
 

Page 1 

Links between air pollution and COVID-19 in England 

 

Marco Travaglio 1, Yizhou Yu 1, Rebeka Popovic, Liza Selley, Nuno Santos Leal, and Luis 

Miguel Martins 

 

MRC Toxicology Unit, University of Cambridge 

Correspondence to: L. Miguel Martins, e-mail: martins.lmiguel@gmail.com 
1Equal contributions 

 

 

Revision version v04 

Main revisions: We increased the spatial resolution of our analysis by assessing the effects of 

several air pollutants on COVID-19 mortality and infectivity at the subregional scale. We 

modelled the effect of individual-level exposure on COVID-19 infectivity using data from the 

UK Biobank, after adjusting for multiple confounding factors. We examined sources of air 

pollutants linked to increased COVID-19 deaths, based on fossil fuel consumption data.  
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ABSTRACT 

 

In December 2019, a novel disease, coronavirus disease 19 (COVID-19), emerged in Wuhan, 

People’s Republic of China. COVID-19 is caused by a novel coronavirus (SARS-CoV-2) 

presumed to have jumped species from another mammal to humans. This virus has caused a 

rapidly spreading global pandemic. To date, thousands of cases of COVID-19 have been 

reported in England, and over 25,000 patients have died. While progress has been achieved in 

managing this disease, the factors in addition to age that affect the severity and mortality of 

COVID-19 have not been clearly identified. Recent studies of COVID-19 in several countries 

identified links between air pollution and death rates. Here, we explored potential links 

between major air pollutants related to fossil fuels and SARS-CoV-2 mortality in England. 

We compared current SARS-CoV-2 cases and deaths recorded in public databases to both 

regional and subregional air pollution data monitored at multiple sites across England. We 

show that the levels of multiple markers of poor air quality, including nitrogen oxides and 

sulphur dioxide, are associated with increased numbers of COVID-19-related deaths across 

England, after adjusting for population density. We expanded our analysis using individual-

level data from the UK Biobank and showed that particulate matter contributes to increased 

infectivity. We also analysed the relative contributions of individual fossil fuel sources on 

key air pollutant levels. The levels of some air pollutants are linked to COVID-19 cases and 

adverse outcomes. This study provides a useful framework to guide health policies in 

countries affected by this pandemic. 

 

Keywords: SARS-CoV-2, COVID-19, air pollution, nitrogen oxides, ozone, PM2.5, PM10, 

SO2, mortality. 
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ABBREVIATIONS 

AIC  Akaike Information Criterion 

AQ  Air quality  

BEIS  Business, Energy and Industrial Strategy 

CI  Confidence intervals 

CoV  Coronavirus 

COVID-19 Coronavirus disease 19 

DEFRA Department for Environment, Food and Rural Affairs 

DfT  Department for Transport 

GHGI  Greenhouse Gas Inventory 

HGV  Heavy goods vehicle 

LGV  Light goods vehicle 

MPRN  Meter point reference numbers 

NAEI  National Atmospheric Emissions Inventory  

NHS  National Health Service  

PCA  Principal component analysis 

PM   Particulate matter 

PM2.5  Particulate matter with an aerodynamic diameter < 2.5 µm 

PM10   Particulate matter with an aerodynamic diameter < 10.0 µm 

PHE  Public Health England 

SARS  Severe acute respiratory syndrome 

SARS-CoV-2 Severe acute respiratory syndrome coronavirus 2 
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INTRODUCTION 

 

In December 2019, a high number of pneumonia cases with an unknown aetiology were 

detected in Wuhan, China. A molecular analysis of samples from affected patients revealed 

that their symptoms were caused by an infection with a novel coronavirus, later named severe 

acute respiratory syndrome (SARS) coronavirus (CoV) 2 (SARS-CoV-2), the pathogenic 

agent of coronavirus disease 19 (COVID-19) 1. Coronaviruses are a genus of enveloped, non-

segmented, positive-sense RNA viruses belonging to the family Coronaviridae and classified 

within the Nidovirales order 2. Historically, illnesses caused by coronaviruses have ranged in 

severity, with some, including human coronaviruses-229E and -OC43, causing common cold 

symptoms, but SARS-CoV and Middle East respiratory syndrome coronavirus have initiated 

outbreaks of life-threatening pneumonia 2. While the initial symptoms of COVID-19 include 

fever with or without respiratory syndrome, a crescendo of pulmonary abnormalities may 

subsequently develop in patients 3. According to recent studies, most patients present with 

only a mild illness, but approximately 25% of hospital-admitted patients require intensive 

care because of viral pneumonia with respiratory complications 4. 

While extensive research into the pathogenesis of COVID-19 suggests that the severe disease 

likely stems from an excessive inflammatory response 5, the exact predisposing factors 

contributing to an increased clinical severity and death in patients remain unclear. Individuals 

over the age of 60 years or with underlying health conditions, including cardiovascular and 

chronic respiratory diseases, diabetes, and cancer, are at the highest risk of a severe disease 

and death 6. Long-term exposure to air pollutants has been shown to be a risk factor 

mediating the pathogenesis of these health conditions 7. In fact, prolonged exposure to 

common road transport pollutants, including nitrogen oxides, sulphur dioxide and ground-

level ozone, significantly exacerbates cardiovascular morbidity, diabetes, airway oxidative 

stress and asthma 8,9. These pollutants also cause a persistent inflammatory response and 

increase the risk of infection with viruses that target the respiratory tract 10-12. In addition, 

airborne particulate matter (PM) was recently shown to increase the viability of SARS-CoV-

2, suggesting direct microbial pathogenic transmission through the air and increased 

opportunity for infection in highly polluted areas 13. The geographical patterns of COVID-19 

transmission and mortality among countries, and even among regions of single countries, 

closely align with local levels of air pollutants 11. For example, increased contagiousness and 

COVID-19-related mortality in northern Italian regions, including Lombardia, Veneto and 

Emilia Romagna, have been correlated with high levels of air pollutants in these regions 11. 
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Here, we explored the relationship between air pollution and COVID-19 using an approach 

that combines both population- and individual-level data. We first investigated potential links 

between regional and subregional variations in air pollution and COVID-19-related deaths 

and cases in England by employing coarse and fine resolution methods. Next, we addressed 

the associations between several air pollutants and the risk of COVID-19 infection at the 

individual scale by analysing UK Biobank data obtained from a cohort of 1450 subjects. 

Finally, we modelled the relationship between several fossil-fuel burning sources and 

annualised daily measurements for multiple air pollutants to identify the major sources of air 

pollutants contributing to increased deaths in England.    
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METHODS 

 

Data sources for COVID-19 deaths and cases  

The number of patients infected with SARS-CoV-2 in England was obtained from Public 

Health England (PHE) and analysed according to the following statistical regions: London, 

Midlands, Northwest, Northeast and Yorkshire, Southeast, East, and Southwest England. 

Region-level data on the cumulative number of SARS-CoV-2-related deaths in England was 

retrieved from the National Health Service (NHS) (Table 1). This source provides one of the 

most comprehensive region-specific records of COVID-19-related deaths in England. The 

daily death summary included the number of deaths of patients who died in hospitals in 

England and had tested positive for SARS-CoV-2 at the time of death. While this online 

repository is updated daily, figures are subject to change due to a post-mortem confirmation 

of the diagnosis. Local authority-level data on the cumulative number of COVID-19 deaths in 

England was provided by the Office for National Statistics (ONS) (Table 1). This repository 

includes deaths of patients who died in care homes or other places outside hospitals. All 

deaths are recorded as the date of death rather than the day on which the death was 

announced. The cumulative number of local authority COVID-19 cases was provided by 

PHE (Table 1). Local authority-level data included the numbers of deaths and cases in 

England up to and including the 10th of April, approximately two weeks after the UK was 

placed into lockdown. 

 

Data sources for air pollution levels 

Air pollution data for 2018 were obtained from two sources. For the initial region-level 

analysis, we collected annual aggregated air quality (AQ) values determined by the European 

Environmental Agency based on direct observations obtained from multiple monitoring 

stations located across England. Due to incomplete or obsolete observations for several 

pollutants, we restricted our analysis to individual pollution indices for three major air 

pollutants, namely, nitrogen dioxide, nitrogen oxide and ozone, across the prespecified 

regions (Figure 2). Nitrogen dioxide, nitrogen oxide and ozone AQ values are reported in 

µg/m3 and represent the annual average of daily measurements for each air pollutant from 

2018 to 2019 in each specified region. The identification of each monitoring station was 

matched to each available city by accessing the Department for Environment, Food and Rural 

Affairs (DEFRA) website (Figure 1). This website contains a resource called the DEFRA’s 
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Air Quality Spatial Object Register, which allows users to view and retrieve information on 

the air quality-related spatial and non-spatial data objects from the UK's Air Quality e-

Reporting data holdings. The annual average values of daily measurements for each pollutant 

in each monitoring area were analysed to determine the effects of toxin exposure on the 

number of SARS-CoV-2 cases and deaths across England (Figure 1). 

 

For the analysis at the level of local authorities, we used the Pollution Climate Mapping data 

from the UK Air Information Resources (Table 1). This repository contains information from 

hundreds of air quality stations located across England for multiple pollutant molecules 

(ozone, nitrogen oxides, PM2.5, PM10, and sulphur dioxide). All data represent annual average 

values of daily measurements for 2018 and are reported in µg/m3, except for ozone, whose 

metric is the number of days on which the daily max 8-hr concentration is greater than 120 

µg/m3. A detailed quality report regarding this data is available at the following website: 

https://uk-

air.defra.gov.uk/assets/documents/reports/cat09/1903201606_AQ0650_2017_MAAQ_techni

cal_report.pdf. We obtained the longitude and latitude of each local authority using 

OpenCage Geocoder (https://opencagedata.com/). The air pollutant levels for each authority 

was approximated by averaging 10 values nearest the centre of authority. This area covers 

approximately 12 km2. Detailed descriptions of the methodology and analysis workflow are 

available in our GitHub repository. For the UK Biobank data, we matched the location 

coordinate each participant reported to their nearest modelled value. The level of each 

pollutant was measured less than 2 km away from the self-reported address.  

 

Subnational fossil fuel consumption data 

Subnational fossil fuel consumption statistics were derived from the Department for 

Business, Energy and Industrial Strategy (BEIS) online data repository, which represents the 

most authoritative and up-to-date source of fossil fuel emissions in the UK. Local authority-

level fossil fuel consumption estimates are produced as part of the National Atmospheric 

Emissions Inventory (NAEI) work programme on fuel consumption from road transport, 

manufacturing industry and other sources. Fuel consumption data from road transport is 

determined using a bottom-up approach that combines fleet-weighted fuel consumption 

factors (in g of fuel/km) for each main vehicle type (bus, cars, motorcycles, light-goods 

vehicles (LGV) and heavy-goods vehicles (HGV)) with traffic activity data provided by the 

Department for Transport (DfT). Estimates of road transport consumption are based on five 
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vehicle types (buses, cars, motorcycles, HGV and LGV) and two fuel types (petrol and 

diesel). Road transport consumption is further categorised according to road class 

(motorways, A-roads and minor roads) to account for road-type variations in traffic volumes 

across the country.  

Residual fuel consumption by the consuming sector was calculated by Ricardo Energy & 

Environment using the NAEI distribution maps and energy consumption estimates for point 

sources at known locations 

(https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_dat

a/file/833214/UK_sub-national_residual_fuel_consumption_for_2005-

2017_Estimates_of_non-gas_non-electricity_and_non-road_transport_energy.pdf). Residual 

fuels are defined as non-gas, non-electric and non-road transport fuels not used for the 

generation of electricity or road transport. This dataset is derived from the results of the 

NAEI and Greenhouse Gas Inventory (GHGI) survey conducted by Ricardo Energy & 

Environment on behalf of BEIS and excludes fuel used in aviation, shipping and power 

stations. Sources of fuel for this category included petroleum, coal, bioenergy and waste and 

the sectors considered included public administration, agriculture, industry, commercial, 

domestic and rail. Data for subnational fuel consumption statistics is reported in tonnes of oil 

equivalent (ToE), which is a unit of energy defined as the amount of energy released by 

burning one tonne of crude oil. 

Annualised and weather-corrected gas consumption data were obtained from Xoserve, which 

generates annualised consumption estimates for all meter point reference numbers (MPRN) 

or gas meters on behalf of BEIS. The classification of domestic and non-domestic 

(commercial and industrial) is based on the gas industry standard cut-off point of 73,200 

kWh. The weather correction factor used by Xoserve accounts for variations in regional 

temperature, domestic use and wind speed, enabling comparisons of gas use over time while 

controlling for changes in weather. Average domestic and industrial and commercial 

consumption are reported as sales per meter in kilowatt hours (kWh). Local authority-level 

gas statistics were obtained based on the aggregation of MPRN readings throughout England, 

generated as part of BEIS’s annual meter point gas data exercise.  

UK Biobank data sources 
We used data from the UK Biobank under application #60124. Details regarding the 

geographical regions, recruitment processes, and other characteristics have been previously 
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described 14, and are found on ukbiobank.co.uk. The UK Biobank has received ethical 

approval from the North West – Haydock Research Ethics Committee, 11/NW/0382 to gather 

data from participants. A detailed list of the variables analysed in the present study is 

presented in Supplementary Table 1. Notably, we defined hypertension using the criteria of a 

diastolic blood pressure ≥ 90 mmHg OR systolic blood pressure ≥140 mmHg. 

 

Regional heatmaps 

Heatmap legends were generated using GraphPad Prism 8 (www.graphpad.com), and regions 

are labelled with the mapped colour values. 

 

Statistical analysis 

In our regional exploratory analysis, we fitted generalised linear models to our data using 

COVID-19 deaths and cases as the outcomes and nitrogen oxide, nitrogen dioxide and ozone 

as the exposures of interest, adding the corresponding population density values as a 

confounding variable. Population density (person/km2) data correspond to subnational mid-

year population estimates of the resident population in England for 2018 and excludes 

visitors or short-term immigrants (< 12 months). We modelled both the number of cases and 

deaths using negative binomial regression analyses since the response variables are 

overdispersed count data. We used the same model type for our subregional analysis, adding 

mean annual earnings and median age as confounding factors.  

For the UK Biobank models, we fitted a binomial regression model because the response 

variable, COVID-positive or -negative, is defined as either 0 or 1.  

For the analysis of fossil fuel consumption data, we employed multiple single pollutant 

models in which the dependent variables were the annual mean values of daily measurements 

of 4 air pollutants (nitrogen dioxide, nitrogen oxides, sulphur dioxide and ozone), and the 

independent variables included 21 sources of emissions from road transport, 9 from 

commercial and industrial sites and 2 from gas consumption. As these variables represent 

distinct groups, we computed the principal components of each group to explore the potential 

contribution of each group to the increased concentration of individual air pollutants as 

previously described 15,16. We used an iterative variable selection procedure combining 

unsupervised stepwise forward and stepwise backward regression analyses to further 

determine the individual contribution of each pollution source. Stepwise regression is 

commonly used in air pollution studies 17 and was therefore used to select the most suitable 
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predictor or combination of predictors within each polluting category. Generalized linear 

models of the gamma family were utilized for positively skewed, non-negative continuous 

response variables (nitrogen dioxide, nitrogen oxide and sulphur dioxide) using the log link 

function. A generalized linear model of the Gaussian family was applied to ozone data. 

Methods for assessing the fit of the model included residual analyses, diagnostic tests, and 

information criterion fit statistics. The goodness of fit of each regression model was 

determined using the log-likelihood and Akaike Information Criterion (AIC) statistics.  

For all models, we calculated the odds or risk ratios and their 95% confidence intervals to 

quantify the effects of the independent variables on the response variables. The models were 

built using the MASS package (www.stats.ox.ac.uk/pub/MASS4/) in R. The comparison 

tables were generated using the Stargazer package 18. The analysis source code, detailed 

quality checks as well as all Supplementary material is available in GitHub 

(https://github.com/M1gus/AirPollutionCOVID19). The analysis notebook is available on the 

following link: https://m1gus.github.io/AirPollutionCOVID19/. Statistical significance was 

defined as p ≤ 0.05. 
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RESULTS 

 

A link between regional nitrogen oxide and ozone levels and COVID-19 in England 

We analysed the associations between cumulative numbers of COVID-19 cases and deaths 

with the concentrations of three major air pollutants recorded between 2018 and 2019, when 

no COVID-19 cases were reported. Due to differences in data availability for each air 

pollutant, we only included annual mean values of daily measurements, which was the most 

consistent aggregation type reported for all air pollutants described in this analysis. We 

started by analysing publicly available data from seven regions in England (Table 1), where a 

minimum of 2,000 SARS-CoV-2 infections and 200 deaths were reported by PHE from 

February 1 to April 8, 2020, approximately two weeks after the UK was placed into 

lockdown (Figure 1). 

The spatial pattern of COVID-19 deaths matched the geographical distribution of COVID-

19-related cases, with the largest numbers of COVID-19 deaths occurring in London and in 

the Midlands (Figure 2). According to previous studies, those two areas present the highest 

annual average concentration (μg/m3) of nitrogen oxides 19. In addition, ground-level ozone 

concentrations have been previously shown to vary significantly with latitude and altitude, 

depending on the concentration of ozone in the free troposphere, long-range transport and 

emission of its precursor 20. Therefore, we sought to determine if spatial variations in the 

levels of nitrogen oxides, in particular nitrogen dioxide (NO2) and nitrogen oxide (NO), as 

well as ground-level ozone concentrations in England are associated with increased numbers 

of COVID-19 infections and mortality. We applied a negative binomial regression model to 

estimate the association between each air pollutant with the cumulative number of both 

COVID-19 cases and deaths at the regional level (Supplementary Tables 2 and 3). The model 

was chosen based on the data type (count data) and log likelihood and AIC scores 21. 

Population density, a confounding factor, was added to this model as an independent variable 

to account for differences in the number of inhabitants across regions. The levels of nitrogen 

oxide and nitrogen dioxide are significant predictors of COVID-19 cases (p < 0.05), 

independent of the population density (Supplementary Table 2). We next applied a similar 

method to assess the association with the number of COVID-19 deaths (Supplementary Table 

3). Ozone, nitrogen oxide and nitrogen dioxide levels are significantly associated with 

COVID-19 deaths, together with the population density. 

Taken together, the negative binomial regression models of both COVID-19 cases and deaths 

(Supplementary Tables 2 and 3) show that nitrogen dioxide, nitrogen oxide and ozone levels 
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are significant predictors of COVID-19-related death, after accounting for the population 

density. This study provides the first evidence that SARS-CoV-2 cases and deaths are 

associated with regional variations in air pollution across England. 

 

Sulphur dioxide is a main contributor to increased numbers of COVID-19 deaths and 

cases at the subregional level 

We next sought to increase both the resolution and accuracy of our analysis. We gathered 

data on COVID-related cases and deaths from all the local authorities in England and 

expanded the number of the pollutant species (n=6). We also retrieved the longitude and 

latitude for each local authority. The levels of ozone, nitrogen oxide, nitrogen dioxide, PM 

with aerodynamic diameters of 2.5 and 10 µm (PM2.5 and PM10, respectively), and sulphur 

dioxide are reported as averages of the 10 values measured nearest the centre of each local 

authority in England. Local authority-level population density, mean annual earnings and age 

in 2018 were included as potential confounding variables (Figure 1). We calculated the 

estimated regression coefficients of each variable and their respective mortality and 

infectivity rate ratios (Figure 3 and Supplementary Tables 4 and 5) relative to the different air 

pollutants mentioned. Higher nitrogen or sulphur dioxide levels predict an increase in 

COVID-19 deaths and cases. The levels of sulphur dioxide have a mortality rate ratio of 

1.172 [95% confidence interval (CI): 1.005-1.369] and infectivity rate ratio of 1.316 [95% 

CI: 1.141 - 1.521], indicating that a 1 µg/m3 increase in the sulphur dioxide concentration 

will lead to 17.2% more deaths and 31.6% more cases. Both the levels of nitrogen oxides and 

dioxide show mortality and infectivity rate ratios of approximately 1.03 (Figure 3).  The 

incidence rate ratios of cases and deaths for ozone levels are less than 1, indicating that 

higher ozone levels lead to lower numbers of deaths and cases. PM2.5 and PM10 are negatively 

associated with the number of cases, and they are not significant predictors of the number of 

COVID-19-related deaths.  

 

Levels of PM pollutants and nitrogen oxides are associated with an increase in SARS-

CoV2 infections in UK Biobank participants living in England 

We next used information from the UK Biobank to further assess whether people exposed to 

increased pollution levels are more likely to contract SARS-CoV-2 at the individual scale. 

This resource contains data from more than half a million UK volunteers recorded across 

multiple years. As of the writing of this paper, the UK Biobank dataset contains COVID-19 

tests for 1,450 participants, of whom 669 were diagnosed as positive for COVID-19. The 
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location of each subject included in the analysis is shown in Figure 4A. Compared to the 

local authority case model, the UK Biobank analysis provides a higher resolution air 

pollution estimate (less than 2 km away from their self-reported address) and includes 

potentially asymptomatic cases. 

In our model, we accounted for a list of confounding variables (Supplementary Table 1), 

which we selected based on a previous study 22. Our model identified PM2.5 and PM10 as 

significant predictors of increased SARS-CoV-2 infectivity (Figure 4B). The odds ratios are 

1.120 [CI: 1.036 - 1.211] and 1.074 [CI: 1.017 - 1.136] for PM2.5 and PM10, respectively. 

While PM does not predict the numbers of deaths and cases at a subregional level, these 

pollutants are significant predictors of infectivity at an individual level. Similar to the 

subregional models (Figure 3), levels of nitrogen oxides and dioxide were predictors of 

increased infectivity with a lower impact than PMs, with an odds ratio of approximately 1.03 

(Figure 4B). Conversely, sulphur dioxide and ozone levels are not significant predictors of 

infectivity at the individual level, although they are predictors of deaths and cases at the 

subregional level (Figures 3 and 4B).  

We observed an association between current smokers and a lower likelihood of COVID-19 

positivity than previous and non-smokers. However, according to our model, population 

density and predisposing health factors, such as age, sex, diabetes and a previous history of 

cancer and lung problems, are not predictors of the probability of being infected 

(Supplementary Table 6). 

 

Fossil fuel emission levels are linked to pollutants that contribute to increased numbers 

of COVID-19 deaths 

We next collected national emission totals from DEFRA to identify the sources of air 

pollution associated with COVID-19. While no record for ozone and nitrogen dioxide 

emissions was identified, road transport accounted for more than 30% of nitrogen oxide 

emissions from fuel combustion in the UK between 1993 and 2018, while manufacturing and 

energy industries accounted for approximately 16% and 25%, respectively (Supplementary 

Table 7). For sulphur dioxide, energy production and transformation emerged as the greatest 

pollution sources in 2018, accounting for 30% of overall emissions (Supplementary Table 8).  

We mapped fuel consumption by sector and fuel type in England against air quality values 

for nitrogen dioxide, nitrogen oxides, sulphur dioxide and ozone to assess individual 

contributions of fossil fuel consumption sources on air pollution levels. First, we calculated 

the principal components of each fossil fuel category (road transport, residual fuels and gas 
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consumption) on pollutant levels (Supplementary Table 9). We then employed a Gaussian 

generalised linear model to characterise the effect of the first two principal components of 

each category on pollutant levels, after adding population density as a confounding variable. 

These models indicated that high levels of fossil fuel consumption from on-road vehicles, 

residual fuels and gas consumption significantly predicted increased nitrogen dioxide, 

nitrogen oxides, ozone and sulphur dioxide levels (Supplementary Table 9). Based on these 

results, increases in the levels of each group are associated with increased levels of air 

pollutants.  

We employed an iterative stepwise regression approach that aims to select the most suitable 

predictors of air pollution to elucidate the effects of individual fossil-fuel burning sources 

within each category (Supplementary Tables 10-13). We observed significant positive 

associations between annual average amounts of fuels consumed by A-road buses and 

nitrogen dioxide, nitrogen oxides and sulphur dioxide (Supplementary Tables 10-13). 

Contributions from residual fuel types (petroleum, coal, manufactured solid fuels and 

bioenergy and waste) were disaggregated by sector categories to assess the effects of the 

industrial, commercial and agricultural sector on air pollution levels. Among residual fuels, 

petroleum consumed by commercial non-road machinery shows one of the highest positive 

associations with increased levels of nitrogen oxides (odds ratio = 1.310, 95% CI: 1.092, 

1.587), nitrogen dioxide (odds ratio = 1.200, 95% CI: 1.026, 1.414) and ozone (odds ratio = 

8.503, 95% CI: 2.029, 35.626), while petroleum consumed by off-road agriculture equipment 

is negatively associated with the levels of both nitrogen dioxide and nitrogen oxides (Figure 

5B-C). In addition, petroleum used for rail transport is a significant contributor to both 

sulphur dioxide (odds ratio = 1.03, 95% CI: 1.009, 1.051) and nitrogen dioxide (odds ratio 

=1.018, 95% CI: 1.000, 1.037) ground-level concentrations (Figure 5A-B), but not ozone 

levels, where an inverse relationship is identified (Figure 5D). Additionally, domestic 

consumption of manufactured fossil fuels emerges as one of the strongest predictors of the 

levels of nitrogen oxides (odds ratio = 1.266, 95% CI: 1.135, 1.416), nitrogen dioxide (odds 

ratio = 1.210, 95% CI: 1.094, 1.340) and sulphur dioxide (odds ratio = 1.350, 95% CI: 1.212, 

1.508), but not ozone levels. Finally, we investigated if weather-corrected levels of domestic 

and non-domestic gas consumption predict air quality values in England. Potentially toxic 

ambient concentrations of nitrogen oxides are generated from gas combustion, particularly as 

a result of indoor household activities 23. After accounting for variations in population 

density, we observed positive associations between domestic gas consumption and both 

nitrogen oxides and dioxide levels in England (Supplementary Tables 10 and 11).  
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DISCUSSION 

 

Here, we identified associations between air pollution and COVID-19 deaths and cases in 

England, expanding on previous evidence linking high mortality rates in Europe with 

increased toxic exposure to air pollutants 11,24. Air pollution exposure and health impact 

estimates have been suggested to mainly depend on the resolution at which they are evaluated 
25. Therefore, we first calculated the effects of air pollution on COVID-19 mortality and 

spread using regional, coarse resolution data, and then high-resolution, individual-level 

observations obtained from the UK Biobank. By employing finer resolution grids, we also 

show the relative contributions of individual fossil-fuel burning sources to ground-level 

measurements of air pollutants.  

 

According to our initial findings, regional variations in nitrogen oxide and ozone 

concentrations in England predict the numbers of COVID-19 cases and deaths, independent 

of the population density. However, overall uncertainties for modelled exposure estimates at 

the regional scale 25 led us to achieve increased spatial resolution. Using highly granular, 

local authority-level measurements, we show an association between a 1 µg/m3 increase in 

sulphur dioxide and nitrogen oxide levels with a 17% and approximately 2% increase in 

COVID-19 mortality, respectively. Notably, these findings are consistent with studies 

conducted during the previous SARS outbreak, where long-term exposure to air pollutants 

predicted adverse outcomes in patients infected with SARS in China 26. Although nitrogen 

oxides are key ozone precursors, the relationship between these gases and ozone is nonlinear 

in ozone chemistry 27. Therefore, the negative associations between ozone levels and 

COVID-19 infection and mortality may be attributed to reduced nitrogen oxide conversion to 

ozone in urban areas, a phenomenon previously reported for areas with heavy traffic 20,28. In 

addition, given the highly reactive nature of ozone, the inverse relationship between ozone 

levels and COVID-19 is consistent with increased nitric oxide scavenging close to points of 

emissions 29.  

 

Although the molecular mechanisms underlying the relationship between pollutant exposure 

and COVID-19 remain to be determined experimentally, they are hypothesised to include the 

stimulation of chronic, background pulmonary inflammation 24. Chamber studies have shown 
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that ambient PM, nitrogen dioxide and sulphur dioxide induce infiltration of the airways by 

inflammatory cells in healthy volunteers 30-32. In addition, exposure to these pollutants may 

inhibit pulmonary antimicrobial responses, reducing clearance of the virus from the lungs and 

promoting infectivity. Reduced phagocytic function is well documented after the exposure of 

macrophages to PM 1-3 and is suggested to be the mechanism that enhances viral infection in 

mice exposed to nitrogen dioxide 33. 

 

At the individual level, our UK Biobank model indicated that exposure to PM2.5 and PM10 

increases the risk of COVID-19 infection, in addition to nitrogen oxides, which were 

previously identified in the regional analysis. This observation conforms to the hypothesis 

that viruses attach to air pollutants 34, potentially explaining the propagation of SARS-CoV-2 

and its infectious capacity. Estimations of the viral replication number R0 thus must be 

informed by the local levels of PM. According to our models, demographic features such as 

age and gender do not alter risk of testing positive for COVID-19. Notably, non-smokers and 

past smokers are more likely to test positive than current smokers. While we did not 

investigate the mechanisms by which current smoking protects against hospitalisation due to 

COVID-19, our findings are consistent with a large body of evidence of a consistently lower 

prevalence of current smoking among COVID-19 patients and therefore require further 

investigation 35. Although the local authority model suggests a negative association of 

COVID-19 with PM2.5 and PM10, the infection model generated using the UK Biobank data 

produced the opposite results. The conflicting results may arise from diverging testing 

methodologies in the population samples analysed. While government guidelines in England 

prioritised testing for symptomatic COVID-19 patients, asymptomatic individuals from the 

UK Biobank were subjected to COVID-19 testing. Since a large proportion of COVID-19 

infections are asymptomatic 36,37, the UK Biobank model represents a more accurate 

estimation of infection.  

 

Based on the purported association between air pollution and COVID-19, we also 

investigated the contribution of potential sources of key air pollutants to COVID-19 in 

England. Among the industrial variables, petroleum combustion from non-road commercial 

machinery emerged as an important predictor of nitrogen dioxide, nitrogen oxide and ozone 

concentrations. These findings recapitulate previous observations of the estimated 

concentrations of nitrogen oxides and ozone discharged from stationary combustion sources 

and off-road mobile machinery 38,39. However, operating conditions, engine parameters and 
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vehicle age substantially affect the composition of exhaust emissions 40, and thus more 

detailed information is necessary to construct improved emission models. Among the 

domestic variables, increased consumption of manufactured solid fuels was associated with 

higher levels of nitrogen oxides, nitrogen dioxide and sulphur dioxide, indicating a possible 

link between indoor fuel consumption and air pollution in England. As shown in previous 

studies, indoor air pollution aggravates the effects of respiratory disorders 41, and increasing 

evidence indicates that home isolation strategies have led to a considerable deterioration of 

indoor air quality following the COVID-19 outbreak 42. As the present study identifies 

nitrogen oxides and sulphur dioxide as important contributors to COVID-19 mortality, our 

results are consistent with the hypothesis that indoor air pollution may increase the risk of 

severe outcomes in COVID-19 patients and thus warrants further attention 42,43.  

  

Our findings, supported by results obtained from recent studies conducted in northern Italy 11, 

Europe 24, and the USA 7,44, suggest that exposure to poor AQ increases the risks of COVID-

19 infection and mortality in the UK. Future studies may expand on these observations and 

address additional confounders, including comorbidities, race, meteorological trends and 

differences between regional health regulations and their ICU capacities. Nonetheless, air 

pollution factors should be considered when estimating the SARS-CoV-2 infection rate (R0). 

In addition, our results emphasise the importance of strengthening efforts to tighten air 

pollution regulations for the protection of human health, both in relation to the COVID-19 

pandemic and for the mitigation of potential future diseases. 
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FIGURES & FIGURE LEGENDS 

 

 

Figure 1. Analysis workflow. 

This flowchart summarizes how raw data were extrapolated, processed and analysed. Blue 

indicates data sources, whereas red and green indicate the type of model employed and the 

final output, respectively. Population density data (person/km2) were derived from ONS and 

used to account for region-specific differences in population size across England; COVID-19 

case and death data were obtained from PHE, NHS and ONS, respectively. Air pollution data 

from each monitoring station were manually curated using DEFRA’s Air Quality Spatial 

Object Register and aggregated into statistical regions. ONS, Office for National Statistics; 

PHE, Public Health England; NHS, National Health Service; EEA, European Environmental 

Agency. 
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Figure 2. Regional heatmaps of COVID-19 and pollutants. 

Regional English heatmaps of reported deaths and diagnosed COVID-19 cases through April 

8, 2020 (top row), as well as AQ values for the indicated pollutants (bottom row). 
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Figure 3. Cases and deaths in local authorities.  

Summary of infectivity and mortality rate ratios and respective 95% CIs at the local authority 

level. Red indicates significant associations (p ≤ 0.05), while grey lines show a lack of 

significance (p > 0.05). See also Supplementary Table 4 for a detailed description of the 

model.  

 

 

Figure 4. Distribution and infectivity data from the UK Biobank. A) Distribution of UK 

Biobank subjects included in the current analysis. B) Odds ratios and respective 95% CIs for 

the relationship between individual exposure to several air pollutants and the number of lab-

confirmed COVID-19 cases.  
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Figure 5. Fossil fuel consumption and air pollution in England. Odds ratios and respective 

95% CIs of the effects of fossil fuel consumption stratified by sector and fuel type on A) 

sulphur dioxide, B) nitrogen dioxide, C) nitrogen oxide and D) ozone levels. Results were 

normalised to the population density to account for variations in population size across the 

country. For simplicity, the figure only includes statistically significant (p ≤ 0.05) sources of 

emissions and odds ratios greater than 1.01 or less than 0.99. 
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TABLES & TABLE LEGENDS 

 

Table 1. Summary of data sources.  

Data type Source  Download 
date 

Measuring units 

 
 

COVID-19 cases 

 
Public Health England 

(https://coronavirus.data.gov.u
k/#region)  

 
 

April 9, 
2020 

 
Lab-confirmed cases per 

region up to and including 
April 8, 2020 

 
 

COVID-19 deaths 
(regional) 

National Health System 
(https://www.england.nhs.uk/s
tatistics/statistical-%20work-
areas/covid-19-daily-deaths/)  

 
 

April 9, 
2020 

 
Cumulative death counts per 
region up to and including 

April 8, 2020 

 
 

COVID-19 deaths 
(subregional) 

Office for National Statistics 
(https://www.ons.gov.uk/peopl
epopulationandcommunity/birt
hsdeathsandmarriages/deaths/b
ulletins/deathsregisteredweekl
yinenglandandwalesprovisiona

l/weekending1may2020/ )  

 
 

April 28, 
2020 

 
Cumulative death counts per 

local authority up to and 
including April 10, 2020 

 
COVID-19 cases 

(subregional) 

 
Public Health England 

(https://coronavirus.data.gov.u
k/#LA) 

 
May 15, 

2020 

 
Cumulative cases counts per 

local authority up to and 
including April 10, 2020 

 
Nitrogen dioxide, 
nitrogen oxide and 

ozone 
concentrations  

European Environmental 
Agency (EEA) 

(https://www.eea.europa.eu/da
ta-and-

maps/data/aqereporting-8) 

 
 

April 7, 
2020 

 
 

AQ values (μg/m3) 
 

 
 

Subnational fossil 
fuel consumption 

statistics 

BEIS 
(https://www.gov.uk/governm
ent/organisations/department-

for-business-energy-and-
industrial-

strategy/about/statistics)  

 
 

April 29, 
2020 

 
 

Tonnes of oil equivalent 
(ToE) 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 6, 2020. ; https://doi.org/10.1101/2020.04.16.20067405doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.16.20067405
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Page 24 

 
Population data, 

mean annual 
earnings and 
median age 

 
Office for National Statistics 

(https://www.ons.gov.uk) 
 

 
 

April 17, 
2020 

 
Regional and subregional 

population density in England 
(person/km2). Age in years. 
Annual earnings in GBP.  

Air quality data 
(Pollution Climate 

Mapping) 

UK Air information resources 
(https://uk-

air.defra.gov.uk/data/pcm-
data)  

May 2, 
2020 

AQ values (μg/m3), except 
for ozone: days in which the 
daily max 8-hr concentration 

is greater than 120 µg/m3 

 
National emission 

totals 

DEFRA 
(https://webarchive.nationalarc
hives.gov.uk/20200303104044
/https://www.gov.uk/governme
nt/statistics/emissions-of-air-

pollutants)  

 
May 5, 
2020 

 
National emission totals by 

sector expressed in thousands 
of tonnes of oil equivalent 

(kToE) 

This table summarises publicly available data sources used for the analysis.  
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