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Abstract 

Generalizing COVID-19 control strategies in one community to others is confounded by 

community’s unique demographic and socioeconomic attributes. Here we propose a 

tailored dynamic model accounting for community-specific transmission controls and 

medical resource availability. We trained the model using data from Wuhan and applied 

it to other countries. We show that isolating suspected cases is most effective in reducing 

transmission rate if the intervention starts early. Having more hospital beds provides 

leverage that diminishes with delayed intervention onset. The importance of transmission 

control in turn increases by 65% with a 7-day delay. Furthermore, prolonging outbreak 

duration by applying an intermediate, rather than strict, transmission control would not 

prevent hospital overload regardless of bed capacity, and would likely result in a high ratio 

(21% ~ 84%) of the population being infected but not treated. The model could help 

different countries design control policies and gauge the severity of suppression failure. 

 

Introduction 

Wuhan in China, being the first city to report cases of COVID-19, has seen 0 new cases for 

the first time on March 18, 2020 since the outbreak started in December 2019. Beyond 

implementing non-pharmaceutical interventions (NPI), including citywide traffic 

restrictions and social distancing to reduce contact rate1, the city of Wuhan further took 

proactive actions to isolate suspected cases in permanent and temporary medical facilities 

until laboratory tests to confirm such cases1. In contrast, some countries, such as US2 and 

Canada3, currently (March 2020) adopt alternative strategies preferring home-isolation 

for individuals showing symptoms, while only the severe cases are encouraged to be 

hospitalized, presumably as an attempt to prevent overloading the healthcare system.  

Evaluating control policy efficacy requires an accurate and generalizable transmission 

model. Many early models regarding COIVD-19 transmission, however, were 

underinformed and missed certain critical assumptions. One of the earliest estimates of 

the number of the infected in Wuhan, China, based on the number of exported cases from 

Wuhan via international air travel, suggested a cumulative 4,000 symptomatic cases in 

Wuhan by January 18, 20204. Adopting such methodology for early size estimation, Wu5 

proposed a then influential susceptible–exposed–infected–recovered (SEIR) model by 
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fixing the average period of infectivity at 2.4 days, which based on current evidence6, was 

too low and likely resulted in an over-estimation of the transmission rate. The study 

further assuming a flat 0%/50%/75% drop in transmissibility following Wuhan city 

lockdown. Transmission models with more sophisticated assumptions have since been 

proposed7,8, including ones with time-dependent control policies9 or non-Markovian 

transmission dynamics10. But these studies rarely made use of data beyond the confirmed 

number of cases such as the number of suspected cases. Another key factor that shall not 

be neglected in modelling is the real-time healthcare system capacity. While some studies 

have considered its impact11, few have incorporated such a factor dynamically in their 

transmission models.  

The availability of a complete set of data and detailed records of adopted control policies 

from Wuhan enables us to construct and test an epidemic model that accounts for the 

factors deciding an outbreak profile, including the control policy’s evolution through time 

as well as the healthcare system capacity. We also dissected the effect of the proactive case 

isolation strategy adopted in Wuhan. The model validated with data from Wuhan is 

potentially applicable to other countries. Subsequently manipulating the parameters 

corresponding to control strategies opens a window to evaluate the effectiveness of each 

policy under certain healthcare system capacity constraints. We gauged the required NPI 

strength and timing for other 6 representative countries, namely US, Italy, France, 

Germany, Japan and Korea, with different hospital bed availability. 

 

Results 

A modified SEIR model (Figure 1) with time-dependent transmission rate control, time-

dependent case isolation and testing rate, non-Markovian patient discharge was proposed 

(see Methods for details). The model also imposes a hospital bed upper limit. Data from 

Wuhan between January 10, 2020 and March 11, 2020 was used to fit the model 

parameters. 

Control Measures in Wuhan 

As shown in Figure 2A, the combined effect of increases in NPI and case isolation 

explained the successful outbreak suppression in Wuhan. Specifically, the transmission 
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rate in Wuhan was estimated to have been reduced to 31.0% of pre-lockdown level 5 days 

after January 23, 2020 and approaching an asymptote of 27.3%. Furthermore, the daily 

proportion of symptomatic cases being isolated in medical facilities was estimated to have 

increased from a starting estimate of 0.017 on January 10, 2020 to 0.081 on January 28, 

2020. The daily proportion of isolated cases being confirmed was estimated to have 

started at 0.092 and increased to 0.22 by January 28, 2020. The basic reproduction 

number, corresponding to the initial stage of the outbreak, was estimated to be 3.48. 

Subsequently, the synergistic effect of increasing transmission control and isolation rate 

effectively reduced the daily reproduction number (see Suppression success in Methods) 

to be below 1 by Feb 28, 2020, subsequently resulting in a suppressed COVID-19 

transmission (Figure 2B).  

The estimated number of early cases until January 18, 2020 combing both the 

symptomatic and asymptomatic was 5,101, which was in line with the number of 4,000 

(95% CI [1,000, 9,700]) independently estimated from the number of COVID-19 cases 

exported from Wuhan internationally via air4. Throughout the outbreak, the highest bed 

occupancy attributed to COVID-19 (including both suspected and confirmed cases, see 

Methods) was estimated to be 40,710, which was below the reported maximum bed 

capacity of 44,000 in Wuhan.  

Alternatively, we simulated that without proactive isolation, the daily reproduction 

number would have been reduced to 1 on January 30, 2020, 2 days later than reality 

(Figure 2D). In this case, Wuhan’s bed capacity would have been marginally saturated for 

2 days between February 22,2020 and February 23, 2020 (Figure 2C). However, since the 

daily reproduction number would have been way below 1 at the time of hospital bed 

saturation, suppression would still have been achieved. 

Through cross-validation (see Model evaluation in Methods), it was shown that the time-

dependent model, which assumed exponentially decreasing transmission rate and 

isolation delay, had lower prediction error (mean ΔRMSE = -779.16, p(ΔRMSE < 0) = 

0.758, Figure S2B), compared to the null model that assumed those factors to be constant. 

In addition, the time-dependent model would make increasingly better predictions than 

the null model for future time points with accumulating evidence (Figure S2A). 
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Case isolation and policy timing 

We further estimated the effects of onset timing of control policy on outbreak suppression. 

The utility of isolating suspected cases was evaluated based on its influence on the NPI 

strength threshold required for successful suppression. The criterion for a successful 

suppression was to reduce the daily reproduction number to 1 before all beds would have 

been occupied. As seen in Figure 3A, the threshold for successful suppression clearly 

defined the resulting number of total infections. The number of total infections exhibited 

a noticeably discontinuous jump around the suppression threshold. While successful 

suppressions would cause a small percentage (median = 0.46%) of the population to be 

infected, failed suppressions would lead to much more infections (median = 96.6%).  

Naturally, the further delayed had the implementation of controls been, the harder it 

would have been to achieve suppression. Compared against the alternative strategy of only 

hospitalizing confirmed cases (Figure 3B), Wuhan’s strategy of hospitalizing both 

confirmed and suspected cases won a margin worth a 1.4% decrease in relative 𝛽 

requirement (Figure 3C&E). Nevertheless, fitting results showed that Wuhan’s NPI 

strength and timing would have been adequate to put the city well above the suppression 

threshold even without proactive isolation (Figure 3B). The benefit would have been the 

largest if actions had been taken as early as possible and would otherwise have been 

diminished by January 29, 2020, only 6 days later than the actual onset of intervention. 

Should suppression fail, however, the isolation strategy would have had a negative impact 

on the total number of infected cases. At most an extra 1.2% of the population would have 

been infected (onset = +6 days, relative 𝛽 = 0.20) given proactive isolation (Figure 3C). 

Furthermore, increasing hospital bed limit from 4.8 beds (the real number in Wuhan) to 

8.0 beds per 1,000 population would have provided a further cushion for transmission 

rate reduction, but such an advantage would also have been diminished if the intervention 

had been postponed for 9 days (Figure 3D&E). 

 

Leveraging hospital bed capacity in choosing NPI 

Since most countries did not perform proactive isolations, the model without the isolation 

cohort was further examined. We manipulated hospital bed capacities estimated from 
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their national averages, and searched for the suited transmission control measures for 

certain communities. 

Both the duration of healthcare system overload and the final proportion of infected 

population were the measurements used to evaluate outbreak outcomes. The two 

measurements showed the same steep jump in value, indicating suppression failure 

(Figure 4A, B, D&E). This jump was well captured by the suppression threshold derived 

from the daily reproduction number (the blue curves in respective panels). Compared to 

the hospital capacity in US, the high hospital bed capacity in Germany would yield a higher 

threshold for suppression (Figure 4C, relative ∆β = 0.10). But such an advantage would be 

greatly reduced if interventions were delayed by a week (Figure 4F, relative ∆β = 0.065). 

By regressing the threshold-level relative 𝛽 on the log-transformed number of beds per 

1,000 population for a range of intervention onsets (Figure 5A), we found that hospital 

bed capacity would play the most important role with the intervention onset 2 days later 

than Wuhan. But having an advantage in hospital bed capacity would be less relevant if 

the onset was further delayed (Figure 5B). Specifically, the relative utility of transmission 

control in relation to bed capacity would be increased by 64.9% with a 7-day onset delay 

(slope shifted from 9.50 to 5.76). 

The duration of hospital overload followed closely the total outbreak duration (+0 onset: 

correlation coefficient = 0.96; +7 onset: correlation coefficient = 0.99), with the maximum 

values of both observed near the suppression threshold (Figure 4C&F). Further relaxing 

transmission control (increasing relative 𝛽 ) from threshold value would cause the 

percentage of total infected population to steeply rise. The synergistic effect of extended 

hospital overload and infection number increase would lead to only a very small 

percentage of patients being treated. 

In an attempt to evaluate the seriousness of suppression failure, we examined scenarios 

where relative 𝛽 was at threshold level. A community with Germany level of healthcare 

capacity (8.0 beds per 1,000 population) and acting as promptly as Wuhan (0 days onset 

delay) would have a high relative 𝛽 threshold. But if transmission control requirements 

were relaxed too much, it would still see 83.3% of the population infected but untreated 

(Figure 4C, right). To generalize, we simulated such scenarios with 0 to 7 days of onset 

delay and 2.8 to 8.0 beds per 1,000 population (see Figure S3). The results suggested that 

transmission control levels just short of suppression requirement, not only would yield the 
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longest outbreak durations, but also would result in the size of untreated patients 

amounting to anywhere between 21.9% and 83.7% of total population. 

 

Discussion  

Our model allowed retrospective analyses and counterfactual reasoning on Wuhan’s 

control policies. Wuhan’s strategy to proactively isolate all suspected cases, effectively 

removed patients from the infectious pool; otherwise waiting for confirmation would lead 

to heavier reliance on the laboratory testing capacity and thus leaving more infectious 

cases in the community. Serving as a buffer between the symptomatic cohort and the 

confirmed cohort, Wuhan’s strategy bought extra time for the culmination of medical 

resources in all departments, including extra-provincial medical staff dispatch, test kit 

production and new hospital construction. Our model showed that such a strategy in 

Wuhan was implemented soon enough (6 days until the advantage diminished) to provide 

a relieved NPI strength required for suppression. Moreover, proactive isolation in Wuhan 

was also beneficial in reducing peak hospital bed occupancy (from 44,000 to 40,710). As 

long as the transmission control had been strong enough, such positive outcomes would 

have been warranted regardless of the timing of NPI. However, if control measures had 

not been sufficiently strong to suppress the outbreak, isolating all suspected cases would 

have had a negative outcome due to imposing extra stress on the healthcare system. 

More generally speaking, increasing NPI strength and hospital bed capacity both 

contribute to successfully suppressing the outbreak. However, the trade-off between 

investing in stronger NPI and larger healthcare system capacity depends on how promptly 

a community responds. As suggested in Figure 4, when the control measures are delayed 

and the early window is missed, not only does the overall difficulty to suppress become 

higher, advantages in healthcare system capacity also quickly diminish. Delaying 

intervention renders investing in NPI increasingly more efficient than boosting healthcare 

system capacity (Figure 5B).  

Failing to suppress would cost countries even with the world’s more abundant hospital 

beds a steep increase in the number of untreated infections. Meanwhile, said communities 

would suffer an extended duration of healthcare system overflow.  The “flattening the 

curve” notion was first illustrated by US Centers for Disease Control and Prevention 

(CDC)12 and later popularized on social media. It advocates for a level of transmission 
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control that would be enough to lower the peak of patient number by prolonging the 

outbreak duration and thus preventing healthcare system overflow. However, our 

simulation proved this strategy to be flawed regarding COVID-19 (Figure 4). Successful 

suppressions are featured by greatly reduced outbreak size and duration. In contrast, 

prolonged outbreak durations indicate inadequate transmission control, in which case 

healthcare system overload is unavoidable (Figure 4C&F). Consequently, the number of 

untreated infections (and thus the death toll) would outgrow that of the treated by orders 

of magnitude (Figure 4F). Either consequence would be in violation of the goals behind 

the “flattening the curve” strategy. A similar conclusion has been drawn11 for the situations 

in UK and US to dissuade mere mitigation strategies. Nonetheless, if suppression is not 

achievable, the results still favor implementing as strict as possible transmission controls, 

since giving up transmission control in total would only further increase the number of 

untreated patients.   

Instead of the explicit number of deaths from either untreated or treated patients, we paid 

attention to the number of infected patients that went untreated. In fact, this cohort could 

not be directly documented and thus are not directly reflected in the case numbers 

reported by countries. However, the significance of estimating those numbers became 

evident, as the simulation suggested that when suppression failed, the majority of the 

patients would be deprived of a chance at treatment (Figure 4 C&F). The exact mortality 

rate of COIVID-19 has been shown to be decided heavily by factors including patient age 

and pre-existing conditions6,13–15, and the contributions of these factors are still under 

much debate. Nonetheless, such measure helps demonstrate a crucial aspect of the 

pandemic’s impact on public health. It is mostly decided by NPI, regardless of the 

community-specific factors including demographic constituents and healthcare system 

preparedness11,16 (e.g. intensive care unit space and equipment availability) that would 

impact death toll as well as average patient prognosis.  

The timing for lifting control policies and the potential for a rebound in transmission 

thereafter were not explicitly investigated in this study. Under a given situation of 

successful suppression where the majority of the population was not infected, herd 

immunity would have to be established by population-wide vaccination11,17. Until an 

effective vaccine is developed, a partial relaxation of transmission control policies while 

maintaining suppression would nonetheless be potentially achievable by ensuring a close 

monitoring of the daily reproduction number. The reason behind it was evident in Figure 
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3&4 where the daily reproduction number at the time of hospital overload proved to be a 

clear indicator of suppression success. 

Giving up transmission control to achieve herd immunity might be adopted by some 

communities. Such a proposal could turn out even more ineffectual in the wake of the 

outbreak depending on SARS-CoV-2 immunity duration. Herd immunity achieves 

reproduction number reduction by removing individuals from the susceptible pool. Based 

on an estimated basic reproduction number of 3.48 by our model, 71% of the population 

would need to build and sustain immunity for SARS-CoV-2; otherwise, the reintroduction 

of the pathogen would cause the disease to circulate again. Another issue for herd 

immunity strategy is the duration of immunity. Although conclusions varied, evidence 

from SARS suggested a significant antibody reduction 2 years after infection18–20. In this 

case, longitudinal studies on this topic for COVID-19 would be crucial for designing 

vaccination strategies. 

As much as it has been used to describe the intrinsic properties of COIVD-19, the basic 

reproduction number 𝑅0 is a function of the transmission rate 𝛽0 that depends that the 

frequency of human contact. An 𝑅0  estimated from Wuhan is thus most suited to be 

transferred to a community with a similar level of social interactions. This is especially 

true when trying to describe the early transmission dynamics when no controls are in place. 

Subsequent description of control policy strength using relative 𝛽 introduces flexibility by 

accounting for all factors influencing transmission rate. Another caveat to the current 

study is that we neglected the inter-community traffic in the model, rendering the model 

most fitting to apply on a community on total lockdown. At the city level, discussions have 

started regarding locking down certain hot spots. At the country level, many have closed 

their borders to non-citizens. As the number of internationally imported cases grew, China 

announced that it would follow suit starting on March 28, 2020. Partial inter-city traffic 

reduction only has been estimated to be not effective in preventing inter-community 

spread5,21, thus the impact of travel on epidemic development through increasing both 

numbers of susceptible and infectious individuals would need to be carefully evaluated for 

future decision-making when reassessing lockdowns. 
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Methods 

Data sourcing 

Daily data from January 10, 2020 to March 11, 2020 including (a) the number of 

cumulative confirmed cases in Wuhan; (b) the number of currently hospitalized confirmed 

cases in Wuhan; (c) the number of new suspected cases in China; (d) the number of 

cumulative confirmed cases in China were obtained from the National Health Commission 

of the People’s Republic of China (http://en.nhc.gov.cn/). The number of daily new 

suspected cases in Wuhan was deduced from the number of daily new suspected cases in 

China based on the ratio of the cumulative number of cases reported in Wuhan to that 

reported in China. 

Notably, the change in diagnostic criteria for COVID-19 on February 4, 2020, from solely 

relying on Polymerase chain reaction (PCR) to partially on clinical symptoms and chest 

CT scans, resulted in a single spike of 12,364 newly confirmed cases on February 12, 2020. 

By examining the evolution of the suspected case count on days preceding February 12, 

2020, we concluded that the spike on February 12, 2020 was a delayed lump report of 

cases being cumulatively confirmed since the new criterion was implemented22. Thus, in 

order to better represent the historical trend of the testing capacity growth and maintain 

the cumulative count on February 12, 2020, the newly confirmed cases officially reported 

on February 12, 2020 were retrospectively assigned to 9 days between February 4, 2020 

and February 12, 2020 by assuming a linear increase in daily confirmed cases through 

clinical diagnosis (Figure S1). Moreover, the number of available beds was estimated to be 

44,000 according to the Health Commission of Wuhan website 

(http://wjw.wuhan.gov.cn/). The corresponding hospital bed capacities for other 

countries were based on the report23 by the Organisation for Economic Cooperation and 

Development (OECD). 

SEIR Model specification 

A modified SEIR model was proposed and coded in Python. All citizens 𝑁 are assumed to 

belong to the susceptible cohort 𝑆(𝑡) at the beginning of the outbreak. Equation (1) asserts 

the susceptible to be infected by coming into contact with the asymptomatic cohort 𝐸(𝑡) 

as well as the symptomatic cohort 𝐼(𝑡) at a time-dependent rate of transmission 𝛽(𝑡). The 

latent cohort 𝐸 was set to be 50% as infectious, according to previous literature24–29. The 
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asymptomatic cases are converted to the symptomatic, at an average rate of 1/𝐷𝐸  as seen 

in Equation (2) and Equation (3), where 𝐷𝐸 is the incubation period and 𝐷s is the period 

of infectivity. Furthermore, all population in the 𝐸(𝑡) and 𝐼(𝑡) cohort, without medical 

intervention, face a chance of spontaneously losing infectivity due to either recovery or 

COVID-19-related mortality, the average rate of which is define as 1/𝐷s
6,30. Removal from 

the 𝐸(𝑡) population via such a route adequately accounts for the increasing evidence for 

asymptomatic yet infectious COVID-19 cases24–29.  

Equation (4) and Equation (5) implement the process of isolation and confirmation. 𝑅i(𝑡) 

represents the suspected and isolated case that were infected. Diagnosis precision 𝑝 is 

computed as the ratio between the number of total suspected and confirmed cases and 

were used to adjust 𝑅i(𝑡) to represent its actual contribution to bed occupancy. Cases in 

𝑅i(𝑡) were later confirmed through laboratory testing and became 𝑅c(𝑡), the cohort of 

confirmed cases. 𝐼(𝑡) flows into 𝑅i(𝑡) at a rate of 1/𝐷𝐼(𝑡), while 𝑅i(𝑡) flows into 𝑅c(𝑡) at a 

rate of 1/𝐷𝑅i(𝑡).  𝐷𝐼(𝑡) in Equation (7) specifies an exponential decrease in isolation delay 

starting on January 10, 2020 (𝑡0), while the decrease in testing delay in Equation (8) 

follows the same exponential trend as that in isolation delay, reflecting a synchronization 

in resources utilized by either process (e.g. medical staff).  The constraint of healthcare 

system capacity, an upper limit of 𝐵𝑒𝑑, limits the combine beds occupied by 𝑅i(𝑡) and 

𝑅c(𝑡) in Equation (3) and Equation (4). The number of days a patient remains hospitalized 

until discharged are distributed uniformly amongst a 14-day time span centered at 𝐷𝑅c, 

shown in Equation (5). The exponential decay of 𝛽(𝑡) in Equation (6) describes the joint 

effect of the NPI measures from January 23, 2020 (𝑡1) including traffic control, home-

isolation, social distancing, disinfection and public use of personal protective equipment 

etc.  
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=
𝑅i(𝑡)

𝐷𝑅i(𝑡)
− ∫

1

𝐷𝑅c
𝑅𝑐′

𝑢+7

𝑢−7

(𝑢)𝑑𝑢   (𝑢 = 𝑡 − 𝐷𝑅c) 

𝛽(𝑡) = {
𝛽0,                                                    𝑡 ≤ 𝑡1

(𝛽0−𝛽∞)𝑒
−𝑎𝛽(𝑡−𝑡0) + 𝛽∞, 𝑡 > 𝑡1

  

𝐷𝐼(𝑡) = 𝐷𝐼0𝑒
−𝑎𝐷𝑡 

𝐷𝑅𝑖(𝑡) = 𝑘𝐷𝐼(𝑡) 

(1) 

 

(2) 

 

(3) 

 

(4) 

 
(5) 

 
(6) 

 (7) 

 
(8) 

 

An alternative model assumes that the suspected patients are not isolated in medical 

facilities. Instead of flowing into 𝑅i(𝑡), the suspected cases remain in 𝐼(𝑡) until confirmed 

(Equation 9-10). The mean duration for a symptomatic case to be confirmed remains 

unchanged in Equation (11). 
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𝑑𝐼(𝑡)

𝑑𝑡
=

{
 
 

 
 𝐸(𝑡)

𝐷𝐸
− (

1

𝐷𝐼𝑎𝑙𝑡(𝑡)
+
1

𝐷s
−

1

𝐷𝐼𝑎𝑙𝑡(𝑡)𝐷s
) 𝐼(𝑡), 𝑅c(𝑡) ≤ 𝐵𝑒𝑑

𝐸(𝑡)

𝐷𝐸
−
1

𝐷s
𝐼(𝑡),                                                          𝑅c(𝑡) > 𝐵𝑒𝑑

 

𝑑𝑅c(𝑡)

𝑑𝑡
=

{
 
 

 
 

𝐼(𝑡)

𝐷𝐼𝑎𝑙𝑡(𝑡)
− ∫

1

𝐷𝑅c
𝑅𝑐′

𝑢+7

𝑢−7

(𝑢)𝑑𝑢, 𝑅c(𝑡) ≤ 𝐵𝑒𝑑

−∫
1

𝐷𝑅c
𝑅𝑐′

𝑢+7

𝑢−7

(𝑢)𝑑𝑢,                        𝑅c(𝑡) > 𝐵𝑒𝑑

  (𝑢 = 𝑡 − 𝐷𝑅c) 

𝐷𝐼𝑎𝑙𝑡(𝑡) =  𝐷𝐼(𝑡)+ 𝐷𝑅𝑖(𝑡) 

(9) 

 

(10) 

 
(11) 

 

Parameter estimation based on Wuhan data 

The full profile of cumulative confirmed cases in Wuhan from January 10, 2020 to March 

11, 2020 is used to estimate all free parameters except for 𝐷𝑅c, for these parameters only 

concern the inflow of infections while 𝐷𝑅c  exclusively determines the outflow. A dual 

simulated annealing procedure is performed with 10,000 iterations using the Scipy 

package31 in Python. Subsequently, with the other parameters fixed, 𝐷𝑅c  is estimated from 

the number of currently hospitalized confirmed cases in Wuhan using the same dual 

simulated annealing procedure. All parameters are summarized in Table 1.  

Model evaluation 

The time-dependent model is compared to a null model with a constant rate of 

transmission and a constant rate of isolation/confirmation.  A cross validation method is 

applied to verify the improvement in prediction performance through a bootstrapping 

procedure described below32,33.  

Data from January 15, 2020 to March 11, 2020, 56 days in total, are involved in the analysis. 

The first 28 days are regarded as the training set and the later as the test set. The model is 

trained by the data sampled from the training set, and then tested the data sampled from 

the test set. In this way, it can avoid the bias due to the testing data immediately follow the 

training data. To ensure sufficient data for training, the samples of training data vary from 

14 to 28, whereas the samples of testing data span 1 to 28. Each model was optimized with 

the training set data. Root mean squared error (RMSE) in the predictions make by each 
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model were then calculated on the testing set. In total, 120,000 sample pairs were drawn 

to construct distributions for prediction errors by the two models as well as that for the 

difference between the two errors.  

Suppression success 

A successful suppression is judged based on the reproduction number. The reproduction 

number is defined as the average number of new infections each patient generates. When 

the reproduction number is less than 1, the number of new cases decreases. If the 

reproduction number is greater than 1, the number of new cases would increase until the 

susceptible pool runs out34. At the beginning of an outbreak when every individual is 

susceptible, the basic reproduction number 𝑅0 can by calculated from Equation (12), given 

that the asymptomatic cases are not infectious. With the current model specifying time-

dependent parameters and 50% asymptomatic transmissibility, the average time of 

contact for the symptomatic and asymptomatic cohort is computed respectively in 

Equation (13) and Equation (14). A daily reproduction number is then computed as in 

Equation (17). Whether the average daily production numbers during healthcare system 

overload is below 1 is the criterion for successful suppression. The strength of NPI was 

quantified as the relative transmission rate 𝛽 calculated from 𝛽∞/𝛽0. The threshold level 

of relative 𝛽  was linearly regressed on that of the log-transformed bed per 1,000 

population to quantify the relative importance of the two. 

  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 19, 2020. ; https://doi.org/10.1101/2020.04.16.20067611doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.16.20067611
http://creativecommons.org/licenses/by/4.0/


 

 
𝑅0 = 𝛽0

1

1
𝐷𝐼0

+
1
𝐷s
−

1
𝐷𝐼0𝐷s

 

𝑇𝐼(𝑡) =
1

𝑑𝑅i(𝑡)
𝑑𝑡

1
𝐼(𝑡)

+
1
𝐷s
−
𝑑𝑅i(𝑡)
𝑑𝑡

1
𝐼(𝑡)𝐷s

 

𝑇𝐸 =
1

1
𝐷𝐸

+
1
𝐷s
−

1
𝐷𝐸𝐷s

 

𝜔𝐼(𝑡) =
𝐼(𝑡)

𝐼(𝑡) + 𝐸(𝑡)
 

𝜔𝐸(𝑡) = 1 − 𝜔𝐼(𝑡) 

𝑅𝑒𝑝𝑁𝑢𝑚(𝑡) = 𝜔𝐼(𝑡)𝛽(𝑡)𝑇𝐼(𝑡) +
𝜔𝐸(𝑡)𝛽(𝑡)𝑇𝐸

2
 

(12) 

 (13) 

 (14) 

 (15) 

 (16) 

 (17) 

 

Data availability 

The datasets generated during and/or analysed during the current study as well as the 

code used are available from the corresponding author on reasonable request. 
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Figure 1. Modified SEIR model. Components include: S – susceptible cohort; E – 
asymptomatic cohort; I – symptomatic cohort; Ri – isolated cohort; Rs – the cohort 
losing infectivity without medical treatment; Rc – confirmed cohort. Bed capacity 
limited rate of isolation. Dashed arrows stand for cases leaving the dynamical system. 
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A B 

C D 

Figure 2. Modified transmission model fitting with Wuhan data. (A) 
Outputs of model fitted by the daily cumulative and current number of 
confirmed cases in Wuhan. Model outputs are plotted as solid lines and data 
as dots. The horizontal line stands for hospital bed capacity. (B) Evolution of 
the daily reproduction number with time in Wuhan. January 23 marks the 
onset of city lockdown. (C) Same as (A) but without proactive isolation. The 
shaded area indicates the duration of hospital overload. (D) Same as (B) but 
without proactive isolation. 
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A 

Figure 3. Case isolation effectiveness with different intervention timing. 
(A) Percentage of population that would have been infected in total with different 
relative transmission rate and lockdown onset date relative to January 23, 2020 
without case isolation. The solid line indicates the suppression threshold according to 
the daily reproduction number. Onset date and fitted transmission rate was plotted for 
Wuhan. (B) Same as (A) but with proactive isolation. (C) Difference between (A) and 
(B). Not isolating suspected cases would have resulted in more infections under 
intervention designs represented by areas above the dashed line that also largely 
capture the scenarios of successful suppression. (D) Relative transmission rate 
thresholds assuming 4.8 and 8.0 beds per 1000 population at different intervention 
onsets. (E) Advantage of isolation in relative transmission rate threshold assuming 4.8 
and 8.0 beds per 1000 population as a function of intervention onset time. 

B C 

E D 
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B 

C 

Figure 4. Suppression thresholds and failures. (A)Percentage of infected total 
population. The blue curve stands for the suppression thresholds. Its intersections with 
the vertical lines are the relative transmission rate thresholds for communities in 
exemplar countries with various bed capacities. The orange and yellow lines stand for 
the respective bed capacities of US and Germany. (B) Duration of hospital overload 
plotted in the same convention as (A). (C) Left: Percentage of total population 
infections, confirmed cases as a percentage of the total population, duration of 
outbreak and the duration of hospital overload for a community with bed capacity like 
that of US; Right: the same measures for a community with bed capacity like that of 
Germany. (D-F) The same as (A-C) except that the simulated intervention onsets were 
postponed by 7 days. 

D 

E 
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Figure 5. Suppression threshold as a function of relative transmission 
rate, beds per 1,000 population and intervention onset. (A) Logarithmic 
regression lines of beds per population on relative transmission rate. R2 range: [0.9147, 
0.9961]. (B) Slopes and intercepts of the regressions in (A) for different intervention 
onsets. 

A B 
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Table 1. Parameters and their value in the model 

 

Parameter  Definition Value Source 

𝛽0 
Initial transmission rate (proportion per 

day) 
0.692 

Dual simulated 

annealing 

𝑎𝛽 
Exponential decay constant of 

transmission rate 
0.5 9 

𝛽∞ 
Transmission rate asymptote (proportion 

per day) 
0.189 

Dual simulated 

annealing 

𝐸(0) 
Number of asymptomatic cases on 

January 10, 2020 
318 

Dual simulated 

annealing 

𝐼(0) 
Number of symptomatic cases on January 

10, 2020 
227 

Dual simulated 

annealing 

1/𝐷𝐼0 Initial isolation rate (proportion per day) 0.0174 
Dual simulated 

annealing 

𝑎𝐷 
Exponential decay constant of isolation 

time constant 
0.0862 

Dual simulated 

annealing 

𝑘 
Ratio between isolation and confirmation 

rate 
0.391 

Dual simulated 

annealing 

𝐷𝑅c  
Average delay of discharge or mortality 

(days) 
21.0 

Dual simulated 

annealing 

𝐷s Period of infectivity (days) 14.0 6,30 

𝐷𝐸  Incubation period (days) 4.0 13 

𝑝 
Diagnosis precision amongst suspected 

cases 
0.84 Data (c) and (d) 
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Supplementary information 

Simulation details 

In Figure 3A&B&C, relative 𝛽  increased from 0.0 to 0.5 (step=0.01); lockdown onset 

increased from -8 to 22 days (step = 1 day, Jan. 15-Feb. 15). The other parameters were 

kept fixed.  

In Figure 4A&B&D&E, relative 𝛽 increased from 0.0 to 0.5 (step=0.01) and number of 

beds per 1,000 population increased from 2.0 to 12.0 (step=0.2). Lockdown onsets were 

+0 and +7 respectively. In Figure 4C&F, the duration of outbreak was defined as the 

number of days from Jan 10 until the number of confirmed cases went to 0. 
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Figure S1. The cumulative confirmed data was adjusted to reflect 

updated diagnosis criteria.  
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Figure S2. Model cross-validation 

(A) Respective prediction errors as a function of evidence length by the model 

built with control-related parameters following exponential changes (Exp) 

and the null model with constant parameters (Null). Shades represent 95% 

quantile intervals. (B) Bootstrapped distribution of prediction error 

differences between the Exp and Null models using 1/4 to 1/2 of total data as 

evidence. 

A B 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 19, 2020. ; https://doi.org/10.1101/2020.04.16.20067611doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.16.20067611
http://creativecommons.org/licenses/by/4.0/


 

 

 

Figure S3. Evolution of hospital occupancy and infection count 

under different control policies. 

Each panel details one situation with the corresponding intervention timing, 

number of beds per 1,000 population and relative 𝛽. Blue lines indicate the 

number of occupied beds per 1,000 population and green lines indicate the 

percentage of infected population. Shaded regions are when beds are 

saturated. 
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