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FIG. 2. Top: Phase diagrams of epidemic control for R0 = 3,
where the tuning parameters are � , the rate of asymptomatic
transition, and �, the fraction of contact-tracing app owner-
ship among the population. RS denotes the basic reproduc-
tion number for pre-symptomatic transmission. Each phase
diagram was generated from 4000 microscopic simulations of
20 generations of disease evolution on 10; 000 nodes, of which
100 nodes were initially infected at random. A black square
denotes epidemic control (average growth in the cumulative
number of infections over the generations 16 � 20 is less than
0:25% of total population). This is grayscaled continuously
to white for late-time growth exceeding 2:5% per generation
or full epidemic spread before 20 generations have elapsed.
Dashed red curves denote the mean-field approximation to
the phase boundary, � = � c(�) derived in Sec. II C. The exact
critical point for � = 0 and RS = 2, derived in Appendix A, is
marked by a cyan arrow. Bottom: Sample simulations from
the encircled region in the RS = 0 phase diagram. Curves
(solid) denote cumulative number of infections as a percent-
age of total population, averaged over 10 samples (dashed),
with � = 0:5 fixed and � varied from � = 0:6 to � = 0:9.

C. Mean-field estimates for the critical line

To understand the connection between our model and
the theory of phase transitions, it it helpful to consider
the limit of no contact tracing, i.e. φ = 0, and no
pre-symptomatic transmission, RS = 0. In this case,
symptomatic individuals act as though they were im-
mune, since they cannot transmit the infection further.
Along the line φ = 0, the model exhibits a transition
from an “immune phase” to an “epidemic phase” for
θ ≥ θc = 1/R0, as shown in Fig. 2. In fact, when φ = 0
and RS = 0, our model maps exactly to site percolation

on a Bethe lattice with coordination number z = 1 +R0,
where “site percolation” is equivalent to the existence of
an infinite cluster of asymptomatic infections. The con-
nection between simple epidemic models and percolation
transitions has been noted in the past [20, 21].

By contrast, the non-local structure of recursive con-
tact tracing, as illustrated in Fig. 1, suggests that the
universality class of the immune-to-epidemic transition
for φ > 0 is distinct from standard site percolation. Nev-
ertheless, in Appendix A we show that for a population
without asymptomatic infections (the line θ = 0 in our
phase diagram), we can obtain the critical fraction φc of
app usage exactly, for general values of R0, such that an
epidemic occurs for φ ≤ φc and is suppressed for φ > φc.
The calculation proceeds by self-consistently estimating
the probability of formation of infinitely long chains of
infections, mirroring the standard techniques of percola-
tion theory [22]. In the presence of a finite fraction of
asymptomatic people (θ 6= 0), we rely on a mean-field
estimate for the location of the critical line (φ, θc(φ)) as
a function of RS ; detailed studies of the exact location
of critical line and the universal features of the contact-
tracing phase transition are left to future work.

To derive a “mean-field” description of our model, let
us label the possible states of an infected individual by
α ∈ {CA,CS,NA,NS}. The probability that an initial
infectious node i is in state α is denoted P(i = α). Ac-
cording to their respective fractions in the population,
we have

P(i = CA) = φθ,

P(i = CS) = φ(1− θ),
P(i = NA) = (1− φ)θ,

P(i = NS) = (1− φ)(1− θ). (2)

Suppose now that the node i = α is infectious at time
t = 0 and adjacent to a susceptible node j. The probabil-
ity of epidemic spread is determined by the probability
of transmission from the node i = α to j and onwards,
which we denote pα. This can be approximated as

pα ≈
∑

β∈{CA,CS,NA,NS}

P(i = α)P(j = β|i = α), (3)

where P(j = β|i = α) denotes the probability that node
j is infectious and in state β at time t = 1, given that the
node i was in state α at time t = 0, and we make a “mean-
field” approximation whereby only two-node processes
are taken into account. The latter clearly breaks down
when recursive contact tracing is taken into account, a
point that we shall return to below. In terms of these
probabilities pα and the basic reproduction numbers for
the various states Rα, the effective reproduction number
in our mean-field approximation is given by

R =
∑
α

Rαpα, (4)
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and the critical line is given by R = 1. Throughout this
section we assume RCA = RNA = R0 and RCS = RNS =
RS .

Let us first consider transmission by individuals off the
contact network. Since such individuals can transmit the
disease freely, we have simply

pNA = (1− φ), pNS = (1− φ)(1− θ). (5)

Moving on to symptomatic individuals on the contact
network (CS), we obtain the following conditional prob-
abilities:

α→ β P(j = β | i = α)

CS → CA 0

CS → CS 0

CS → NA (1− φ)θ

CS → NS (1− φ)(1− θ)

, (6)

which reflects the fact that on-network transmission from
symptomatic individuals cannot generate transmission
beyond node j (c.f. Fig. 1). Then, using Eqs. (2), (3)
and (6), we find

pCS = φ(1− θ)(1− φ). (7)

Finally, we consider asymptomatic infections on the
contact network (CA). While the probabilities of trans-
mitting infection outside the contact network are the
same as Eq. (6), the transmission probabilities within the
contact network are undetermined at the level of mean-
field theory. As a first approximation, we can introduce
variational parameters 0 ≤ γ1, γ2 ≤ 1 which interpolate
between “best” and “worst” cases for epidemic control,
to wit

α→ β P(j = β | i = α)

CA→ CA γ1φθ

CA→ CS γ2φ(1− θ)
CA→ NA (1− φ)θ

CA→ NS (1− φ)(1− θ)

. (8)

In the “best” case, γ1 = γ2 = 0, asymptomatic trans-
mission within the network is completely suppressed, i.e.
P(j = CA | i = CA) = P(j = CS | i = CA) = 0. In the
“worst” case, γ1 = γ2 = 1, asymptomatic transmission
within the network is not suppressed at all, and P(j =
CA | i = CA) = φθ, P(j = CA | i = CS) = φ(1 − θ),
proportional to the population fraction of the respective
states. In these limits, we obtain

pCA =

{
φθ(1− φ), γ1 = γ2 = 0,

φθ, γ1 = γ2 = 1.
(9)

While this provides some useful rules-of-thumb, there is
seemingly no consistent way to fix the variational pa-
rameters γ1 and γ2 within this approach. Since the best
approximation is likely to lie in between these extreme
limits, we consider a näıve linear interpolation and set

pCA(γ) ≡ φθ(γ(1− φ) + (1− γ)), 0 ≤ γ ≤ 1. (10)

We can fix the variational parameter γ self-consistently
by noting that the critical line on the φ − θ phase dia-
gram ought to pass through the point (φ = 1, θ = 1),
since there is an epidemic for {φ < 1, θ = 1}, when the
population is entirely asymptomatic but not entirely on
the contact network, and no epidemic for {φ = 1, θ < 1},
when the population is entirely on the contact network
but not entirely asymptomatic. We find that setting
γ = 1− 1/R0 ensures this condition, and thus obtain the
following estimate for the effective reproduction number:

R ≈ RS(1−θ)(1−φ2)+R0θ

(
1−

(
1− 1

R0

)
φ2
)
. (11)

An alternative approach is to derive a self-consistent
estimate for pCA directly, by explicitly taking into ac-
count some of the higher-order, multi-node processes of
transmission. The key observation is that an infectious
node i = CA can infect a susceptible neighbour j in only
three ways that allow for continued transmission; either
infection is transmitted directly off the contact network,
i → j ∈ {NA,NS}, infection is transmitted off the con-
tact network via a pre-symptomatic, on-network inter-
mediary, i→ j = CS → k ∈ {NA,NS}, or transmission
is perpetuated by another asymptomatic node j ∈ CA
on the contact network. To account for these three pos-
sibilities, we can write down a self-consistent equation for
pCA,

pCA = θφ

[
(1− φ) +

RS
R0

φ(1− θ)(1− φ) + pCA

]
, (12)

which yields

pCA =
θφ(1− φ) [R0 +RSφ(1− θ)]

R0(1− θφ)
. (13)

The approximations of Eqs. (5), (7), and (13) then imply

R ≈ RS(1− θ)(1− φ2) +R0θ

(
1− (1− θ)φ3

1− θφ

)
. (14)

The critical thresholds R = 1 predicted by Eqs. (11)
and (14) are almost indistinguishable on the phase dia-
grams with R0 = 3. In Fig. 2 we show the critical curves
predicted by Eq. (14) and find good agreement with nu-
merical simulations.

These mean-field approaches therefore capture the ap-
proximate location of the critical curve (φ, θc(φ)) (equiv-
alently (φc(θ), θ)), and thus the essential qualitative fea-
tures of recursive contact tracing with non-symptomatic
transmission.

III. DISCUSSION

We have introduced a simple branching-process model
for early-stage epidemic spread, which both retains a
degree of analytical and numerical tractability and is
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sufficiently expressive to model complicated features
of COVID-19 spreading and control, for example pre-
symptomatic transmission, as distinct from asymp-
tomatic transmission, and recursive contact tracing. Us-
ing this model we obtained predictions for realistic
COVID-19 parameter values, finding that in order for a
contact-tracing app to be effective, the fraction of app
take-up among a given population would need to lie
between 75% and 95%, depending on the frequency of
asymptomatic transmission.

We now consider the practical applicability of our re-
sults to India, whose particular challenges provided the
initial stimulus for this work. At first sight, India’s
overall smartphone coverage of around 40% [23] sug-
gests that it might be difficult to attain “digital herd
immunity” using solely app-based contact tracing [11].
However, smartphone-based measures could be combined
with other tracing efforts to compensate for the limited
availability of smartphones. Specifically, more traditional
interview methods can still be used to reconstruct the
location history of a newly diagnosed person. System-
atic, random testing might also help in this regard [24].
As almost 90% [23] of Indians use some sort of wire-
less phone, alerts from people on the app-based network
as well as interview-based alerts could be broadcast via
SMS and combined with cell tower triangulation for spa-
tial resolution in addition to the temporal resolution that
would already be available. Major metropolitan areas,
which include a number of COVID-19 hot-spots [25],
would be particularly well-suited to such a dual approach,
since they exhibit both higher smartphone coverage and
a higher density of cell-phone towers, allowing for more
accurate triangulation [26]. Finally, it seems entirely pos-
sible to boost smartphone ownership for this purpose by

the use of donated used phones and subsidized data pro-
vided to run the contact tracing app.

Several natural questions arise for future work. From
a practical standpoint, one worthwhile extension of our
model would be to allow for a degree of stochasticity
in the basic reproduction number R0, for example, by
simulating the branching-process model on small-world
networks with varying degree per node, which are known
to better reflect realistic human contact networks [27, 28]
than networks with fixed degree. Indeed, network struc-
ture has previously been shown to influence the effec-
tiveness of contact tracing [4, 29–31]. Meanwhile, an
important open problem from the perspective of statisti-
cal physics is pinning down the universality class of the
contact-tracing transition. Our study of the critical point
along the line θ = 0 indicates that techniques from per-
colation theory are likely to be useful; on the other hand,
the non-local character of recursive contact tracing dis-
tinguishes it from the percolation transitions that have
arisen in related applications [20, 21, 32, 33], and sug-
gests that the critical exponents at the transition point
differ from those of standard site percolation, even on the
Bethe lattice. We leave a detailed exploration of these
fascinating questions to subsequent studies.
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Appendix A: Exact critical point for the transition on the θ = 0 axis

In this Appendix, we show how to derive the critical point for the contact-tracing transition along the line θ = 0,
using ideas from percolation theory. Let pN and pC denote the probabilities that an infinite infected cluster is
connected to a node of type N and C respectively. We also write fC and fN for the fraction of the population
respectively on and off the contact network, which, in the notation of the main text, read

fC = φ, fN = (1− φ). (A1)

We start by considering the case when R0 = 2, which means that each infected individual goes on to infect two other
people. The possible R0 = 2 infections generated by an infected individual of type N are N → {N,N}, N → {N,C},
N → {C,N}, and N → {C,C}. For each of these cases, we can write the contribution to the probability pN that the
cluster starting from N extends to infinity in terms of pN , pC , fC , and fN as

pN = f2C
(
1− (1− pC)2

)
+ f2N

(
1− (1− pN )2

)
+ 2fCfN (1− (1− pN )(1− pC)) , (A2)

where the first term on the RHS is the contribution from the process N → {C,C}, the second from N → {N,N}, and
the third from N → {N,C} and N → {C,N}. To understand Eq. (A2), consider the first term, which corresponds
to the process N → {C,C}. It can be obtained in the following way: given an N infection, the probability of the
process N → {C,C}, assuming independent and uniform distribution of individuals on the network, is given by f2C ,
and the probability that at least one subbranch gives rise to an infinite cluster is then given by 1 − (1 − pC)2, since
(1− pC)2 is the probability that neither C generates an infinite cluster. The other terms in Eq. (A2) can be obtained
similarly. Likewise, the possible R0 = 2 infections starting from C are C → {N,N}, C → {N,C} and C → {C,N}.
Note that C → C transmission is suppressed due to contact tracing. Therefore, the probability that a cluster from C
extends to infinity is given by

pC = f2N (1− (1− pN )2) + 2fNfC(1− (1− pN )). (A3)
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Solving Eqs. (A2) and (A3) simultaneously, we obtain the critical point φ = φc, such that pN = pC = 0 for φ > φc.
We now illustrate the computation of φc for a general R0 = R. The probabilities pN and pC for this case can be
written analogously to Eqs. (A2) and (A3) as

pN =
R∑
a=0

(
R

a

)
faNf

R−a
C

(
1− (1− pN )a(1− pC)R−a

)
= (fN + fC)R − (fN (1− pN ) + fC(1− pC))R (A4)

pC =
R∑
a=0

(
R

a

)
faNf

R−a
C (1− (1− pN )a) = (fN + fC)R − (fN (1− pN ) + fC)R. (A5)

Substituting Eq. (A5) in Eq. (A4), and using fC + fN = 1, we obtain

pN = 1−
(
fN (1− pN ) + fC(1− fNpN )R

)R
= 1−

(
1 + fC

R∑
a=1

(−1)a
(
R

a

)
faNp

a
N − fNpN

)R

= −
R∑
b=1

(
R

b

)
pbN

(
fC

R∑
a=1

(−1)a
(
R

a

)
faNp

a−1
N − fN

)b
.

(A6)

Excluding the pN = 0 solution, we can simplify Eq. (A6) to read

R∑
b=1

(
R
b

)
pb−1N

(
fC

R∑
a=1

(−1)a
(
R
a

)
faNp

a−1
N − fN

)b
+ 1 = 0 =⇒ R

(
fC

R∑
a=1

(−1)a
(
R
a

)
faNp

a−1
N − fN

)
+ 1 +O(pN ) = 0

=⇒ −RfN (RfC + 1) + 1 +O(pN ) = 0, (A7)

where we have used O(pN ) to denote a polynomial in pN with all terms having degree greater than or equal to 1.
Since the critical fraction φc for a phase transition occurs at pN = 0, we substitute pN = 0, and the fractions fN and
fC in Eq. (A7) to obtain

R2φ2c −R(R− 1)φc − (R− 1) = 0 =⇒ φc =
(R− 1) +

√
(R− 3)(R+ 1)

2R
, (A8)

where we have chosen the physical solution such that 0 ≤ φc ≤ 1. This result matches our numerical phase diagram
to within the resolution of the plot, improving upon the mean-field prediction of the main text; see Fig. 2 for an
example with R = 2.
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