Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

Diagnosis and Prediction Model for COVID-19 Patient’s Response to Treatment based on Convolutional Neural Networks and Whale Optimization Algorithm Using CT Images

View ORCID ProfileSally Elghamrawy, View ORCID ProfileAboul Ella Hassanien
doi: https://doi.org/10.1101/2020.04.16.20063990
Sally Elghamrawy
1MISR Higher Institute for Engineering and Technology, Computer Engineering Department, Egypt, IEEE Member,
2Scientific Research Group in Egypt (SRGE)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Sally Elghamrawy
  • For correspondence: sally_elghamrawy@ieee.org sally_elghamrawy@ieee.org
Aboul Ella Hassanien
3Information Technology Department, Faculty of Computers and Artificial Intelligence Cairo University, Giza, Egypt
2Scientific Research Group in Egypt (SRGE)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Aboul Ella Hassanien
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Data/Code
  • Preview PDF
Loading

Abstract

The outbreak of coronavirus diseases (COVID-19) has rabidly spread all over the world. The World Health Organization (WHO) has announced that coronavirus COVID-19 is an international pandemic. The Real-Time Reverse transcription-polymerase Chain Reaction (RT-PCR) has a low positive and sensitivity rate in the early stage of COVID-19. As a result, the Computed Tomography (CT) imaging is used for diagnosing. COVID-19 has different key signs on a CT scan differ from other viral pneumonia. These signs include ground-glass opacities, consolidations, and crazy paving. In this paper, an Artificial Intelli-gence-inspired Model for COVID-19 Diagnosis and Prediction for Patient Response to Treatment (AIMDP) is proposed. AIMDP model has two main functions reflected in two proposed modules, namely, the Diagnosis Module (DM) and Prediction Module (PM). The Diagnosis Module (DM) is proposed for early and accurately detecting the patients with COVID-19 and distinguish it from other viral pneumonias using COVID-19 signs obtained from CT scans. The DM model, uses Convolutional Neural Networks (CNNs) as a Deep learning technique for segmentation, can process hundreds of CT images in seconds to speed up diagnosis of COVID-19 and contribute in its containment. In addition, some countries haven’t the ability to provide all patients with the treatment and intensive care services, so it will be mandatory to give treatment to only responding patients. In this context, the Prediction Module (PM) is proposed for predicting the ability of the patient to respond to treatment based on different factors e.g. age, infection stage, respiratory failure, multi-organ failure and the treatment regimens. PM implement the Whale Optimization Algorithm for selecting the most relevant patient’s features. The experimental results show promising performance for the proposed diagnosing and prediction modules, using a dataset with hundreds of real data and CT images.

Competing Interest Statement

The authors have declared no competing interest.

Funding Statement

There is no Funding applied

Author Declarations

All relevant ethical guidelines have been followed; any necessary IRB and/or ethics committee approvals have been obtained and details of the IRB/oversight body are included in the manuscript.

Yes

All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.

Yes

Data Availability

The CT images dataset firstly collected from https://github.com/UCSD-AI4H/COVID-CT, https://www.sirm.org/en/, and https://github.com/ieee8023/covid-chestxray-dataset. Then the CT images are segmented, updated and analyzed to generate a new dataset which is available from the corresponding author on reasonable request.

https://github.com/ieee8023/covid-chestxray-dataset

https://github.com/UCSD-AI4H/COVID-CT

https://www.sirm.org/en/

Copyright 
The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license.
Back to top
PreviousNext
Posted April 21, 2020.
Download PDF
Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Diagnosis and Prediction Model for COVID-19 Patient’s Response to Treatment based on Convolutional Neural Networks and Whale Optimization Algorithm Using CT Images
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Diagnosis and Prediction Model for COVID-19 Patient’s Response to Treatment based on Convolutional Neural Networks and Whale Optimization Algorithm Using CT Images
Sally Elghamrawy, Aboul Ella Hassanien
medRxiv 2020.04.16.20063990; doi: https://doi.org/10.1101/2020.04.16.20063990
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Diagnosis and Prediction Model for COVID-19 Patient’s Response to Treatment based on Convolutional Neural Networks and Whale Optimization Algorithm Using CT Images
Sally Elghamrawy, Aboul Ella Hassanien
medRxiv 2020.04.16.20063990; doi: https://doi.org/10.1101/2020.04.16.20063990

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Health Informatics
Subject Areas
All Articles
  • Addiction Medicine (271)
  • Allergy and Immunology (553)
  • Anesthesia (135)
  • Cardiovascular Medicine (1761)
  • Dentistry and Oral Medicine (238)
  • Dermatology (173)
  • Emergency Medicine (312)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (660)
  • Epidemiology (10803)
  • Forensic Medicine (8)
  • Gastroenterology (592)
  • Genetic and Genomic Medicine (2952)
  • Geriatric Medicine (287)
  • Health Economics (534)
  • Health Informatics (1930)
  • Health Policy (836)
  • Health Systems and Quality Improvement (745)
  • Hematology (293)
  • HIV/AIDS (631)
  • Infectious Diseases (except HIV/AIDS) (12519)
  • Intensive Care and Critical Care Medicine (693)
  • Medical Education (299)
  • Medical Ethics (86)
  • Nephrology (324)
  • Neurology (2801)
  • Nursing (151)
  • Nutrition (433)
  • Obstetrics and Gynecology (559)
  • Occupational and Environmental Health (597)
  • Oncology (1469)
  • Ophthalmology (444)
  • Orthopedics (172)
  • Otolaryngology (257)
  • Pain Medicine (190)
  • Palliative Medicine (56)
  • Pathology (381)
  • Pediatrics (867)
  • Pharmacology and Therapeutics (366)
  • Primary Care Research (337)
  • Psychiatry and Clinical Psychology (2641)
  • Public and Global Health (5374)
  • Radiology and Imaging (1013)
  • Rehabilitation Medicine and Physical Therapy (596)
  • Respiratory Medicine (726)
  • Rheumatology (330)
  • Sexual and Reproductive Health (289)
  • Sports Medicine (279)
  • Surgery (327)
  • Toxicology (47)
  • Transplantation (150)
  • Urology (125)