis included the abstracts, original research, \textit{in-vitro} experimental studies, observational studies, controlled/uncontrolled trials, review articles, editorials, letters to editor, expert opinions, perspectives, and consensus statements- published since the inception till 15th April, 2020. News items, magazine pieces, duplicate papers, articles without the mention of the role of HCQ in COVID-19 infection, or use of HCQ in other conditions were excluded.

We searched databases of clinical trial registries of the United States Clinicaltrials.gov, Chinese Clinical Trial Registry, WHO ICTRP using the search terms ‘Hydroxychloroquine’, ‘HCQ’, \ldots
‘Plaquenil’, ‘COVID-19’, ‘SARS-CoV2’, ‘novel Corona virus’ ‘nCoV 2’. After identification and elimination of duplicated appearances, 88 clinical trials were found to be registered. Each database was further scanned and analyzed to filter out the non-recruiting, inactive and cancelled trials, finally yielding 27 randomized control trials (RCTs) currently undergoing active recruitment for COVID-19 treatment with HCQ.

Preprint server databases BioRxiv, MedRxiv and ChemRxiv were searched for pre-proof, non-peer reviewed, unpublished, approval awaited studies and articles. We recognized the authors who have already worked and published articles in the current topic and included the relevant studies in our analysis.

Screening, data extraction, data analysis and critical appraisal

Screening of articles was done independently by investigators according to titles, abstracts, summaries and conclusions. The relevance of each article was decided through independent reading and analysis of the full text of all publications. Any discrepancy about the relevance was solved by mutual consensus after elaborate discussion. The relevant data were extracted from selected articles and pertinent portions of studies were identified, tabulated and were presented in the form of a tables & descriptive summary. Narrative summaries, expert opinions, clinical statements were critically appraised as per the Joanna Briggs Institute (JBI) critical checklist of McArthur, et al., 2015.\textsuperscript{19} Inferences and interpretations were discussed as per factual data, and balanced conclusions were drawn accordingly. Randomized clinical trials with active recruitment were analyzed after collecting publically available information on various clinical trial databases. Flow Chart of article selection is shown in Fig 1.

Results

Total 71 articles were identified on initial search of databases as of 15th April, following screening of titles and abstracts and removal of duplicates, the articles of relevance (three in-vitro studies,\textsuperscript{20,21,22} two open label non randomized trials,\textsuperscript{23,24} two open label RCTs,\textsuperscript{25,26} one follow-up study,\textsuperscript{27} three reviews,\textsuperscript{28,29,30} ten short communications\textsuperscript{31-40}) were selected for further data extraction and analyses. We identified 88 clinical trials registered in three clinical trial registry databases. Methodical screening and analysis further yielded 27 RCTs currently undergoing active recruitment. Pre-print servers yielded four clinical studies which included a follow up study, a retrospective safety study, and a rapid review of chloroquine and HCQ in COVID-19 patients.
Flowchart of article/study selection

Articles from preliminary search
(n= 71)

Articles after removal of duplicates, news / magazine items
(n= 58)

Articles accessed by title, abstracts, summary, conclusions
(n= 58)

Articles excluded for non relevance
(n= 23)

Articles accessed in full text
(n= 35)

Articles excluded after discussion and consensus
(n= 14)

Included articles/studies
(n =21)
- Three in-vitro studies\textsuperscript{20,21,22}
- Two open label non randomized trials\textsuperscript{23,24}
- Two open label randomized control trials\textsuperscript{25,26}
- One follow-up study\textsuperscript{27}
- Three review articles\textsuperscript{28,29,30}
- Ten short communications\textsuperscript{31-40}
**In-vitro studies of Hydroxychloroquine demonstrating anti-coronaviral activity**

Relatively lesser toxicity profile and fewer drug-drug interactions make HCQ an attractive candidate for testing for the antiviral properties. Various broad spectrum antiviral mechanisms of HCQ are proposed viz. change in the pH at the surface of the cell membrane, inhibition of nucleic acid replication, glycosylation of viral proteins, disruption of virus assembly, interruption of viral transport, inhibition of the viral release etc.\(^\text{41}\) Previously during the SARS outbreak, HCQ was shown to exhibit anti-SARS CoV effect in an in-vitro study.\(^\text{20}\)

In this background, Yao et al, assessed the pharmacological activity of chloroquine and hydroxychloroquine using SARS-CoV-2 infected Vero cells. Further as continued part of the study, they simulated physiologically-based pharmacokinetic models (PBPK) on the in vitro data obtained. The researchers found HCQ to be more potent than chloroquine to inhibit SARS-CoV-2 in vitro. Based on PBPK extrapolation, they recommended a loading dose of 400 mg twice daily of HCQ sulfate given orally, followed by a maintenance dose of 200 mg given twice daily for 4 days.\(^\text{21}\)

In another correspondence report letter of an in-vitro study by Liu et al, the investigators used VeroE6 cells and compared the antiviral activity of Chloroquine versus HCQ against SARS-CoV-2 to determine different multiplicities of infection (MOIs) by quantification of viral RNA copy numbers. They found out that 50% maximal effective concentration (EC50) for HCQ was significantly higher than chloroquine and HCQ can efficiently inhibit SARS-CoV-2 infection in vitro.\(^\text{22}\)

Previously in 2006, French researchers demonstrated that Chloroquine and HCQ effectively inhibit both human and feline SARS COV in the infected Vero cells. EC50 for HCQ, was significantly higher than chloroquine.\(^\text{20}\)

The in-vitro studies using cell culture models demonstrate considerable anti-corona viral activity of HCQ, particularly against SARS CoV2. (Table 1)

**Table 1**

**Summary of in-vitro studies showing efficacy of HCQ against SARS-CoV-2 infected Cell lines**

<table>
<thead>
<tr>
<th>Authors, country, year</th>
<th>Targeted virus</th>
<th>Drugs used</th>
<th>Models used for the study</th>
<th>Antiviral effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yao X et al(^\text{21}) China, 2020</td>
<td>SARS-CoV-2</td>
<td>Hydroxychloroquine sulfate, Chloroquine phosphate</td>
<td>Vero cells from African green monkey in Dulbecco’s modified eagle medium. Further supplemented by Physiologically based pharmacokinetic models (PBPK) simulation</td>
<td>50% maximal effective concentration (EC50) HCQ (EC50=0.72 μM) was found to be more potent than CQ (EC50=5.47μM) in vitro.</td>
</tr>
</tbody>
</table>
Clinical studies conducted in COVID-19 patients

In the positive background of successful in-vitro data and in the situation of an emerging epidemic, the Chinese authorities issued a consensus statement for the use of chloroquine in COVID-19 patients. The earliest data of chloroquine administration in humans came from various parts of China in February 2020. These collective reports were published in the form of exploratory report letter by Gao et al. The authors reported clinical experience data of treating more than 100 patients with chloroquine in various locations. They mentioned that chloroquine reduced the duration of illness and improved the pneumonia and pulmonary image changes in COVID-19 positive patients. The authors also recommended the drug to be included in the COVID-19 Guidelines issued by the National Health Commission of China for the use of drug in larger populations.

The first empirical evidence of use of HCQ in humans was obtained by a small RCT conducted by Chen J et al, in 30 adult COVID-19 patients. The treatment group received 400mg HCQ for 5 days, while the standard care was given to control group. The primary outcome was nasopharyngeal swab test results on Day 7. Investigators found out that there is no difference between treatment and control group in the number of patients testing negative for COVID-19 on Day 7 (13 v/s 14), the duration of illness did not differ significantly (all p > 0.05). There was one drop out and seven (three in treatment group and four in control) adverse events. The authors concluded that COVID-19 has good prognosis and larger sample size with better endpoints is needed to investigate the effects further.

An open-label, non-randomized clinical trial was conducted by Gautret et al in France with 36 patients diagnosed with COVID-19. HCQ in dose of 200mg three times daily was given to 20 patients for 10 days, additionally six patients in this group received azithromycin (500 mg on day 1, 250mg on days 2-5) to prevent bacterial superinfection. The control group received standard care. The primary outcome was detection of SARS-CoV-2 RNA in nasopharyngeal
samples. The authors reported that patients in the treatment group significantly differed for SARS-CoV-2 detection than controls. On Day 6 of post initiation, 70% of HCQ treated patients were virologically cured compared to 12.5% in the control group (p= 0.001). They concluded that HCQ treatment is significantly associated with viral load reduction/disappearance in COVID-19 patients and its effect is reinforced by azithromycin.²³

Table 2

Summary of clinical studies with HCQ treatment in COVID-19 patients

<table>
<thead>
<tr>
<th>Authors country, year</th>
<th>Study design</th>
<th>Sample size (treatment/control)</th>
<th>Intervention/treatment</th>
<th>Inclusion criteria</th>
<th>Outcomes</th>
<th>Conclusion</th>
<th>Limitations/ lacunae</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chen J et al.,²⁵ China 2020</td>
<td>Open label randomized control trial</td>
<td>N=30 (15/15)</td>
<td>400mg of HCQ P.O daily for 5 days</td>
<td>-Age ≥18 -Tested positive for COVID-19</td>
<td>At day 7 post-inclusion, 86.7% of HCQ treated patients were virologically cured as compared to 93.3% in the control group (p= &gt;0.05)</td>
<td>Prognosis of common COVID-19 patients is good. Much larger sample size is needed for better assessment</td>
<td>-Open label design, -weak primary endpoint, -small sample size, -selection and confounding bias</td>
</tr>
<tr>
<td>Gautret et al.,²³ France 2020</td>
<td>Open label non randomized clinical trial</td>
<td>N=36 (20/16)</td>
<td>200 mg of HCQ P.O three times a day for 10 days; six patients additionally received azithromycin P.O (500 mg on day 1, 250 mg on days 2–5)</td>
<td>-SARS-CoV-2 Carriage in nasopharyngeal sample -Age &gt;12 years</td>
<td>At day 6 post-inclusion, 70% of HCQ treated patients were virologically cured as compared 12.5% in the control group (p= 0.001)</td>
<td>HCQ is significantly associated with viral load reduction/disappearance in COVID-19 patients and effect reinforced azithromycin</td>
<td>- Weak study design, -Small sample size, -six patients drop out, -no long term follow up, -No intention to treat analysis, -No clinical endpoint.</td>
</tr>
</tbody>
</table>

Studies from preprint databases

A study group from Wuhan University, China conducted an RCT to demonstrate the efficacy of HCQ in COVID-19 patients. 62 patients were randomized 1:1 with HCQ 400mg for 5 days including standard care as compared with standard care alone. Time taken to clinical recovery
(TTCR), clinical characteristics, and radiological results were assessed at baseline and 5 days after treatment with HCQ. Researchers reported that TTCR, body temperature recovery time and cough remission time were significantly shortened in the HCQ treatment group. Besides, a larger proportion of patients with improved pneumonia were in the HCQ treatment group (80.6%) as compared with the control group (54.8%). Four patients in the control group progressed to severe illness. The researchers concluded that HCQ significantly shortens TTCR and promotes the resolution of pneumonia in COVID-19 patients.26

A six-day pilot, uncontrolled, non-comparative observational follow-up study was conducted by French investigators to assess the Clinical and microbiological effect of a combination of HCQ and azithromycin in 80 COVID-19 patients. The investigators reported that all patients but two (an 86 yr old succumbed to illness, a 74 yr old needed ICU) showed clinical improvement with the combination therapy. qPCR testing showed a rapid fall of nasopharyngeal viral load- 83% and 93% patients were negative at Day 7, and Day 8 respectively. 97.5% of respiratory samples were negative for virus cultures at Day 5. The researchers urged to evaluate the combination strategy to treat patients in early course and avoid the spread of the disease.27

Imitating the previous non-randomized open label study by Gautret et al23 another group of French investigators intended to evaluate the rapid antiviral clearance or clinical benefit with the Combination of HCQ and azithromycin in patients with severe COVID-19. The researchers prospectively assessed the virological clearance and clinical outcome in 11 patients. They used similar dosage regimen of HCQ (600 mg/d for 10 days) and azithromycin (500 mg Day 1 and 250 mg days 2 to 5) as used by Gautret et al23, they noted that in contrast to the previous findings, the current study had 8 out of 10 patients (except one death) remaining positive for SARS-CoV2 RNA at days 5 to 6 after treatment initiation, one patient died within 5 days, two were transferred to ICU, and one patient dropped out due to prolongation of QT interval. Investigators concluded that there is no evidence of a strong antiviral activity or clinical benefit of the combination of HCQ and azithromycin for the treatment of hospitalized patients with severe COVID-19.24

In a retrospective study, group of American researchers reported increased QT interval in 84 COVID-19 patients treated with Hydroxychloroquine/azithromycin combination. The authors noted that in 30% of patients, increase in QTc was greater than 40ms and 11% patients showed QTc increase to greater than 500ms, they commented that development of acute renal failure during the therapy could be a strong predictor of extreme QTc prolongation.44 (Table 3)

Table 3

Summary of preprint articles reporting the use of HCQ in treatment of COVID-19 patients
<table>
<thead>
<tr>
<th>Authors, country, year, Repository/Journal</th>
<th>Study design</th>
<th>Sample size (treatment/control)</th>
<th>Intervention/treatment</th>
<th>Inclusion criteria</th>
<th>Outcomes</th>
<th>Conclusion</th>
<th>Limitations/lacunae</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chen Z et al., 26 China 2020 MedRxiv</td>
<td>Randomized control trial N= 62</td>
<td>Standard care + HCQ P.O 400mg/day for 5 days</td>
<td>-PCR RNA Tested positive for COVID-19, with SaO2/SPO2 ratio &gt; 93% or PaO2/FIO2 ratio &gt; 300 -mild illness</td>
<td>Time taken for clinical recovery, the body temperature recovery time and the cough remission time were significantly shortened in the HCQ treatment group</td>
<td>Use of HCQ could significantly shorten TTCR and promote the absorption of pneumonia.</td>
<td>-Small sample size - selection bias (only mild illness included) -confounding bias -Safety profile not detailed</td>
<td></td>
</tr>
<tr>
<td>Gautret et al, 27 France; 2020 Travel Medicine and Infectious Diseases</td>
<td>Pilot uncontrolled non comparative Observation al follow-up study N= 80</td>
<td>200mg of HCQ P.O TDS for 10 days + Azithromycin P.O 500mg day 1 followed by 250mg/day next 4 days</td>
<td>-PCR RNA Tested positive COVID-19 patients -mild illness</td>
<td>Nasopharyngeal viral load 83% negative at Day 7, and 93% at Day 8, Viral culture negativity 97.5% at Day5</td>
<td>Beneficial evidence of HCQ with azithromycin in COVID-19 patients, early reduction in contagiousness</td>
<td>-Non comparative observational study - only mild illness included -No mention of safety profile</td>
<td></td>
</tr>
<tr>
<td>Molina et al., 24 France; 2020 Médecine et Maladies Infectieuses</td>
<td>Prospective uncontrolled single arm study N= 11</td>
<td>600mg/day of HCQ for 10 days + Azithromycin 500 mg day 1 followed by 250 mg/day next 4 days</td>
<td>PCR RNA Tested positive COVID-19 patients with severe illness and co-morbidities</td>
<td>Nasopharyngeal swabs in 8/10 patients were still positive for SARS-CoV2 RNA at days 5 to 6 after treatment initiation</td>
<td>No evidence of a strong antiviral activity or clinical benefit of the combination of HCQ and azithromycin in severe ill COVID-19 patients</td>
<td>-Weak design, -Small sample size -weak endpoints -selection bias -brief report, -no mention of safety profile.</td>
<td></td>
</tr>
</tbody>
</table>

Summary of Ongoing Clinical trial data from clinical trial registry databases (Supplementary table 1)
Many of the ongoing RCTs conducted are studying the effect of HCQ compared to placebo (NCT04342221, NCT04333654, NCT04332991, NCT04331834), few of the RCTs have parallel design arms of HCQ and Azithromycin (NCT04341727, NCT04341207, NCT04334382). Some RCTs have robust trial designs with quadruple masking and strong endpoints (NCT04333654, NCT04332991, NCT04331834). Few RCTs are in advance phases of clinical trials (NCT04316377, NCT04341493) and some studies have large sample size to measure the effect with higher strength of confidence (NCT04328012, NCT04328467). There are studies which are considering the safety endpoints in the main outcome measures (ChiCTR2000029868). Some RCTs are also testing antiretroviral drugs like lopinavir/ritonavir, emtricitabine/tenofovir along with HCQ arm (NCT04328012, NCT04334928). Other studies are interested in tocilizumab (NCT04332094) and arbidol (ChiCTR2000029803) along with HCQ. Few of the studies are being conducted in severely ill patients (NCT04325893, ChiCTR2000029898) and some in mild infections of COVID-19 (NCT04307693, ChiCTR2000029899). Most of the studies are registered to be conducted in United States and China, others being conducted in Spain (NCT04331834, NCT04332094), Norway (NCT04316377), France (NCT04325893, NCT04341207), Germany (NCT04342221), Denmark (NCT04322396), Brazil (NCT04322123, NCT04321278), Mexico (NCT04341493) and Republic of Korea (NCT04307693). Few earlier studies registered in China (in Feb 2020) are nearing their completion in April end or early May 2020, their results can be expected in near future (ChiCTR2000029898, ChiCTR2000029899, ChiCTR2000029992). Additional details regarding the ongoing trials can be obtained from Supplementary table 1.

Discussion

After three months of its detection in China in late December 2019, novel SARS Cov-2 infection has spread to almost all countries in the world and by far threatening to be the biggest pandemic of modern times. With nearly two million infections and more than 123,000 deaths growing up in alarming rate, specific treatment is the most important requirement of the world. Hydroxychloroquine with the relatively better safety profile than chloroquine and possible better antiviral efficacy offers to be a compelling hope of choice in times of desperation, in the midst of pandemic. We systematically searched various databases and Clinical trial registries to evaluate the evidence.

During the previous outbreak of SARS, an in-vitro study demonstrated the anti-corona viral effect of HCQ and chloroquine. More recently Chinese researchers conducted in-vitro studies in cell lines and demonstrated the potential antiviral activity of HCQ against SARS-CoV2 as compared to chloroquine. It is relevant to note that these studies were the basis of initial opinions and general consensus statements given by various panels across the world during the early stages of the current pandemic. We found out that there is scarcity of well conducted and adequately reported human studies of HCQ use in COVID-19. This is in agreement with the
other authors with similar findings of lack of literature in this regard.\textsuperscript{28,29,30,46} The earliest non-empirical evidence came from China in form of report letter in which more than 100 patients with COVID pneumonia showed clinical improvement and changes in image findings on chloroquine administration.\textsuperscript{43} It is pertinent to note that this letter was the brief report of ongoing many trials in various locations in China, neither it mentioned any specific data regarding interventions, study design, study population and outcome measures, nor any adverse events were discussed. We encountered and translated another Chinese RCT of HCQ compared to standard care in 30 COVID-19 patients. The investigators did not find any significant difference between treatment and control group in both nasopharyngeal swab negativity and duration of illness.\textsuperscript{25} This study was an open label trial with small sample size and had high risk of confounding and selection bias, the authors agreed that primary end point was weak and more robust end points with larger sample size is required to establish the effects.

Gautret et al,\textsuperscript{23} in a non randomized clinical trial in 36 COVID-19 patients, reported viral load reduction by HCQ and its reinforcement by azithromycin. This study had major limitations in the form of small sample size, absence of randomization and masking, lack of intention to treat analysis and long term follow up, there was no clinical endpoint as outcome measure.

Among pre-print, non-peer reviewed studies, an RCT by Chen Z et al. exploring HCQ and azithromycin in 62 patients reported significant improvement in time to clinical recovery and radiological findings. However, sample size in this study is small and risk of selection bias (omission of severely ill patients, and patients with organ dysfunctions) and confounding bias is high. Authors did not involve patients with prolonged QT intervals and comments on safety profile of the treatment were brief. Endpoints did not include viral RNA clearance and lab investigations; follow-up is not reported in the study.\textsuperscript{26} A non-comparative observational French follow-up study in 80 COVID-19 patients reported 97.5% of respiratory samples were negative for virus cultures at Day 5. This study too involved only mild illness patients and did not report adverse effect profile and being an uncontrolled observational study, the strength of evidence tends to be low.\textsuperscript{27} In contrast, a similar study from France, which imitated the dosage regimen of the previous French non randomized open label study,\textsuperscript{23} observed that there is no evidence of rapid viral reduction and clinical benefit from the combination therapy of HCQ and azithromycin. It is pertinent to note that this study was conducted only in 11 patients with severe COVID-19.\textsuperscript{24}

We also searched, identified and analyzed clinical trial databases to explore the ongoing active clinical trials (Supplementary table 1) and found out relevant 27 clinical trials. Many trials among these are in advanced phases and few trials are expecting completion in near future. Earlier registered Chinese clinical trials are expected to come out with definitive results in next few weeks and also robust designed RCTs elsewhere in the world are expected to produce their interim results shortly henceforth. (Supplementary table 1)
It is appropriate to note that none of the published studies of HCQ in COVID-19 have emphasized on the adverse effects and toxicity profile of the drugs in treated patients. Chen Z et al\textsuperscript{26} reported two adverse events, however due to very small sample size it is difficult to attribute these to HCQ. Even though HCQ has relatively better safety profile than chloroquine, owing to its prolonged pharmacokinetics (537 hours half life) and gradual elimination, it has potential to cause various adverse events ranging from commonly seen gastrointestinal upset,\textsuperscript{47} and chronic retinal toxicity,\textsuperscript{48} to serious adverse effects like fulminant hepatic failure,\textsuperscript{49} severe cutaneous adverse reactions.\textsuperscript{50} An important adverse effect of HCQ is cardiac conduction defects and ventricular arrhythmias. QT prolongation and arrhythmias can be precipitated by concomitant use of azithromycin.\textsuperscript{44} Small but absolute risk of cardiovascular death is seen to be associated significantly with azithromycin as compared to fluoroquinolones.\textsuperscript{51} It is important to note that overdose or poisoning of HCQ is difficult to treat. Caution is warranted in patients with hepatic and renal dysfunction, and regular ECG monitoring is advised in patients with cardiovascular diseases. Irrational use in general population without credible evidence may pose greater risk than benefit.

To best of our knowledge, this systematic review is the most comprehensive exploration and analysis of existing literature in this topic till date. Our review has limitations in its rigor due to the scarce existing data and diverse study types available. The rapidly emerging knowledge base of COVID-19 poses the possibility that few studies (particularly unpublished/under peer-review) remain un-captured. However, we have tried our best to mitigate this by allowing broadest search terms and by including many databases and repositories. We have also tried to comprehensively analyze and assess the existing data under the critical lens of factual judgment. In this background, we believe that expert opinions and clinical consensus statements given by various international authorities for the use of HCQ either as prophylaxis to high risk individuals\textsuperscript{15} and healthcare professionals\textsuperscript{16} or as emergency treatment of COVID-19 patients.\textsuperscript{17,18} lacks strong evidence base.

**Conclusion**

The in-vitro cell culture based data of viral inhibition does not suffice for the use of hydroxychloroquine in the patients with COVID-19. Current literature shows scant and low level evidence in human studies. Understandably due to the urgency and unmet need of the pandemic, various expert guidance and consensus statements recommend the empirical use of HCQ. However, at this stage due to insufficient evidence on efficacy and safety, it is reasonable to suggest against the use HCQ as prophylaxis both in general population as well as health care workers. Considering the toxicity profile, chances of overdoses and poisoning can pose serious health threats if HCQ is used widely. Ongoing well designed clinical trials are expected to provide explicit answer in near future.
In the view of inadequacy of existing evidence, it is advisable that medical communities, health care agencies and governments across the world should be warranted against the widespread use of HCQ in COVID-19 prophylaxis and treatment, until robust evidence becomes available.

References


22. Liu et al. Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discovery 2020. doi.org/10.1038/s41421-020-0156-0.

24. Molina JM et al. No Evidence of Rapid Antiviral Clearance or Clinical Benefit with the Combination of Hydroxychloroquine and Azithromycin in Patients with Severe COVID-19 Infection. M´edecine et Maladies Infectieuses. 2020


46. Gbinigie K and Frie K. Should chloroquine and hydroxychloroquine be used to treat COVID-19? A rapid reviewBJGP Open 2020; DOI: 10.3399/bjgpopen20X101069.


## Supplementary table 1

Ongoing Clinical trial data from clinical trial registry databases

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Title</th>
<th>Trial Reg number</th>
<th>Intervention</th>
<th>Comparator</th>
<th>Study Design</th>
<th>Main outcome(s)</th>
<th>Population</th>
<th>Place/ Country</th>
<th>Expected Timeline</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Hydroxychloroquine for COVID-19 Study</td>
<td>NCT04342221</td>
<td>Hydroxychloroquine Sulfate</td>
<td>Placebo</td>
<td>Phase 3 RCT, quadruple masking</td>
<td>Effect of HCQ on in vivo viral clearance</td>
<td>N= 220</td>
<td>Germany</td>
<td>Start- Mar 29, 2020</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>End- Mar 2021</td>
</tr>
<tr>
<td>02</td>
<td>Hydroxychloroquine, Azithromycin in the Treatment of SARS CoV-2 Infection (WU352)</td>
<td>NCT04341727</td>
<td>Hydroxychloroquine Sulfate</td>
<td>-</td>
<td>Open label RCT, parallel design</td>
<td>Hours to recovery, Time fever resolution</td>
<td>N= 500</td>
<td>USA</td>
<td>Start- Apr 4, 2020</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>End- Apr 1, 2021</td>
</tr>
<tr>
<td>No.</td>
<td>Study Title</td>
<td>NCT Number</td>
<td>Treatment 1</td>
<td>Treatment 2</td>
<td>Design</td>
<td>Randomization</td>
<td>Mechanical ventilation requirement</td>
<td>Treatment Group</td>
<td>Start Date</td>
</tr>
<tr>
<td>-----</td>
<td>-----------------------------------------------------------------------------</td>
<td>--------------</td>
<td>---------------------------------</td>
<td>---------------------------------</td>
<td>---------------------------------</td>
<td>-----------------</td>
<td>-----------------------------------</td>
<td>------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>03</td>
<td>Hydroxychloroquine vs Nitazoxanide in Patients With COVID-19 Study</td>
<td>NCT04341493</td>
<td>Nitazoxanide 500 mg</td>
<td>Hydroxychloroquine</td>
<td>Phase 4 RCT, single masking, parallel design</td>
<td>N= 86 5 Yrs and older (child Adult, Older Adult) All sex</td>
<td>Mexico</td>
<td>Apr 6, 2020</td>
<td>Aug 30, 2020</td>
</tr>
<tr>
<td>04</td>
<td>Epidemiology of SARS-CoV-2 and Mortality to Covid19 Disease in French Cancer Patients Study</td>
<td>NCT04341207</td>
<td>Hydroxychloroquine</td>
<td>Azithromycin</td>
<td>Phase 2, non randomised Open label trial</td>
<td>Prevalence and the 3-months incidence of SARS-CoV-2 in cancer patients</td>
<td>N= 1000 18 Yrs and older (Adult, Older Adult) Both sex</td>
<td>France</td>
<td>Apr 3, 2020</td>
</tr>
<tr>
<td>05</td>
<td>Hydroxychloroquine vs. Azithromycin for Outpatients in Utah With COVID-19 Study</td>
<td>NCT04334382</td>
<td>Hydroxychloroquine</td>
<td>Azithromycin</td>
<td>Phase 3 Open label, parallel design RCT</td>
<td>Hospitalization within 14 days of enrolment, Duration of COVID-19-attributable symptoms</td>
<td>N= 1550 45 Yrs and older (Adult, Older Adult) All sex</td>
<td>USA</td>
<td>Apr 2, 2020</td>
</tr>
<tr>
<td></td>
<td>Study Title</td>
<td>NCT Number</td>
<td>Intervention</td>
<td>Comparator</td>
<td>Design</td>
<td>Masking</td>
<td>Outcome Measures</td>
<td>Eligibility Criteria</td>
<td>Location</td>
</tr>
<tr>
<td>---</td>
<td>-----------------------------------------------------------------------------</td>
<td>------------</td>
<td>--------------</td>
<td>------------</td>
<td>--------</td>
<td>---------</td>
<td>----------------------------------------------------------------------------------</td>
<td>---------------------</td>
<td>----------</td>
</tr>
<tr>
<td>06</td>
<td>Hydroxychloroquine in Outpatient Adults With COVID-19 Study</td>
<td>NCT04333654</td>
<td>Hydroxychloroquine SAR321068</td>
<td>Placebo</td>
<td>Phase 1 RCT, parallel design, quadruple masking</td>
<td>Change from baseline to Day 3 in nasopharyngeal SARS-CoV-2 viral load</td>
<td>N= 210 18 Yrs and older (Adult, Older Adult) All sex</td>
<td>USA</td>
<td>Start-Mar 31, 2020</td>
</tr>
<tr>
<td>07</td>
<td>Outcomes Related to COVID-19 Treated With Hydroxychloroquine Among In-patients With Symptomatic Disease Study</td>
<td>NCT04332991</td>
<td>Hydroxychloroquine</td>
<td>Placebo</td>
<td>Phase 3 RCT, parallel design, quadruple masking</td>
<td>COVID Ordinal Outcomes Scale on Day 15, all-location, all-cause mortality assessed on day 15</td>
<td>N= 510 18 Yrs and older (Adult, Older Adult) All sex</td>
<td>USA</td>
<td>Start-Apr, 2020</td>
</tr>
<tr>
<td></td>
<td>Clinical Trial of Combined Use of Hydroxychloroquine, Azithromycin, and Tocilizumab for the Treatment of COVID-19 Study</td>
<td>NCT04332094</td>
<td>Tocilizumab Hydroxychloroquine Azithromycin</td>
<td>Phase 2 Open label, parallel design RCT</td>
<td>In-hospital mortality Need for mechanical ventilation in ICU</td>
<td>N= 276 18 Yrs and older(Adult, Older Adult) All sex</td>
<td>Spain</td>
<td>Start-Apr, 2020 End- Sep 2020</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>08</td>
<td>Pre-Exposure Prophylaxis With Hydroxychloroquine for High Risk Healthcare Workers During the COVID-19 Pandemic Study</td>
<td>NCT04331834</td>
<td>Hydroxychloroquine</td>
<td>Placebo</td>
<td>Phase 3 RCT, parallel design, quadruple masking</td>
<td>Confirmed cases of a COVID-19, SARS-CoV-2 seroconversion</td>
<td>N= 440 18 Yrs and older(Adult, Older Adult) All sex</td>
<td>Spain</td>
<td>Start-Apr 3, 2020 End-Oct 3, 2020</td>
</tr>
<tr>
<td>09</td>
<td>Hydroxychloroquine vs. Azithromycin for Hospitalized Patients With Suspected or Confirmed COVID-19 Study</td>
<td>NCT04329832</td>
<td>Hydroxychloroquine Azithromycin</td>
<td>-</td>
<td>Phase 2 open label, parallel design RCT</td>
<td>COVID Ordinal Outcomes Scale at 14 days Hospital-free days at 28 days</td>
<td>N= 300 18 Yrs and older(Adult, Older Adult) All sex</td>
<td>USA</td>
<td>Start-Mar 30, 2020 End- Dec 31, 2020</td>
</tr>
<tr>
<td>#</td>
<td>Study Title</td>
<td>NCT Number</td>
<td>Intervention(s)</td>
<td>Phase</td>
<td>Study Design</td>
<td>Primary Outcome</td>
<td>Enrollment</td>
<td>Country</td>
<td>Start Date</td>
</tr>
<tr>
<td>----</td>
<td>-----------------------------------------------------------------------------</td>
<td>----------------</td>
<td>----------------------------------</td>
<td>-------</td>
<td>---------------------------------------</td>
<td>--------------------------------------------------------------------------------</td>
<td>--------------</td>
<td>-----------</td>
<td>------------------</td>
</tr>
<tr>
<td>11</td>
<td>Pre-exposure Prophylaxis for SARS-Coronavirus-2</td>
<td>NCT04328467</td>
<td>Hydroxychloroquine Placebo</td>
<td>Phase 3 RCT, parallel design, quadruple masking</td>
<td>COVID-19-free survival Incidence of confirmed SARS-CoV-2 detection</td>
<td>N= 3500 18 Yrs and older(Adult, Older Adult) All sex</td>
<td>USA</td>
<td>Start-Apr 2020</td>
<td>End-Aug 2020</td>
</tr>
<tr>
<td>12</td>
<td>COVID MED Trial - Comparison Of Therapeutics for Hospitalized Patients Infected With SARS CoV-2</td>
<td>NCT04328012</td>
<td>Lopinavir/ritonavir Hydroxychloroquine Sulfate Losartan Placebo</td>
<td>Phase 2 Phase 3 RCT, parallel design, quadruple masking</td>
<td>National Institute of Allergy and Infectious Diseases COVID-19 Ordinal Severity Scale (NCOSS)</td>
<td>N= 4000 18 Yrs and older(Adult, Older Adult All sex</td>
<td>USA</td>
<td>Start-Apr 6, 2020</td>
<td>End-Jan 1, 2021</td>
</tr>
<tr>
<td>#</td>
<td>Study Title</td>
<td>Registration Number</td>
<td>Treatment</td>
<td>Phase Design</td>
<td>Outcomes Description</td>
<td>Participants</td>
<td>Country</td>
<td>Start Date</td>
<td>End Date</td>
</tr>
<tr>
<td>----</td>
<td>-----------------------------------------------------------------------------</td>
<td>---------------------</td>
<td>--------------------</td>
<td>------------------------</td>
<td>--------------------------------------------------------------------------------------</td>
<td>--------------</td>
<td>------------------</td>
<td>-----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>13</td>
<td>Hydroxychloroquine Versus Placebo in COVID-19 Patients at Risk for Severe Disease</td>
<td>NCT04325893</td>
<td>Hydroxychloroquine</td>
<td>Placebo</td>
<td>Phase 3 RCT, parallel design, double masking Number of death from any cause, or the need for intubation and mechanical ventilation during the 14 days following inclusion and start of treatment</td>
<td>N= 1300 18 Yrs and older (Adult, Older Adult, All sex)</td>
<td>France</td>
<td>Apr 2020</td>
<td>Sep 2020</td>
</tr>
<tr>
<td>14</td>
<td>Proactive Prophylaxis With Azithromycin and Hydroxychloroquine in Hospitalized Patients With COVID-19</td>
<td>NCT04322396</td>
<td>Azithromycin</td>
<td>Placebo</td>
<td>Phase 2 RCT, parallel design, quadruple masking Number of days alive and discharged from hospital within 14 days</td>
<td>N= 226 Child, Adult, Older Adult, All sex</td>
<td>Denmark</td>
<td>Apr 2020</td>
<td>Oct 2020</td>
</tr>
<tr>
<td></td>
<td>Study Title</td>
<td>NCT ID</td>
<td>Product</td>
<td>Phase</td>
<td>Study Design</td>
<td>Endpoint</td>
<td>N (Age and Gender)</td>
<td>Country</td>
<td>Start Date</td>
</tr>
<tr>
<td>---</td>
<td>----------------------------------------------------------------------------</td>
<td>-------------</td>
<td>------------------------------------------------------</td>
<td>-------</td>
<td>--------------</td>
<td>--------------------------------------------------------------------------</td>
<td>--------------------</td>
<td>---------</td>
<td>----------------</td>
</tr>
<tr>
<td>15</td>
<td>Safety and Efficacy of Hydroxychloroquine Associated With Azithromycin in SARSCov-2 Virus</td>
<td>NCT04322123</td>
<td>Hydroxychloroquine Oral Product</td>
<td>Phase 3 open label RCT, parallel design</td>
<td>Evaluation of the clinical status Ordinal scale in 7 days</td>
<td>N= 630 18 Yrs and older (Adult, Older Adult) All sex</td>
<td>Brazil</td>
<td>Apr 6, 2020</td>
<td>Aug 2020</td>
</tr>
<tr>
<td>16</td>
<td>Safety and Efficacy of Hydroxychloroquine Associated With Azithromycin in SARSCoV2 Virus (Coalition Covid-19 Brasil II)</td>
<td>NCT04321278</td>
<td>Hydroxychloroquine + azithromycin</td>
<td>Phase 3 open label RCT, parallel design</td>
<td>Evaluation of the clinical status All-cause mortality</td>
<td>N= 440 18 Yrs and older (Adult, Older Adult) All sex</td>
<td>Brazil</td>
<td>Mar 28, 2020</td>
<td>Aug 30, 2020</td>
</tr>
<tr>
<td>17</td>
<td>Norwegian Coronavirus Disease 2019</td>
<td>NCT04316377</td>
<td>Hydroxychloroquine sulfate</td>
<td>Phase 4 open label RCT, parallel design</td>
<td>Rate of decline in SARSCoV-2 viral load</td>
<td>N= 202 18 Yrs and older (Adult, Older Adult) All sex</td>
<td>Norway</td>
<td>Mar 25, 2020</td>
<td>Apr 1, 2021</td>
</tr>
<tr>
<td>18</td>
<td>Post-exposure Prophylaxis / Preemptive Therapy for SARS Coronavirus-2</td>
<td>NCT04308668</td>
<td>Hydroxychloroquine</td>
<td>Placebo</td>
<td>Phase 3 RCT, parallel design, quadruple masking</td>
<td>Incidence of COVID19 Disease among asymptomatic at trial entry</td>
<td>N=3000 18 Yrs and older (Adult, Older Adult) All sex</td>
<td>USA</td>
<td>Start-Mar 17, 2020 End-Apr 21, 2021</td>
</tr>
<tr>
<td>19</td>
<td>Comparison of Lopinavir/ Ritonavir or Hydroxychloroquine in Patients With Mild Coronavirus Disease (COVID-19)</td>
<td>NCT04307693</td>
<td>Lopinavir/ritonavir Hydroxychloroquine Sulfate</td>
<td>-</td>
<td>Phase 2 open label RCT, parallel design</td>
<td>Viral load Viral load change Time to clinical improvement (TTCI)</td>
<td>N=150 16 to 99 Yrs (Adult, Older Adult) All sex</td>
<td>Republic of Korea</td>
<td>Start-Mar, 2020 End-May, 2021</td>
</tr>
<tr>
<td>20</td>
<td>Randomized Clinical Trial for the Prevention of SARS-CoV-2 Infection (COVID-19) in Healthcare Personnel</td>
<td>NCT04334928</td>
<td>Emtricitabine/tenofovir disoproxil Hydroxychloroquine</td>
<td>Placebo</td>
<td>Phase 3 RCT, parallel design, Double masking</td>
<td>Number of confirmed symptomatic infections of SARS-CoV-2 (COVID-19)</td>
<td>N=4000 18 Yrs and older (Adult, Older Adult) All sex</td>
<td>Spain</td>
<td>Start-Apr 1 2020 End-June 30 2021</td>
</tr>
<tr>
<td>21</td>
<td>A prospective, open label, randomized, control trial for chloroquine or hydroxychloroquine in patients with mild and common novel coronavirus pulmonary (COVID-19)</td>
<td>ChiCTR2000030054</td>
<td>Hydroxychloroquine sulfate 0.2g bid x 14 days</td>
<td>Standard of care</td>
<td>Prospective open label RCT</td>
<td>Clinical recovery time</td>
<td>N= 100 18 to 75 Yrs All sex</td>
<td>China</td>
<td>Start-Feb 22 2020 End-May 5 2020</td>
</tr>
<tr>
<td>22</td>
<td>A prospective, randomized, open label, controlled trial for chloroquine and hydroxychloroquine in patients with severe novel coronavirus pneumonia (COVID-19)</td>
<td>ChiCTR2000029992</td>
<td>Chloroquine phosphate 1.0gx2 days for the first dose, 0.5gx12 day from the third day Hydroxychloroquine sulfate 0.2g bid x 14 days</td>
<td>Standard of care</td>
<td>open label RCT</td>
<td>Clinical recovery time. Changes in viral load of upper and lower respiratory tract samples compared with the baseline</td>
<td>N= 100 18 to 75 Yrs All sex</td>
<td>China</td>
<td>Start-Feb 17 2020 End-May 5 2020</td>
</tr>
</tbody>
</table>
|   | Evaluation the Efficacy and Safety of Hydroxychloroquine Sulfate in Comparison with Phosphate Chloroquine in Mild and Common Patients with Novel Coronavirus Pneumonia (COVID-19): a Randomized, Open-label, Parallel, Controlled Trial | ChiCTR2000029899 | Hydroxychloroquine sulfate  
Day1: first dose: 6 tablets (0.1g/tablet), second dose: 6 tablets (0.1g/tablet) after 6h; Day2-5: 2 tablets (0.1g/tablet), BID  
Chloroquine phosphate  
Day1-3: 500mg, BID  
Day4-5: 250mg, BID | - | open label RCT, parallel design | Time to Clinical recovery  
All-cause mortality of 28-days | N= 100 18 Yrs and above  
All sex | China | Start- Feb 17 2020  
End- Apr 30 2020 |
<table>
<thead>
<tr>
<th></th>
<th>Study Title</th>
<th>Clinical Trial Number</th>
<th>Interventions</th>
<th>Study Design</th>
<th>Primary Outcome Measures</th>
<th>N</th>
<th>Age Range</th>
<th>Sex</th>
<th>Country</th>
<th>Start Date</th>
<th>End Date</th>
</tr>
</thead>
</table>
| 24 | Evaluation the Efficacy and Safety of Hydroxychloroquine Sulfate in Comparison with Phosphate Chloroquine in Severe Patients with Novel Coronavirus Pneumonia (COVID-19): a Randomized, Open-Label, Parallel, Controlled Trial | ChiCTR2000029898      | Hydroxychloroquine sulfate  
  Day1: first dose: 6 tablets (0.1g/tablet), second dose: 6 tablets (0.1g/tablet) after 6h  
  Day2-5: 2 tablets (0.1g/tablet), BID  
  Chloroquine phosphate  
  Day1-3: 500mg, BID  
  Day4-5: 250mg, BID | open label RCT, parallel design | Time to Clinical recovery  
  All-cause mortality of 28-days | 100   | 18 Yrs to 75yrs  
  All sex | China  
  Start-Feb 17 2020  
  End-Apr 30 2020 |
| 25 | Hydroxychloroquine treating novel coronavirus pneumonia (COVID-19): a randomized controlled, open label, multicenter trial | ChiCTR2000029868      | Hydroxychloroquine sulfate  
  Standard of care  
  open label multicenter RCT,  
  Viral nucleic acids  
  Adverse events | Viral nucleic acids  
  Adverse events | N= 360  
  18 yrs and above  
  All sex | China  
  Start-Feb 6 2020  
  End-June 30 2020 |
<table>
<thead>
<tr>
<th>#</th>
<th>Study Title</th>
<th>Clinical Trial Number</th>
<th>Intervention</th>
<th>Study Design</th>
<th>Key Outcome Measures</th>
<th>Study Duration</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>A prospective, randomized, open-label, controlled clinical study to evaluate the preventive effect of hydroxychloroquine on close contacts after exposure to the Novel Coronavirus Pneumonia (COVID-19)</td>
<td>ChiCTR2000029803</td>
<td>Hydroxychloroquine, small and high dose 2 arms</td>
<td>Placebo controlled RCT</td>
<td>Number of patients who have progressed to suspected or confirmed within 24 days of exposure to new coronavirus</td>
<td>Start-Feb 2020, End-Feb 2021</td>
<td>China</td>
</tr>
<tr>
<td>27</td>
<td>Therapeutic effect of hydroxychloroquine on novel coronavirus pneumonia (COVID-19)</td>
<td>ChiCTR2000029559</td>
<td>Hydroxychloroquine 0.1g oral 2 times/ day</td>
<td>Placebo controlled RCT</td>
<td>The time when the nucleic acid of the novel coronavirus turns negative</td>
<td>Start-Jan 31 2020, End-Feb 29, 2020</td>
<td>China</td>
</tr>
</tbody>
</table>