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ABSTRACT  

 

Background: The SARS-CoV-2 pandemic caused >1 million infections during January-March 

2020. There is an urgent need for robust antibody detection approaches to support 

diagnostics, vaccine development, safe individual release from quarantine and population 

lock-down exit strategies. The early promise of lateral flow immunoassay (LFIA) devices has 

been questioned following concerns about sensitivity and specificity.  

 

Methods: We used a panel of plasma samples designated SARS-CoV-2 positive (from SARS-

CoV-2 RT-PCR-positive individuals; n=40) and negative (samples banked in the UK prior to 

December-2019 (n=142)). We tested plasma for SARS-Cov-2 IgM and IgG antibodies by ELISA 

and using nine different commercially available LFIA devices.  

 

Results: ELISA detected SARS-CoV-2 IgM or IgG in 34/40 individuals with an RT-PCR-confirmed 

diagnosis of SARS-CoV-2 infection (sensitivity 85%, 95%CI 70-94%), vs 0/50 pre-pandemic 

controls (specificity 100% [95%CI 93-100%]). IgG levels were detected in 31/31 RT-PCR-

positive individuals tested ≥10 days after symptom onset (sensitivity 100%, 95%CI 89-100%). 

IgG titres rose during the 3 weeks post symptom onset and began to fall by 8 weeks, but 

remained above the detection threshold. Point estimates for the sensitivity of LFIA devices 

ranged from 55-70% versus RT-PCR and 65-85% versus ELISA, with specificity 95-100% and 

93-100% respectively. Within the limits of the study size, the performance of most LFIA 

devices was similar. 

 

Conclusions: The performance of current LFIA devices is inadequate for most individual 

patient applications. ELISA can be calibrated to be specific for detecting and quantifying SARS-

CoV-2 IgM and IgG and is highly sensitive for IgG from 10 days following symptoms onset.  
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INTRODUCTION 

The first cases of infection with a novel coronavirus, subsequently designated SARS-CoV-2, 

emerged in Wuhan, China on December 31st, 2019.1 Despite intensive containment efforts, 

there was rapid international spread and three months later, SARS-CoV-2 had caused over 1 

million confirmed infections and 60,000 reported deaths.2  

 

Containment efforts have relied heavily on population quarantine (‘lock-down’) measures to 

restrict movement and reduce individual contacts.3,4 To develop public health strategies for 

exit from lock-down, diagnostic testing urgently needs to be scaled-up, including both mass 

screening and screening of specific high-risk groups (contacts of confirmed cases, and 

healthcare workers and their families), in parallel with collecting robust data on recent and 

past SARS-CoV-2 exposure at individual and population levels.2  

 

Laboratory diagnosis of infection has mostly been based on real-time RT-PCR, typically 

targeting the viral RNA-dependent RNA polymerase (RdRp) or nucleocapsid (N) genes using 

swabs collected from the upper respiratory tract.5,6 This requires specialist equipment, skilled 

laboratory staff and PCR reagents, creating diagnostic delays. RT-PCR from upper respiratory 

tract swabs may also be falsely negative due to quality or timing; viral loads in upper 

respiratory tract secretions peak in the first week of symptoms,7 but may have declined below 

the limit of detection in those presenting later.8 In individuals who have recovered, RT-PCR 

provides no information about prior exposure or immunity.  

 

In contrast, assays that reliably detect antibody responses specific to SARS-CoV-2 could 

contribute to diagnosis of acute infection (via rises in IgM and IgG levels) and to identifying 

those infected with or without symptoms and recovered (via persisting IgG).9 Receptor-

mediated viral entry to host cells occurs through interactions between the unique and highly-

conserved SARS-CoV-2 spike (S) glycoprotein and the ACE2 cell receptor.10 This S protein is 

the primary target of specific neutralising antibodies, and current SARS-CoV-2 serology assays 

therefore typically seek to identify these antibodies (Figure 1A-C). Rapid lateral flow 

immunoassay (LFIA) devices provide a quick, point-of-care approach to antibody testing. A 

sensitive and specific antibody assay could directly contribute to early identification and 
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isolation of cases, address unknowns regarding the extent of infection to inform 

mathematical models and support individual or population-level release from lock-down.  

 

However, before either laboratory assays or LFIA devices can be widely deployed, their 

performance characteristics need to be evaluated (Figure 1D,E).11 We therefore compared a 

novel laboratory-based ELISA assay with nine commercially-available LFIA devices using 

samples from patients with RT-PCR-confirmed SARS-CoV-2 infection, and negative pre-

pandemic samples. 

 

METHODS 

Samples 

142 plasma samples designated seronegative for SARS-CoV-2 were collected from adults (≥18 

years) in the UK before December 2019 (Table S1) from three ethically approved sources: 

healthy blood donors, organ donors on ICU following cerebral injury and healthy volunteers 

from a vaccine study, BERT. 

 

Forty plasma samples were collected from adults positive for SARS-CoV-2 by RT-PCR from an 

upper respiratory tract (nose/throat) swab tested in accredited laboratories (Table S1). Acute 

(≤28 days from symptom onset) and convalescent samples (>28 days) were included to 

optimise detection of SARS-CoV-2 specific IgM and IgG respectively (Figure 1B). Acute samples 

were collected from patients a median 10 (range 4-27) days from symptom onset (n=16), and 

from recovering healthcare workers median 13 [range 8-19] days after first symptoms; (n=6). 

Convalescent samples were collected from adults a median 48 [range 31-62] days after 

symptom onset and/or date of positive throat swab (n=18). Further sample details in 

Supplementary Material. 

 

Cases were classified following WHO criteria as critical (respiratory failure, septic shock, 

and/or multiple organ dysfunction/failure); severe (dyspnoea, respiratory frequency 

≥30/minute, blood oxygen saturation ≤93%, PaO2/FiO2 ratio <300, and/or lung infiltrates 

>50% of the lung fields within 24-48 hours); or otherwise mild.12 Among 22 acute cases, 9 

were critical, 4 severe and 9 mild. All but one convalescent individual had mild disease; the 

other was asymptomatic and screened during enhanced contact tracing. 
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Enzyme-linked immunosorbent assay (ELISA) 

We used a novel ELISA. Recombinant SARS-CoV-2 trimeric spike protein was constructed,13 

tagged and purified. Immunoplates coated with StrepMAB-Classic were used to capture 

tagged soluble trimeric SARS-CoV-2 trimeric S protein and then incubated with test plasma. 

Antibody binding to the S protein was detected with ALP-conjugated anti-human IgG or anti-

human IgM. (Further details in Supplementary Material.) 

 

Lateral flow immunoassays (LFIA) 

We tested LFIA devices designed to detect IgM, IgG or total antibodies to SARS-CoV-2 

produced by nine manufacturers short-listed as a testing priority by the UK Government 

Department of Health and Social Care (DHSC), based on appraisals of device provenance and 

available performance data. Individual manufacturers did not approve release of device-level 

data, so device names are anonymised. 

 

Testing was performed in strict accordance with the manufacturer’s instructions for each 

device. Typically, this involved adding 5-20µl of plasma to the sample well, and 80-100µl of 

manufacturer’s buffer to an adjacent well, followed by incubation at room temperature for 

10-15 minutes. The result was based on the appearance of coloured bands, designated as 

positive (control and test bands present), negative (control band only), or invalid (no band, 

absent control band, or band in the wrong place) (Figure 1C).  

 

We recorded results in real-time on a password-protected electronic database, using 

pseudonymised sample identifiers, capturing the read-out from the device 

(positive/negative/invalid), operator, device, device batch number, and a timestamped 

photograph of the device.  

 

Testing protocol  

We tested 90 samples using ELISA to quantify IgM and IgG antibody in plasma designated 

SARS-CoV-2 negative (n=50) and positive (n=40). All positive samples were included and an 

unstratified random sample of negative plasma from healthy blood donors (n=23) and organ 

donors (n=27). We tested the nine different LFIA devices using between 39-165 individual 
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plasma samples (8-23 and 31-142 samples designated SARS-CoV-2 positive and negative, 

respectively, Table S2). Total numbers varied according to the number of devices supplied to 

the DHSC; samples were otherwise selected at random.  

 

Statistical analysis 

Analyses were conducted using R (version 3.6.3) and Stata (version 15.1), with additional plots 

generated using GraphPad Prism (version 8.3.1). Binomial 95% confidence intervals (CI) were 

calculated for all proportions. The association between ELISA results and time since symptom 

onset, severity, need for hospital admission and age was estimated using multivariable linear 

regression, without variable selection. Non-linearity in relationships with continuous factors 

was included via natural cubic splines. Differences between LFIA devices were estimated using 

mixed effects logistic regression models, allowing for each device being tested on overlapping 

sample sets. Differences between devices were compared with Benjamini-Hochberg 

corrected p-value thresholds. (Further details in Supplementary Material.) 

  

RESULTS 

Detection of SARS-CoV-2 IgM and IgG antibody by ELISA  

Forty positive (RT-PCR-confirmed SARS-CoV-2 infection) and 50 designated negative (pre-

pandemic) plasma samples were tested by ELISA to characterise antibody profiles. Negative 

samples had median optical density (OD) for IgM of -0.0001 (arbitrary units) (range -0.14 to 

0.06) and for IgG -0.01 (range -0.38 to 0.26). The median IgM reading in 40 positive samples 

was 0.18 (range -0.008 to 1.13; Kruskal-Wallis p<0.001 vs. negative) and IgG median 3.0 (range 

-0.2 to 3.5; p<0.001).  

 

As safe individual release from lock-down is a major application for serological testing, we 

chose OD thresholds that maintained 100% specificity (95%CI 93-100%), while maximising 

sensitivity. Using thresholds of 0.07 for IgM and 0.4 for IgG (3 and 5 standard deviations above 

the negative mean respectively; Figure 2A,B), the IgG assay had 85% sensitivity (95%CI 70-

94%; 34/40) vs. RT-PCR diagnosis. All six false-negatives were from samples taken within 9 

days of symptom onset (Figure 2D). IgG levels were detected in 31/31 RT-PCR-positive 

individuals tested ≥10 days after symptom onset (sensitivity 100%, 95%CI 89-100%). The IgM 
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assay sensitivity was lower at 70% (95%CI 53-83%; 28/40). All IgG false-negatives were IgM-

negative. No patient was IgM-positive and IgG-negative.  

 

Considering the relationship between IgM and IgG titres and time since symptom onset 

(Figures 2C,D), univariable regression models showed IgG antibody titres rising over the first 

3 weeks from symptom onset. The lower bound of the pointwise 95%CI for the mean 

expected titre crosses our OD threshold between days 6-7 (Figure 2D). However, given 

sampling variation, test performance is likely to be optimal from several days later. IgG titres 

fell during the second month after symptom onset but remained above the OD threshold. No 

temporal association was observed between IgM titres and time since symptom onset (Figure 

2C). There was no evidence that SARS-2-CoV severity, need for hospital admission or patient 

age were associated with IgG or IgM titres in multivariable models (p>0.1, Table S3). 

 

Detection of SARS-CoV-2 antibodies by LFIA vs. RT-PCR  

We first considered performance of the nine different LFIA devices using RT-PCR-confirmed 

cases as the reference standard (Table 1A, Figure S1) and considering any LFIA positive result 

(IgM, IgG or both) as positive. The LFIA devices achieved sensitivity ranging from 55% (95%CI 

36-72%) to 70% (51-84%) and specificity from 95% (95%CI 86-99%) to 100% (94-100%). There 

was no evidence of differences between the devices in sensitivity (p≥0.015, cf. Benjamini-

Hochberg p=0.0014 threshold) or specificity (p≥0.19 for all devices with at least one false-

positive test). Restricting to 31 samples collected ≥10 days post symptom-onset (all ELISA IgG-

positive), LFIA sensitivity ranged from 61% (95%CI 39-80%) to 88% (68-97%) (Table S4). 

 

Detection of SARS-CoV-2 antibodies by LFIA vs. ELISA  

We also considered performance relative to ELISA (Table S5, Figure S1), because the LFIA 

devices target the same antibodies. We considered patients positive by this alternative 

standard if their IgG OD reading exceeded the threshold above (since no samples were IgM-

positive, IgG-negative). Sensitivity of antibody detection by LFIA ranged from 65% (95%CI 46-

80%) to 85% (66-96%) and specificity from 93% (95%CI 83-98%) to 100% (94-100%); however, 

the device with the highest sensitivity had one of the lowest specificities (Figure S1). There 

was no evidence of differences in sensitivity (p≥0.010, cf. p=0.0014 threshold) or specificity 

between devices (p≥0.19).  
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Of 50 designated negative samples tested by both ELISA and the nine different LFIA devices, 

nine separate samples generated at least one false-positive, on seven different LFIA devices 

(Figure 3). Four samples generating false-positive results did so on more than one LFIA device, 

despite the absence of quantifiable IgM or IgG on ELISA, potentially suggesting a specific 

attribute of the sample causing a cross-reaction on certain LFIA platforms but not ELISA.  

 

Of the 22 RT-PCR-positive samples collected in the acute setting, six fell below the ELISA 

detection threshold for IgM or IgG; two of these six were positive on LFIA testing, each on one 

(different) device. Of the remaining 16 acute samples (all ELISA IgG-positive), only nine were 

consistently positive across all nine LFIA devices. Due to limited availability of LFIA devices, 

fewer tests were performed on the 18 convalescent samples with available ELISA data, all 

with quantifiable IgG (Figure 2B;3A). Two had no antibody detected on any LFIA device, and 

only eight were consistently positive across all LFIA devices tested (between 1 and 9 devices 

tested per sample). 

 

DISCUSSION 

We here present the performance characteristics of a novel ELISA and nine LFIA devices for 

detecting SARS-COV-2 IgM and IgG using a panel of reference plasma. After setting thresholds 

for detection using 50 negative (pre-pandemic) controls, 85% of 40 RT-PCR-confirmed positive 

patients had IgG detected by ELISA, including 100% patients tested ≥10 days after symptom 

onset. A panel of LFIA devices had sensitivity between 55 and 70% against the reference-

standard RT-PCRs, or 65-85% against ELISA, with specificity of 95-100% and 93-100% 

respectively. These estimates come with relatively wide confidence intervals due to 

constraints on the number of devices made available for testing. Nevertheless, this study 

provides a benchmark against which to further assess the performance of platforms to detect 

anti-SARS-CoV-2 IgM/IgG, with the aim of guiding decisions about deploying antibody testing 

and informing the design and assessment of second-generation assays.  

 

LFIA devices are cheap to manufacture, store and distribute, and could be used as a point-of-

care test by healthcare practitioners or individuals at home, offering an appealing approach 

to diagnostics and evaluating individual and population-level exposure. A positive antibody 
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test is currently regarded as a probable surrogate for immunity to reinfection. Secure 

confirmation of antibody status would therefore reduce anxiety, provide confidence to allow 

individuals to relax social distancing measures, and guide policy-makers in the staged release 

of population lock-down, potentially in tandem with digital approaches to contact tracing.14 

As a diagnostic tool, serology may have a role in combination with RT-PCR testing to improve 

sensitivity, particularly of cases presenting sometime after symptom onset.15,16 Reproducible 

methods to detect and quantify vaccine-mediated anti-SARS-CoV-2 antibodies are also 

crucial, as vaccines enter clinical trials, evaluating the magnitude and durability of 

immunogenicity.   

 

Appropriate thresholds for sensitivity and specificity of an antibody test depend on its 

purpose, and must be considered when planning deployment. For diagnosis in symptomatic 

patients, high sensitivity is required (generally ≥90%). Specificity is less critical as some false-

positives could be tolerated (provided other potential diagnoses are considered, and 

accepting that over-diagnosis causes unnecessary quarantine or hospital admission). 

However, if antibody tests were deployed as an individual-level approach to inform release 

from quarantine, then high specificity is essential, as false-positive results return non-immune 

individuals to risk of exposure. For this reason, the UK Medicines and Healthcare products 

Regulatory Agency has set a minimum 98% specificity threshold for LFIAs.17 

 

Appraisal of test performance should also consider the influence of population prevalence, 

acknowledging that this changes over time, geography and within different population groups 

(e.g. healthcare workers, teachers). The potential risk of a test providing false reassurance 

and release from lock-down of non-immune individuals can be considered as the proportion 

of all positive tests that are wrong, as well as the number of incorrect positive tests per 1000 

people tested. Based on the working ‘best case’ scenario of a LFIA test with 70% sensitivity 

and 98% specificity, the proportion of positive tests that are wrong is 35% at 5% population 

seroprevalence (19 false-positives/1000 tested), 13% at 20% seroprevalence (16 false-

positives/1000) and 3% at 50% seroprevalence (10 false-positives/1000) (Figure 4). However, 

more data are needed to investigate antibody-positivity as a correlate of protective immunity. 

Indeed pre-existing IgG could enhance disease in some situations,18 with animal data 
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demonstrating that SARS-CoV anti-spike IgG contributes to a proinflammatory response 

associated with lung injury in macaques.19  

 

Our data on the kinetics of antibody responses to SARS-CoV-2 infection build upon studies of 

hospitalised patients in China reporting a median 11 days to seroconversion for total 

antibody, with IgM and IgG seroconversion at days 12 and 14 respectively;15 another similar 

study reports 100% IgG positivity by 19 days.16 Our ELISA data show IgG titres rose over the 

first 3 weeks of infection and that IgM testing identified no additional cases. Methods to 

enhance sensitivity, especially shortly after symptom onset, could consider different sample 

types (e.g. saliva), different antibody classes (e.g. IgA)20, T-cell assays or antigen detection.21 

In contrast to others,16,22-24 we did not find evidence of an association between disease 

severity and antibody titres. We observed several LFIA false positives, which may have 

potentially resulted from cross-reactivity of non-specific antibodies (e.g. reflecting past 

exposure to other seasonal coronavirus infections). 

The main study limitation is that numbers tested were too small to provide tight confidence 

intervals around performance estimates for any specific LFIA device. Expanding testing across 

diverse populations would increase certainty, but given the broadly comparable performance 

of different assays, the cost and manpower to test large numbers may not be justifiable. 

Demonstrating high specificity is particularly challenging; for example, if the true underlying 

value was 98%, 1000 negative controls would be required to estimate the specificity of an 

assay to +/-1% with approximately 90% power. Full assessment should also include a range of 

geographical locations and ethnic groups, children, and those with immunological disease 

including autoimmune conditions and immunosuppression. 

 

In summary, antibody testing is crucial to inform release from lockdown. This study offers 

insights into the performance of both a novel ELISA and a panel of LFIA devices that have been 

made widely available, but to date with limited systematic validation. Our findings suggest 

that while current LFIA devices may provide some information for population-level surveys, 

their performance is inadequate for most individual patient applications. The biobank of 

samples assembled for this study continues to be expanded and will provide a valuable 

resource for developing the next generation of ELISA and lateral flow assays. The ELISA we 
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describe is currently being optimised and adapted to run on a high-throughput platform and 

provides promise for the development of reliable approaches to antibody detection that can 

support decision making for clinicians, the public health community, policy-makers and 

industry. 
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TABLES 

Table 1. Results of nine lateral flow immunoassays (LFIA) devices and an ELISA assay, tested 

with plasma classified as positive (RT-PCR positive) and negative (pre-pandemic). n=91-182 

per LFIA device. Different manufacturers are designated 1-9. 95% confidence intervals (CI) are 

presented for each point estimate. Any LFIA positive result (IgM, IgG or both) was considered 

positive. ELISA positive samples were all positive for IgG, no sample was IgM-positive and IgG-

negative. 

Assay 

RT-PCR positive 
Pre-pandemic 

control Sensitivity 

(95% CI) 

Specificity  

(95% CI) True 

positive 

False 

negative 

True 

negative 

False 

positive 

ELISA 34 6 50 0 85 (70,94) 100 (93,100) 

1 18 15 60 0 55 (36,72) 100 (94,100) 

2 23 15 90 1 61 (43,76) 99 (94,>99) 

3 21 12 58 2 64 (45,80) 97 (88,>99) 

4 25 13 59 1 66 (49,80) 98 (91,>99) 

5 19 12 58 2 61 (42,78) 97 (91,>99) 

6 20 11 59 1 65 (45,81) 98 (91,>99) 

7 23 10 57 3 70 (51,84) 95 (86,>99) 

8 18 14 60 0 56 (38,74) 100 (94,100) 

9 22 18 138 4 55 (38,74) 97 (93,>99) 
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FIGURES 

Figure 1: Cartoon to illustrate the generation of IgM and IgG antibodies to SARS nCoV-2 and 

detection of antibodies by a lateral flow device. (A) In vivo generation of antibodies to the 

trimeric SARS-CoV-2 spike protein. (B) Projected change in titres of specific IgM and IgG over 

time following infection, with arrows indicating typical time frames for collection of acute and 

convalescent samples. (C) Ex vivo detection of IgG and/or IgM using a lateral flow 

immunoassay (LFIA): S= sample well, T=test antibody; C=control. Diagram shows a positive 

sample on the left, with positive lines at both C and T, and a negative test on the right with a 

line present only at C. Any other combination of lines renders the test invalid. Some devices 

have two test lines, for separate detection of anti-SARS-nCoV-2-IgG and -IgM. (D) Outcomes 

of testing negative and positive plasma using LFIA. (E) Calculation of sensitivity, specificity, 

positive and negative predictive value of a test. Image created with BioRender.com; exported 

under a paid subscription.  
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Figure 2: Results of testing 90 plasma samples for SARS-CoV-2 IgM and IgG by Enzyme linked 

Immunosorbent Assay (ELISA). (A) IgM readings for SARS-CoV-2 pre-pandemic plasma 

(designated negatives, shown in blue, n=50), and RT-PCR confirmed cases of SARS-CoV-2 

infection (designated positives, shown in orange, n=40; divided into acute cases, n=22, and 

convalescent cases, n=18. Threshold of OD = 0.4 discriminates accurately between negative 

controls and convalescent sera. (B) IgG data shown for the same subgroups described for 

panel A. A threshold of OD = 0.07 discriminates between designated negatives and positives. 

(C) IgM OD values plotted against the time post symptoms at which plasma was obtained. The 

line shows the mean OD value expected from a spline-based linear regression model, the 

ribbon indicates the pointwise 95% confidence interval. (D) IgG OD values plotted against the 

time post symptoms at which plasma was obtained. Coloured dots in panels C and D indicate 

disease severity. OD = optical density.  
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Figure 3: Comparison between ELISA and LFIA for SARS-CoV-2 designated negative and 

positive plasma. Panel A shows quantitative optical density (OD) readout from ELISA for IgG 

for designated negative plasma (n=50) and from individuals with RT-PCR confirmed infection 

(n=40, divided into acute and convalescent plasma). IgM results are shown in Figure S2 in the 

Supplementary Materials. Panel B shows results from LFIA produced by nine manufacturers. 

Any positive test for IgG, IgM, both or total antibody is shown as positive, please see Figure 

S2 for more detailed breakdown. Grey blocks indicate missing data as a result of insufficient 

devices to test all samples and one assay on one device with an invalid result. Samples in both 

panels are ranked from left to right by quantitation of IgG (as indicated in panel A).  
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Figure 4: Influence of population prevalence of seropositivity on assay performance. 

Scenarios with population prevalence of 5%, 20% and 50% are shown within each panel. Panel 

A shows the proportion of all positive tests that are wrong (1-positive predictive value), which 

would lead to false release from lock-down of non-immune individuals, for varying test 

sensitivity (x-axis) and 1-specificity (line colour). Panel B shows the proportion of negative 

tests that are wrong, panel C the absolute number of false positive tests per 1000 tests and 

panel D the absolute number of false negative tests per 1000 tests. 
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