








Figure 2. Loss Term Contributions to Classifier Performance. a. Optimized classifier performance with loss terms omitted for CT 

(top) and MRI (bottom) classifiers demonstrating the importance of the three loss terms. Highest performing scenarios 

presented in bold font. b. Two-dimensional statistical densities of log trade-off values versus mean AUPR (n=5) for (left to right) 

, ,  parameters (CT: top; MRI: bottom). Blue pixels indicate greater density (i.e., frequency) while red pixels 

indicate lesser density. 
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This work demonstrates that advanced DL models can be utilized in small-scale contexts such as

the diagnostic prediction of the brain tumor, Adamantinomatous Craniopharyngioma, from 

radiographic data. By concatenating the FL, CORAL, and TL loss terms and optimizing respective 

trade-off parameters via GA, we generated two DL classifiers with reproducible performance. 

Importantly, these classifiers significantly outperform published human expert performance 

(0.99 vs. 0.87) and do so by utilizing less than 80 examples. This stands in stark contrast to the 

previous DL work in medical fields, such a dermatology and diabetes which, due to their high 

incidence, have exemplar data numerous orders of magnitude larger in size (n>1x10
6
) than that 

which is available for pediatric brain tumors. 

 

An intrinsic limitation to small-scale data analysis, which applies to this work, is that the training

set itself is at risk of harboring sampling bias. Models trained on small datasets are therefore 

exposed to the risk of over-fitting and are therefore suspect with regard to reproducibility. To 

be clear, we must be hyper-critical of small data classifiers, especially in high-stakes scenarios, 

such as cancer diagnosis. To curtail the effect of this, we chose a novel loss function intended to

be insensitive to outliers, and a robust fitness metric (AUPR) that we utilized via the 5-fold 

cross-validation approach, so that all data were inferred once.  While the GA identified high-

performing network solutions for both modalities, we maintain some reservations about model 

capacity due to the potential for artificial AUPR inflation from more separable groupings 

created by random chance. 

 

Although we cannot perfectly estimate the novel inference capacity of our classifiers, these 

results demonstrate reproducible mean 5-fold cross-validation classification performance that 

is superior to published human expert accuracy, using both CT and MR images. We hypothesize 
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that higher performance in the CT classification, relative to MRI, is due to the better sensitivity 

for microcalcifications on this modality. Such calcifications are a distinguishing characteristic of 

ACP relative to the other mass lesions in the differential diagnosis.
11

 Further, lower MRI 

performance may be due to the high degree of z-index variability (and therefore the quantity of 

information in each example) and could reflect a need to further optimize loss function 

parameters (also indicated in Figure 2b). 

 

Potential next steps include further optimization of both modality classifiers, likely across 

different ranges of potential values based on the results in Figure 2b. Also, the parallel 

concatenation of both modality networks, thereby creating a scenario that trains on MRI and CT 

simultaneously, may yield a more robust classification framework. A further step forward would 

be to develop a fully interpretable classification tool, as an understanding of how a model fails 

is critical in high-stakes decision modeling. Lastly, the integration of our trained classifier into a 

lightweight web-based application for deployment to the broader medical community would 

enable easy integration into clinical workflows. As personalized medicine becomes a more 

attainable goal, the application of scalable frameworks and optimized DL models, such as those 

presented above, built on smaller and smaller datasets will be critical.  

 

Methods 

 

Computational Hardware and Software 

 

All computational work was performed on a Graphics Processing Unit (GPU)-equipped High-

Performance Intel CPU. Model construction, training, and evaluation were written and 

executed in Python 3.6, using the TensorFlow 2 (r2.1) machine learning framework obtained as 

the current (2020 March 1) “TF-nightly” docker environment, as recommended. Results were 

visualized using either the R tidyverse package or via Python’s Matplotlib module. ImageNet 

pre-trained ResNet V2-50 models were obtained through the TensorFlow Applications module. 

 

Image Acquisition 

 

Deidentified radiographic data were obtained from consented patients via Children’s Hospital 

Colorado and all diagnoses were histologically determined by a board-certified 

neuropathologist via a standard protocol. Per United States Health and Human Services 

Regulation 45 CFR 46, this study was exempt from requiring Institutional Review Board 

approval. Preoperative non-contrast axial plane CT scans (N=28) and contrast-enhanced T1-

weighted sagittal plane MRI scans (N=25) for subjects with Adamantinomatous 

Craniopharyngioma (ACP) were obtained in DICOM format. For the “NOTACP” control group, 

we collected the same modalities from patients with sellar/suprasellar masses with 

histologically confirmed diagnoses that are within the radiographic differential diagnosis for 

ACP (CT=47, MRI=24; Table 1). Genders were equally represented in both data classes (ACP: 27 

females, 26 males; NOTACP: 24 females, 23 males). 
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Table 1. Statistical Frequencies of Diagnoses within NOTACP Class for CT and MRI Scenarios. 

 CT MRI 

Pathological Diagnosis Frequency (n) Frequency (n) 

Arachnoid Cyst 2 1 

Atypical Meningioma 1 – 

Dermoid Cyst 2 – 

Germinoma 7 3 

Low-Grade Glioma 2 – 

Lipoma 1 1 

Mature Teratoma 2 1 

Optic Glioma 2 1 

Pilocytic Astrocytoma 13 10 

Pilomyxoid Astrocytoma 4 2 

Pituitary Adenoma 3 2 

Prolactinoma 4 2 

Renal Cell Carcinoma 2 1 

Myelomeningocele (Shunted 

Hydrocephalus) 

1 – 

Subdural empyema 1 – 

Total (n) 47 24 

 

 

Image Preprocessing 

 

For each DICOM series, pixel arrays were isolated using the pydicom python package. On a per 

slice basis, pixel arrays were standardized via mean removal and scaled to unit variance using 

the scikit-learn StandardScaler method. Next, for each slice, feature embeddings were 

generated by passing pixel arrays through the pre-trained ResNet V2-50 model. These 

embeddings were then saved as new files to be used downstream in the classifier, which 

decreased the computational memory and time required for model training. 

 

Network Architecture 

 

In order to handle the varying dimensionality (i.e., channels, slices, z-index) within our dataset 

(	�
 � 41 � 17, 	��� � 51 � 52, Figure S1) in a manner that mirrors the processes used by 

human clinical experts, we utilized a sequence-based model (LSTM) in a bidirectional manner. 

The network is composed of two identical parallelized networks (source and target; Figure 

M1a), where the source network is trainable, the target network is not trainable (i.e., only 

source weights are updatable during training). Although the target network is capable of 

classifying target data (for early stopping purposes, as discussed in Training & Evaluation 

below), target network predictions are entirely disconnected from the objective loss function 

and therefore target prediction accuracy has no impact on training (Figure M1b). 
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Figure M1. Network Architecture. a. Flow chart schematic for bidirectional LSTM network (classifier) utilized in this project. b. 

Parallelized source and target network flow chart with loss term connections (dashed lines). 

Custom Loss Function 

 

To mitigate overfitting in model training, we utilized a custom loss function with 3 terms, each 

with a tradeoff parameter (a constant value used to weight loss terms; , , ) that 

we optimized using a simple Genetic Algorithm (GA; Algorithm I, Methods). The first term used 

Sigmoid Focal Cross-Entropy (FL; implemented via TensorFlow AddOns) which was developed 

alongside the RetinaNet model.
8
 This loss function term is a modulated form of the standard 

cross-entropy loss function, defined as: 

 

 

 

Where  is standard cross-entropy,  is the modulating term, and  is the 

tunable focusing parameter. The FL term increases focus on samples that are not well-classified 

and de-emphasizes well-classified samples. It is therefore useful in class-imbalanced datasets.  

 

The second loss term employed was the Triplet Hard Loss (TL; implemented via TensorFlow 

AddOns), which was first presented alongside the facial-recognition network, FaceNet.
7
 

Intuitively, TL is an extension of the nearest neighbor (i.e., k-means) classification. This selects 

groups of three samples (triplets) where the first member,  (anchor), is a given sample image,

the second member is a positive-class instance, , and the last member is a negative-class 

instance, . TL is optimized by minimizing the distance between  and , while maximizing 

the distance between . Mathematically this is represented as 
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where ���� � �� is the data embedding in d-dimensional Euclidean space (constrained to the 

d-dimensional hypersphere; i.e., ������� � 1), and � is the margin enforced between positive 

and negative pairs. This loss term was added to our function due to the efficacy of 

discriminative feature learning of center-based loss functions.
6
 

 

The final loss term was a slight modification of the domain adaptation method CORrelation 

ALignment (CORAL). Similar to the original CORAL method,
9
 our network utilized a pair of 

parallelized models (source and target). However, where the original CORAL method ties the 

entirety of these parallel models together and assesses the final fully-connected layer 

embeddings, we instead applied CORAL directly to the outputted feature embeddings 

(��,��������
 and ��,��������
 for source and target feature embeddings, respectively) 

generated via ResNet V2-50. Therefore, our CORAL-like loss term is calculated as 

 

 !"#����,��������
, ��,��������
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Where &'(�·� is the standard covariance function. Combining these three terms together we 

get the final loss function to be optimized 

 

� � ,���� - ,
��� - ,����� !"#� 

 

Where ,��, ,
�, and ,����� are trade-off parameters for the FL, TL, and CORAL loss terms to be 

optimized by genetic algorithm downstream. 

 

Genetic Algorithm Optimization 

 

We sought to identify optimal batch size, initial learning rate, and tradeoff parameters to boost 

model performance. To achieve this, we utilized a simple Genetic Algorithm (GA) approach 

(Algorithm I). The GA iteratively selected from a pool of potential values for batch size, initial 

learning rate, and the tradeoff parameters. Fitness (5-fold mean Area Under Precision-Recall 

curve; AUPR) was monitored over generations to signal an early stop if no-improvement was 

seen for two generations (.
��,�
 � 4, .
��,��� � 6).  
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Algorithm I. 

 

Genetic Algorithm: ������� 	�������  

Input:  


���,  search space parameters �������� 

�������,  number of solutions in population ���	�� 

�������,  number of generations to evolve ��
��� 

Output:  


���,  trained Network class objects with test accuracy of size ��	�  �	�������,�	�� 

 

for each ��� .  �
��do 

for each ��� . ��	�  do 

�������	� / Random select for each ����� . ������ 

	�������,�	� / train and evaluate 	��������	�� 

	�������,�	� / descending rank 	�������,�	� 

while ��� 0 �
��do 

	�������,�	� / select top 40% 	 . 	�������,�	� 

while length 	�������,�	�,��� 0 ��	�  do 

	
	���� / Random select 	�������,�	�  
	������  / Random select 	�������,�	� 

assert 	
	���� 1  	������  

	����� / Random select for each �����
. 2	
	���� , 	������3

����
�
 

������
������ / Random select 20% ����� . ������ 

for each ����� . ������
������  do 

�������� / Random select ����� . ������ 

4	�����5����
� / update ��������  

	�������,�	� / append 	�����  

end for 

end do 

end do 

end for 

end for 

return 	�������,�	� 

 

 

For batch size, we provided options of either N=4 or N=8. Although it is not uncommon to see 

much larger batch sizes in published work, we chose these two values due to the memory 

constraints of our HPC infrastructure. Furthermore, N=8 represents 10-16% of the cardinality 

for CT and MRI datasets, respectively. Increasing to N > 8 would likely lead to overfitting and 

decreased performance. The initial learning rate was set to a value within the set [10
-4

, 10
-5

, 10
-

6
, 10

-7
]. These small learning rate values were chosen based on the premise that this step was 

fine-tuning the network, which was already leveraging ResNet V2-50 feature embeddings, and 

therefore required only small changes to optimize the objective function. Finally, loss trade-off 

parameters were chosen within the set [0.1, 1, 2, 5, 10, 100, 250, 500, 1000, 2000]. This list 

encompasses a range from fractionating a loss term to highly weighting it. In total, the genetic 
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algorithm was executed for 10 generations with a population size of 100 (0��	��	��� 1 1,000) 

and the number of potential solutions was 8,000. 

 

Training & Evaluation 

 

To determine the model (inferential) capacity, we chose to use the 5-Fold Cross-Validation 

(5FCV) approach. Since we have parallelized source and target models, both datasets must have 

the same number of entries. However, the 5FCV approach segments the source and target data 

in a 4:1 manner. Therefore, for each iteration, we randomly oversample the target dataset such 

that source and target cardinality is equal. 

 

The model was compiled using the stochastic gradient descent optimization algorithm 

implemented with a GA-determined initial learning rate subject to exponential weight decay 

(rate=0.96, decay steps=200). Maximum training duration was set at 500 epochs, and early 

stopping was enforced for target data evaluations exceeding a mean 5FCV of 0.87 Area Under 

the Precision-Recall curve (AUPR; this value equates to human performance) to minimize 

required training time. AUPR was chosen as the performance metric due to its known efficacy 

in representing accuracy in situations that are class imbalanced. 
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Supplemental Figures 

Figure S1. Radiographic dataset dimensionality for CT (a) and MRI (b) modalities. 
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