ABSTRACT
INTRODUCTION The Coronavirus Disease 2019 (COVID-19) epidemic has caused extreme strains on health systems, public health infrastructure, and economies of many countries. A growing literature has identified key laboratory and clinical markers of pulmonary, cardiac, immune, coagulation, hepatic, and renal dysfunction that are associated with adverse outcomes. Our goal is to consolidate and leverage the largely untapped resource of clinical data from electronic health records of hospital systems in affected countries with the aim to better-define markers of organ injury to improve outcomes.
METHODS A consortium of international hospital systems of different sizes utilizing Informatics for Integrating Biology and the Bedside (i2b2) and Observational Medical Outcomes Partnership (OMOP) platforms was convened to address the COVID-19 epidemic. Over a course of two weeks, the group initially focused on admission comorbidities and temporal changes in key laboratory test values during infection. After establishing a common data model, each site generated four data tables of aggregate data as comma-separated values files. These non-interlinked files encompassed, for COVID-19 patients, daily case counts; demographic breakdown; daily laboratory trajectories for 14 laboratory tests; and diagnoses by diagnosis codes.
RESULTS 96 hospitals in the US, France, Italy, Germany, and Singapore contributed data to the consortium for a total of 27,927 COVID-19 cases and 187,802 performed laboratory values. Case counts and laboratory trajectories were concordant with existing literature. Laboratory test values at the time of viral diagnosis showed hospital-level differences that were equivalent to country-level variation across the consortium partners.
CONCLUSIONS In under two weeks, we formed an international community of researchers to answer critical clinical and epidemiological questions around COVID-19. Harmonized data sets analyzed locally and shared as aggregate data has allowed for rapid analysis and visualization of regional differences and global commonalities. Despite the limitations of our datasets, we have established a framework to capture the trajectory of COVID-19 disease in various subsets of patients and in response to interventions.
Competing Interest Statement
RB and AM are shareholders of Biomeris s.r.l.
Funding Statement
This work was supported by the i2b2 tranSMART Foundation.
Author Declarations
All relevant ethical guidelines have been followed; any necessary IRB and/or ethics committee approvals have been obtained and details of the IRB/oversight body are included in the manuscript.
Yes
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Footnotes
^ authors 6-83 ordered at random.
Data Availability
Data files for daily counts, demographics, diagnosis, and labs datasets are available at https://covidclinical.net.