
 1 

Crowding and the epidemic intensity of COVID-19 transmission 1 

 2 

Benjamin Rader1,2, Samuel V. Scarpino3,$, Anjalika Nande4, Alison L. Hill4, Benjamin D. Dalziel5,6, 3 

Robert C. Reiner7,8, David M. Pigott7,8, Bernardo Gutierrez9,10, Munik Shrestha3, open COVID-19 data 4 

working group#, John S. Brownstein1,11, Marcia C. Castro12, Huaiyu Tian13, Bryan T. Grenfell14,15, Oliver 5 

G. Pybus9,16,$, C. Jessica E. Metcalf14,15, Moritz UG Kraemer1,9,11,$ 6 

 7 

1. Computational Epidemiology Lab, Boston Children’s Hospital, Boston, United States 8 

2. Department of Epidemiology, Boston University School of Public Health, Boston, United States 9 

3. Network Science Institute, Northeastern University, Boston, United States 10 

4. Program for Evolutionary Dynamics, Harvard University, Cambridge, United States 11 

5. Department of Integrative Biology, Oregon State University, Corvallis, United States 12 

6. Department of Mathematics, Oregon State University, Corvallis, United States 13 

7. Department of Health Metrics, University of Washington, Seattle, United States 14 

8. Institute for Health Metrics and Evaluation, University of Washington, Seattle, United States 15 

9. Department of Zoology, University of Oxford, Oxford, United Kingdom 16 

10. School of Biological and Environmental Sciences, Universidad San Francisco de Quito USFQ, 17 

Quito, Ecuador 18 

11. Harvard Medical School, Boston, United States 19 

12. Department of Global Health and Population, Harvard T.H. Chan School of Public Health, 20 

Boston, United States 21 

13. State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System 22 

Science, Beijing Normal University, Beijing, China 23 

14. Department of Ecology and Evolutionary Biology, Princeton University, Princeton, United States 24 

15. Woodrow Wilson School of Public and International Affairs, Princeton University, Princeton, 25 

United States 26 

16. Department of Pathobiology and Population Science, The Royal Veterinary College, London, 27 

United Kingdom 28 

 29 
$correspondence should be addressed to moritz.kraemer@zoo.ox.ac.uk and s.scarpino@northeastern.edu 30 

and oliver.pybus@zoo.ox.ac.uk  31 
#Members of the working group are listed at the end of the manuscript 32 

  33 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 20, 2020. ; https://doi.org/10.1101/2020.04.15.20064980doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2020.04.15.20064980
http://creativecommons.org/licenses/by/4.0/


 2 

Summary 34 

The COVID-19 pandemic is straining public health systems worldwide and major non-35 

pharmaceutical interventions have been implemented to slow its spread1–4. During the initial phase 36 

of the outbreak the spread was primarily determined by human mobility5,6. Yet empirical evidence 37 

on the effect of key geographic factors on local epidemic spread is lacking7. We analyse highly-38 

resolved spatial variables for cities in China together with case count data in order to investigate 39 

the role of climate, urbanization, and variation in interventions across China. Here we show that 40 

the epidemic intensity of COVID-19 is strongly shaped by crowding, such that epidemics in dense 41 

cities are more spread out through time, and denser cities have larger total incidence. Observed 42 

differences in epidemic intensity are well captured by a metapopulation model of COVID-19 that 43 

explicitly accounts for spatial hierarchies. Densely-populated cities worldwide may experience more 44 

prolonged epidemics. Whilst stringent interventions can shorten the time length of these local 45 

epidemics, although these may be difficult to implement in many affected settings. 46 

 47 

Main text 48 

Predicting the epidemiology of the COVID-19 pandemic is a central priority for guiding epidemic 49 

responses around the world. China has undergone its first epidemic wave and, remarkably, cities across 50 

the country are now reporting few or no locally-acquired cases8. Analyses have indicated that that the 51 

spread of COVID-19 from Hubei to the rest of China was driven primarily by human mobility6 and the 52 

stringent measures to restrict human movement and public gatherings within and among cities in China 53 

have been associated with bringing local epidemics under control5. Key uncertainties remain as to which 54 

geographic factors drive local transmission dynamics and affect the intensity of transmission of COVID-55 

19. For respiratory pathogens, “epidemic intensity” (i.e., the peakedness of the number of cases through 56 

time, or the shortest period during which the majority of cases are observed) varies with increased indoor 57 

crowding, and socio-economic and climatic factors9–14. Epidemic intensity is minimized when incidence 58 

is spread evenly across weeks and increases as incidence becomes more focused in particular days 59 

(Figure 1C, see a detailed description of how epidemic intensity is defined in Ref. 9). In any given 60 

location, higher epidemic intensity requires a larger surge capacity in the public health system15, 61 

especially for an emerging respiratory pathogen such as COVID-1916. 62 

 63 

China provides richly detailed epidemiological time series2,17,18 across a wide range of geographic 64 

contexts, hence the epidemic there provides an opportunity to evaluate the role of factors in shaping the 65 

intensity of local epidemics. We use detailed line-list data from Chinese cities19,20, climate and population 66 

data, local human mobility data from Baidu, and timelines of outbreaks responses and interventions to 67 
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 3 

identify drivers of local transmission in Chinese cities, with a focus on epidemic intensity among 68 

provinces in China. 69 

 70 

To explore the impact of urbanization, temperature, and humidity, we used daily incidence data of 71 

confirmed COVID-19 cases (date of onset) aggregated at the prefectural level (n = 293) in China. 72 

Prefectures are administrative units that typically have one urban center (Figure 1). We aggregate 73 

individual level data that were collected from official government reports18. Epidemiological data in each 74 

prefecture were truncated to exclude dates before the first and after the last day of reported cases. The 75 

shape of epidemic curves varied between prefectures with some showing rapid rises and declines in cases 76 

and others showing more prolonged epidemics (Figure 1A). We estimate epidemic intensity for each 77 

prefecture from these data by calculating the inverse Shannon entropy of the distribution of incident 78 

cases9. We define the incidence distribution 𝑝"# for a given city to be the proportion of COVID-19 cases 79 

during epidemic wave 𝑗 that occurred on day 𝑖. The inverse Shannon entropy of incidence for a given 80 

prefecture and year is then given by 𝑣# = 	)−	∑ 𝑝"# log 𝑝"#" /-1. Because 𝑣# is a function of the disease 81 

incidence curve in each location, rather than of absolute incidence values, it is invariant under differences 82 

in overall reporting rates among cities or overall attack rates. Population counts for each prefecture were 83 

extracted from a 1 km x 1 km gridded surface of the world utilizing administrative-2 level cartographic 84 

boundaries. 85 

 86 

Within each prefecture, we calculate Lloyd’s index of mean crowding9,21 treating the population count of 87 

each pixel as an individual unit (Methods, Figure 1B and C). The term ‘mean crowding’ used here is a 88 

specific metric that summarizes both, population density and how density is distributed across a 89 

prefecture (patchiness). Values on the resulting index above the mean pixel population count within each 90 

prefecture suggest a spatially-aggregated population structure (Methods). For example, Guangzhou has 91 

high values of crowding whilst Quzhou which has a more evenly distributed population in its prefecture 92 

(Figure 1B and C). Using the centroid of each prefecture we calculate daily mean temperature and 93 

specific humidity; these values are subsequently averaged over each prefecture’s reporting period 94 

(Methods). We performed log-linear regression modeling to determine the association between epidemic 95 

intensity with the socio-economic and environmental variables (Methods). 96 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 20, 2020. ; https://doi.org/10.1101/2020.04.15.20064980doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.15.20064980
http://creativecommons.org/licenses/by/4.0/


 4 

 97 
 98 

Figure 1: Maps of crowding in prefectures in China. A) shows epidemic curves that are normalized to 99 

show the percentage of cases that are occurring at each given day. The 10 most intense (red) prefectures 100 

are shown versus the 10 least intense (blue). B) An example of a prefecture with high levels of crowding 101 

(Guangzhou, Guangdong Province), versus (C) a prefecture where populations are more equally 102 

distributed across the prefecture (Quzhou, Zhejiang Province). The colour scale illustrates the number of 103 

inhabitants per grid cell (1km x 1km). 104 

 105 

We found that epidemic intensity is significantly negatively correlated with mean population crowding 106 

and varies widely across the country (Figure 2, Extended Data Table 1, p-value < 0.001). Our 107 

observation contrasts those expected from simple and classical epidemiological models where it would be 108 

expected to see more intensity in crowded areas22,23. We hypothesize that the mechanism that underlies 109 

the more crowded cities experience less intense outbreaks because crowding enables more widespread 110 

and sustained transmission between households leading incidence to be more widely distributed in time 111 

(see section below for detailed simulation, Methods). Population size, mean temperature, and mean 112 

specific humidity were all significant but their correlation coefficients were much smaller (Extended 113 

Data Table 1). A multivariate-model was able to explain a large fraction of the variation in epidemic 114 

intensity across Chinese cities (R2 = 0.54). We perform sensitivity analysis to account for potential noise 115 

in the city level incidence distribution (Extended Data Fig. 1). 116 

 117 
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 118 
Figure 2: Crowding and the intensity of transmission of COVID-19 in China. a) negative association 119 

between log of epidemic intensity, as measured by inverse Shannon entropy (Methods), and log 120 

population crowding, as measure by Lloyd’s mean crowding (Methods). Lower intensity and therefore 121 

prolonged epidemics in larger cities. The size of the points indicate the size of the population in each city, 122 

b) Map of epidemic intensity in China at the prefecture level. Darker colours indicate lower intensity and 123 

lighter colours higher intensity. Grey prefectures had not enough reported cases, no cases or were not 124 

included in analyses (Hubei Province). 125 

 126 

One key uncertainty in previous applications of models of epidemic intensity was the contribution of 127 

disease importation(s) on the shape of the epidemic9. Due to the unprecedented scale of human mobility 128 

restrictions imposed in China, the fact that the early epidemic was effectively from a single source, 129 

coupled with the availability of real-time data on mobility, we can evaluate the impact of these 130 

restrictions on the epidemic intensity relative to the local dynamics. To do so, we performed a univariate 131 

analysis (Extended Data Table 1) and found that human mobility explained 14% of the variation in 132 

epidemic intensity. This further supports earlier findings that COVID-19 had already spread throughout 133 

much of China prior to the cordon sanitaire of Hubei province and that the pattern of seeding potentially 134 

modulates epidemic intensity6,24. These findings are also in agreement with previous work on other 135 

pathogens (measles, influenza) which showed that once local epidemics are established case importation 136 

becomes less important in determining epidemic intensity25. 137 

 138 
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 6 

To evaluate the potential impact of variability of intensity on the peak incidence and total incidence we 139 

performed a simple linear regression. We found that peak incidence was correlated with epidemic 140 

intensity (locations that had high intensity also had more cases at the peak). Total incidence, however, 141 

was larger in areas with lower estimated intensity, which is intuitive as crowded areas have longer 142 

epidemics that affect more people (Extended Data Table 2). This suggests that measures taken to 143 

mitigate the epidemic may need to be enforced more strictly in smaller cities to lower the peak incidence 144 

(flatten the curve) but conversely may not need to be implemented as long. Furthermore, with lower total 145 

incidence in small cities, the risk of resurgence may be elevated due to lower population immunity. There 146 

is urgent need to collect serological evidence to provide a full picture of attack rates across the world26. 147 

 148 

Using our model trained on cities in China we extrapolated epidemic intensity to cities across the world 149 

(Figure 3). Figure 3 shows the distribution of epidemic intensity in 380 urban centers. Cities in yellow 150 

are predicted to have higher epidemic intensity relative to those in blue (a full list is provided in 151 

Extended Data Table 3). Small inland cities in sub-Saharan Africa had high predicted epidemic intensity 152 

and may be particularly prone to experience large surge capacity in the public health system27. In general, 153 

coastal cities had lower predicted intensity and larger and more prolonged predicted epidemics. Global 154 

predictions of epidemic intensity in cities rely on fitted relationships of the first epidemic curve from 155 

Chinese prefectures and therefore need to be interpreted with extreme caution. 156 

 157 

 158 
Figure 3: Predicted epidemic intensities vary across 380 global cities. Darker colours represent low 159 

epidemic intensity and lighter colours represent high epidemic intensity. Estimates were generated using 160 

the full model (Model 5) fitted to epidemic curves in Chinese cities (Extended Data Table 1). A full list of 161 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 20, 2020. ; https://doi.org/10.1101/2020.04.15.20064980doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.15.20064980
http://creativecommons.org/licenses/by/4.0/


 7 

epidemic intensities can be found in the Extended Data Table 3. Epidemic intensity is a measure of 162 

peakedness of epidemics and does not reflect the expected number of cases (Methods). 163 

 164 

To understand the mechanism responsible for our finding that outbreaks in crowded cities were lower 165 

intensity (i.e. more spread out in time), we simulated stochastic epidemic dynamics in different types of 166 

populations. Simple, well-mixed transmission models where contact rates are higher in crowded regions 167 

were not consistent with our findings, since they predict crowded regions would have more intense and 168 

higher-peaked outbreaks. To capture more realistic contact patterns, we created hierarchically-structured 169 

populations28 where individuals had high rates of contact within their households (households are defined 170 

broadly and could represent care homes, hospitals, prisons, etc.), lower rates with individuals from other 171 

households but within the same “neighborhoods”, and relatively rare contact with other individuals in the 172 

same prefecture (Figure 4A). Assumptions are consistent with reports that the majority of onward 173 

transmission occurred in households2,29. We assumed spread between prefectures was negligible once an 174 

outbreak started. In this scenario, “sparse” prefectures often had more intense, short-term outbreaks that 175 

were isolated to certain neighborhoods, while “crowded” prefectures could have drawn-out, low intensity 176 

outbreaks that jumped between the more highly-connected “neighborhoods” (Figures 4B and C). These 177 

outbreaks had larger final size than those in less-crowded areas (Figure 4C) which likely is related to 178 

large overdispersion in the reproduction number of COVID-1930,31 where local outbreaks can reach their 179 

full potential due to the availability of contacts. We also considered outbreak dynamics in sparse and 180 

crowded prefectures under strong social distancing measures, which is likely to be the scenario occurring 181 

across China during most of the time captured by our study and certainly after January 23, 20202. If social 182 

distancing reduces non-household contacts by the same relative amount in all prefectures, there will be 183 

more contacts remaining in crowded areas, since baseline contact rates are higher. In this case, it may take 184 

much longer for the infection to die out post-intervention in crowded areas (Figure 4D), leading to a 185 

lower intensity outbreak with larger final size, as seen in our data (Figure 1C). 186 

 187 
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 188 
Figure 4: Mechanisms generating less intense epidemics in crowded populations.  A) Schematic of a 189 

hierarchically-structured population model consisting of households and “neighborhoods” within a 190 

prefecture. Transmission is more likely among contacts connected at lower spatial levels. Crowded 191 

populations have stronger connections outside the household, and interventions reduce the strength of 192 

these connections in both populations (pink lines). B) - C) Simulated outbreak dynamics in the absence of 193 

interventions in crowded vs sparse populations. For the networks in (B), blue nodes are individuals who 194 

were eventually infected by the end of the outbreak. In (C), individual realizations are shown with thin 195 

blue lines and the average in the thick grey line. D) Simulated outbreak dynamics in the presence of 196 

strong social distancing measures in crowded vs. sparse populations. The intervention was implemented 197 

at day 15 (pink line) and led to a 75% reduction in contacts. 198 

 199 

Spatial covariates and particularly crowding are important parameters to consider in the assessment of 200 

epidemics across the world. Crowded cities tend to be more prolonged due to increased crowding and the 201 

higher potential for transmission chains to persist (i.e., in denser environments there is higher potential for 202 

two randomly selected hosts in a population to attain spatiotemporal proximity sufficient for COVID-19 203 

transmission). Indeed, that epidemic intensity is higher in comparatively low density areas is consistent 204 

with observations in the most affected areas in Italy (e.g., Bergamo)32. Our findings confirm previous 205 

work on epidemic intensity of transmission of influenza in cities9 albeit by a different mechanism: 206 
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 9 

influenza is likely driven by the accumulation of immunity rather than the specific network structure of 207 

individuals. More generally, our work provides empirical support for the role of spatial organization in 208 

determining infectious disease dynamics and the limited capacity of cordon sanitaires to control local 209 

epidemics28,33. We were unable to test more specific hypotheses about which interventions may have 210 

impacted the intensity of transmission within and between cities. Further, even though humidity was 211 

negatively associated with epidemic intensity it did not explain the majority of the variation and more 212 

work will be needed to find causal evidence for the effect of humidity on transmission dynamics of 213 

COVID-19. Therefore, maps showing epidemic intensity in cities outside China (Figure 3) should be 214 

interpreted with particular caution. 215 

 216 

Currently, non-pharmaceutical interventions are the primary control strategy for COVID-19. As a result, 217 

public health measures are often focused on ‘flattening the curve’ to lower the risk of essential services 218 

running out of capacity. We show that spatial context, especially crowding, can result in a higher risk of 219 

intensive epidemics in less crowded, comparatively rural or suburban areas. Therefore, it will be critical 220 

to view non-pharmaceutical interventions through the perspective of crowding (i.e., how does an 221 

intervention reduce the circle of contacts of an average individual) in cities across the world. Specifically, 222 

cities in sub-Saharan Africa have high predicted epidemic intensities that will likely overwhelm already 223 

stressed health care systems. 224 

 225 
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Methods 306 

Epidemiological data 307 

No officially reported line list was available for cases in China. We use a standardised protocol34 to 308 

extract individual level data from December 1st, 2019 - March 30th, 2020. Sources are mainly official 309 

reports from provincial, municipal or national health governments. Data included basic demographics 310 

(age, sex), travel histories and key dates (dates of onset of symptoms, hospitalization, and confirmation). 311 

Data were entered by a team of data curators on a rolling basis and technical validation and geo-312 

positioning protocols were applied continuously to ensure validity. A detailed description of the 313 

methodology is available18. Lastly, total numbers were matched with officially reported data from China 314 

and other government reports. 315 

 316 

Estimating epidemic intensity 317 

Epidemic intensity was estimated for each prefecture by calculating the inverse Shannon entropy of the 318 

distribution of COVID-19 cases. Shannon entropy was used to fit time series of other respiratory 319 

infections (influenza)9. The Shannon entropy of incidence for a given prefecture and year is then given by 320 

𝑣# = 	 )−	∑ 𝑝"# log 𝑝"#" /-1. Because 𝑣# is a function of incidence distribution in each location rather than 321 

raw incidence it is invariant under differences in overall reporting rates between cities or attack rates. We 322 

then assessed how mean intensity 𝑣 ∝ ∑ 𝑣##  varied across geographic areas in China. 323 

 324 

Proxies for COVID-19 interventions 325 

Real-time measures of human mobility were extracted from the Baidu Qianxi web platform to estimate 326 

the proportion of daily movement between the city of Wuhan to Hubei and 30 other Chinese provinces. 327 

Relative mobility volume was available from January 2, 2020 to January 25, 2020 and averaged across 328 

these dates to create a single measure of relative flows from Wuhan. This data was only available at the 329 

province level, so each individual prefecture inherited the relative mobility of its higher-level province. 330 

Baidu’s mapping service is estimated to have a 30% market share in China and more data can be found5,6. 331 

 332 

Data on drivers of transmission of COVID-19 333 

Prefecture-specific population counts and densities were derived from the 2020 Gridded Population of 334 

The World, a modeled continuous surface of population estimated from national census data and the 335 

United Nations World Population Prospectus35. Population counts are defined at a 30 arc-second 336 

resolution (approximately 1 km x 1 km at the equator) and extracted within administrative-2 level 337 

cartographic boundaries defined by the National Bureau of Statistics of China. Lloyd’s mean crowding, 338 
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∑ 344

, was estimated for each prefecture where 𝑞" represents the population count of each non-zero 339 

pixel within a prefecture’s boundary and the resulting value estimates an individual’s mean number of 340 

expected neighbors9,36. 341 

 342 

Daily temperature (°F), relative humidity (%) and atmospheric pressure (Pa) at the centroid of each 343 

prefecture was provided by The Dark Sky Company via the Dark Sky API and aggregated across a 344 

variety of data sources. Specific humidity (kg/kg) was then calculated using the R package, humidity12. 345 

Meteorological variables for each prefecture were then averaged across the entirety of the study period. 346 

 347 

Statistical analysis 348 

We normalized the values of epidemic intensity between 0 and 1, and for all non-zero values fit a 349 

Generalized Linear Model (GLM) of the form: 350 

 351 

log	(𝑌#)	~	𝛽= +	𝛽6log	(𝐶#) + 	 	𝛽@𝑞# + 	𝛽Alog	(𝑃#) + 	𝛽A𝑓# +	𝛽D𝑅#  352 

 353 

where for each prefecture 𝑗, 𝑌 is the scaled Shannon-diversity measure of epidemic intensity derived from 354 

the COVID-19 time series, 𝐶 is Lloyd’s Index of Mean Crowding21,37, 𝑞 is the mean specific humidity 355 

over the reporting period in kg/kg, 𝑃 is the estimated population count and 𝑓 is the relative population 356 

flows from Wuhan to each prefecture’s higher level province. To account for the length of the epidemic 357 

period in each city we calculate 𝑅 as the number of reporting days. 358 

 359 

Projecting epidemic intensity in cities around the world 360 

We selected 380 urban centers from the European Commission Global Human Settlement Urban Centre 361 

Database and their included cartographic boundaries38. To ensure global coverage, up to the five most 362 

populous cities in each country were selected from the 1,000 most populous urban centers recorded in the 363 

database. Population count, crowding, and meteorological variables were then estimated following 364 

identical procedures used to calculate these variables in the Chinese prefectures. Weather measurements 365 

were averaged over the 2-month period starting on February 1, 2020. 366 

 367 

The parameters from the model of epidemic intensity predicted by humidity, crowding and population 368 

size (see Table 1, Model 6) were used to estimate relative intensity in the 380 urban centers.  Predicted 369 

values of epidemic intensity that fell outside the original covariate space [0,1] (n=7) were set to 1. A full 370 

list of predicted epidemic intensities can be found in the Supplementary Information. 371 
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 372 

Sensitivity analyses 373 

The inverse Shannon entropy metric may be sensitive to noise in incidence distribution. For example, the 374 

noisier the incidence distribution the higher the epidemic intensity. To the extent that noise is elevated in 375 

small populations (due to demographic stochasticity for instance) intensity also tends to be higher in 376 

smaller populations, even if they have the same underlying shape to their epidemic curve. Lloyd’s mean 377 

crowding also varies strongly with population size. Therefore, some of the observed relationship between 378 

intensity and crowding may be due to (possibly independent) statistical scaling of both intensity and 379 

crowding with population size. We therefore perform sensitivity analysis to test if cities that are more 380 

crowded than expected for their size have lower epidemic intensities than expected for their size. We 381 

calculate ‘excess intensity’ as the residuals on a regression of log(epidemic intensity) ~ log(pop); ‘excess 382 

crowing’ as the residuals on a regression of log(crowding) ~ log(pop) and plot the relationship between 383 

excess intensity and excess crowding’ (Extended Data Figure 1). 384 

 385 

Simulating epidemic dynamics 386 

We simulated a simple stochastic SIR model of infection spread on weighted networks created to 387 

represent hierarchically-structured populations. Individuals were first assigned to households using the 388 

distribution of household sizes in China (data from UN Population Division, mean 3.4 individuals). 389 

Households were then assigned to “neighborhoods” of ~100 individuals, and all neighborhood members 390 

were connected with a lower weight. A randomly-chosen 10% of individuals were given “external” 391 

connections to individuals outside the neighborhood. The total population size was N=1000. Simulations 392 

were run for 300 days and averages were taken over 20 iterations. The SIR model used a per-contact 393 

transmission rate of 𝛽=0.15/day and recovery rate 𝛾=0.1/day. For the simulations without interventions, 394 

the weights were wHH = 1, wNH = 0.01, and wEX = 0.001 for the “crowded” prefecture and wEX = 0.0001 for 395 

the “sparse” prefecture. For the simulations with interventions, the  household and neighborhood weights 396 

were the same but we used wEX = 0.01 for the “crowded” prefecture and wEX = 0.001 for the “sparse” 397 

prefecture. The intervention reduced the weight of all connections outside the household by 75%.  398 

 399 

  400 
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 423 

 424 
Extended Data Figure 1: Relationship between excess crowding and excess epidemic intensity. 425 

 426 

Extended Data Table 1: Regression model results of variables predicting epidemic intensity (log scale). 427 

*** p < 0.001;  ** p < 0.01;  * p < 0.05 428 

 429 
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Extended Data Table 2: Relationship between total incidence, peak incidence and epidemic intensity. 430 

 431 

Extended Data Table 3: 380 global cities and their predicted epidemic intensities. 432 

 433 
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