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Predictions on the time-evolution of the number of severe and
critical cases of COVID-19 patients in Guadeloupe are pre-
sented. A stochastic model is purposely developed to explic-
itly account for the entire population (' 400000 inhabitants)
of Guadeloupe. The available data for Guadeloupe are anal-
ysed and combined with general characteristics of the COVID-
19 to constrain the parameters of the model. The time-evolution
of the number of cases follows the well-known exponential-like
model observed at the very beginning of a pandemic outbreak.
The exponential growth of the number of infected individuals is
controlled by the so-called basic reproductive number, R0, de-
fined as the likely number of additional cases generated by a
single infectious case during its infectious period TI . Because of
the rather long duration of infectious period (' 14 days) a high
rate of contamination is sustained during several weeks after
the beginning of the containment period. This may constitute a
source of discouragement for people restrained to respect strict
containment rules. It is then unlikely that, during the contain-
ment period, R0 falls to zero. Fortunately, our models shows
that the containment effects are not much sensitive to the exact
value of R0 provided we have R0 < 0.6. For such conditions,
we show that the number of severe and critical cases is highly
tempered about 4 to 6 weeks after the beginning of the contain-
ment. Also, the maximum number of critical cases (i.e. the cases
that may exceed the hospital’s intensive care capacity) remains
near 30 when R0 < 0.6. For a larger R0 = 0.8 a slower de-
crease of the number of critical cases occurs, leading to a larger
number of deceased patients. This last example illustrates the
great importance to maintain an as low as possible R0 during
and after the containment period. The rather long delay be-
tween the beginning of the containment and the appearance of
the slowing-down of the rate of contamination puts a particular
strength on the communication and sanitary education of peo-
ple. To be mostly efficient, this communication must be done by
a locally recognised medical staff. We believe that this point is a
crucial matter of success. Appendix Posterior model assessment
with data acquired after April 11, 2020 added in a second ver-
sion of the paper compares the model predictions with the data
acquired from April 12 to May 25 2020, after the construction
of the model discussed in the present study. The remarkable
agreement between the model predictions and the data may be
explained by the good quality of first-hand data used to con-
strain the model, the ability of the stochastic approach to inte-
grate new information and stability of the sanitary situation due
to the respect of the recommendations emitted by medical and
administrative authorities by the guadeloupean population.
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Introduction
The most recent evolution of the pandemic COVID-19 dis-
ease in Western Europe indicates that this region is, together
with the United States, the new centre of the pandemic spread
(e.g. (1) and other reports issued by the World Health Orga-
nization). Italy and Spain are confronted with large outbreaks
of SARS-CoV-2 infection. In France, the rate of new infec-
tions daily increases and measures have already been taken to
increase the intensive care capacity of the main hospitals of
the country. Also, in order to face with the strong heterogene-
ity of case number among the different regions in France,
medevacs (either by air or railway) have been undertaken to
optimally redistribute the most critical patients in the coun-
try’s intensive care facilities. In this context, the situation of
remote French territories like Guadeloupe is particularly crit-
ical since, although possible, medevacs should be anticipated
with a longer delay because of the distance and the duration
of the travels.
Numerical models of the spread of epidemic diseases may be
of some help to anticipate the evolution of the situation in
a near-future of several weeks and, eventually, may reveal a
likely disruption of the local intensive care capacity. In short,
mathematical models may be ranked in two main categories,
namely semi-analytical models and numerical stochastic and
Monte Carlo models (see (2) for a review). In the former
category, the spread of the disease is modelled by a set of
coupled differential equations that account for the most im-
portant characteristics of the disease. This approach is largely
followed (3–5). The second category of models is, in some
sense, more straightforward and relies on network models to
explicitly considers the individuals constituting the popula-
tion. Such an approach offers a great versatility to tackle with
complicated features, like social interaction matrices, that are
difficult to introduce in semi-analytical models. The main
drawback of numerical stochastic models is their computer-
intensive demand that, for large populations, necessitates the
use of multi-scale or coarse-grained algorithms. Thanks to
the moderate size of the population of Guadeloupe, no such
difficulties are encountered and a straightforward approach is
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possible.

Method
The technical details of the model are explained in the ap-
pendix Stochastic Monte Carlo model, and we here recall its
main characteristics. A flowchart of the model is shown in
Figure 1. As stated above, all individuals forming the popu-
lation are considered as nodes in a fully connected network
where everyone is able to meat anyone. By using social con-
tact matrices, this full connection could be modified to ac-
count for demographic and social heterogeneity. Also, we
have not considered the age-dependence of the COVID-19
effects.
Each individual of the network may, temporarily or definitely,
be in the following state (Fig. 1): non-infected, infected with
minor symptoms ("infectious"), infected with severe symp-
toms ("severe"), infected critical ("critical"), dead or recov-
ered. In the vocabulary of epidemic modelling, non-infected
correspond to the so-called "Susceptibles" and minor infected
are "Infectious". In our model, both the severe and criti-
cal infected are not considered as infectious because they are
isolated in hospital facilities and unable to significantly con-
taminate others. Although this is statistically justified in our
model, actually this assumption is contradicted by the sad
death of several French medics.
According to the classical nomenclature, our model is a SIs-
cRd model where the lowercase "sc" indicate the transient
and non-contaminating nature of these states. To the best of
our knowledge at the time of writing this paper, it does not
seem that recovered "R" patients are able to again become
infectious "I" (6). The deceased "d" patients may remain in-
fectious several days (7) and we assume that they are safely
isolated to prevent any contamination.
Each individual may switch from one state to another with
given probabilities. For instance, a "susceptible" may be-
come "infectious", then "severe" and finally "recovered".
This example corresponds to the sequence:

S −→ I −→ s−→R. (1)

The duration of stay in a given class is variable, depending on
the initial health status of each patient. Clinical data collected
world-wide put constrains on the possible range of each pa-
rameter.
The model is based on an evolutionary scheme where the ini-
tial conditions correspond to a non-infected population ex-
cepted a small (typically several tens) number of "infectious".
Once initialised, the algorithm proceeds by time-steps and,
for each time-step, the sequence of evolutionary operations
is applied. For instance, for the time-step corresponding to
day k of the simulation process:

1. All infectious, severe and critical patients that reached
their respective recovery duration (i.e. ∆TI , ∆Ts,
∆Tc) are definitely switched to the state recovered "R"
(Fig. 1).

2. The ensemble of infectious at day k may contaminate
susceptibles "S" with a probability given by the R0

value at day k. By this way, the model is able to ac-
count for rapid time-changes of R0.

3. All infectious, severe and critical patients that are in
their switching period (i.e. δts, δtc and δtd in Fig. 1)
may switch to the next stage with a given probability.
This corresponds to the following possible transitions:
I −→ s, s−→ c, c−→ d.

Data
The data used in the present study, are daily communicated
by the University Hospital to the local authorities, i.e. the
Regional Health Agency (Agence Régionale de Santé in
French). They correspond to the cumulative number of per-
sons with COVID-19, the cumulative number of deceased pa-
tients and the number of patients presently in intensive care
units. Detailed data for France are made available by Santé
Publique France (8).
Both the cumulative number of deceased patients and the
number of patients presently in intensive care units respec-
tively correspond to ΣNd and Nc in the model. The cumula-
tive number of persons with COVID-19 could be something
between ΣNI and ΣNs, depending on the screening proce-
dure. In France, a majority of the persons tested for COVID-
19 are patients with severe symptoms and admitted in spe-
cialised COVID-19 units. Such is the case in Guadeloupe
and, consequently, the cumulative number of persons with
COVID-19 as announced by ARS correspond to the ΣNs of
the model.
In the present study, we use the data going from March 13
2020 to April 11 2020 shown in Figure 8 of appendix Boot-
strapping method of data analysis to construct the predictive
models discussed in the present study. In a second version of
the present paper, the data set has been extended up to May
25 2020 to perform the posterior evaluation of the model per-
formance presented in appendix Posterior model assessment
with data acquired after April 11, 2020.

Results
The model derived in the present study is highly non-linear
with respect to most parameters, and it is expected that non-
unique and significantly different solutions fitting the data
might be obtained. This could be performed by the means of
non-linear inverse methods like simulated annealing (9, 10)
and will be presented in a forthcoming study. In the present
study, the ZI and time-varying R0 parameters are adjusted
with the Nelder-Mead downhill simplex (11, 12). The other
parameters are determined with clinical observations in the
Guadeloupe hospital and data published in the abundant lit-
erature concerning COVID-19.
Figure 2 shows the results for model 1. The time variations
of R0 have been adjusted to reproduce the flattening visible
in the ΣNs data from day 21. The corresponding values of
the parameters are recalled in the upper-right panel of the
Figure. This model provides a good fit to all data ΣNs, Nc
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Fig. 1. Flowchart of the stochastic modelling procedure. In the general case, a susceptible non-infected person S1 becomes infected. This new infected I may contaminate a
numberR0 of other susceptibles (here S2 and S3) during his infected period TI (red line) which may run beyond the recovery period ∆TI (in yellow). During the sub-period
δTs (shaded rectangle), the infectious "I" may switch to state "severe" with a probability ps. If the patient remains in state "I" until the end of the recovery period ∆TI , he
becomes definitively recovered "R". Instead, if the patient switches to state "s", he may either recover at the end of the recovery period ∆Ts or switch with a probability pc to
state critical "c" during the switching period δTc. The same procedure applies to state critical "c".

and ΣNd. In order to reproduce the initial rapid exponen-
tial increase observed before day 10, quite large values of
R0 = [4.2 4.2 4.2 4.5 4.5 4.5] are found for the first 6 days of
the simulation (day 1 corresponds to March 11, 2020). These
high R0 are obtained during the week before municipal elec-
tions when meetings occurred and were probably places of
high contamination rates (13, 14). This could explain the
high R0 values found with the model.

Interestingly, the large R0 from days 1 to 6 must be com-
bined with a large ZI = 80 to fit the sharp a onset of the
ΣNs curve (Fig. 2A). The reasons for such a large number
of initial infectious remain unknown, but we may suspect ei-
ther a massive arrival of infected aircraft or ship passengers
or the existence of several infectious spots like funeral wakes
or election meetings as mentioned above.

In order to fit the strong inverse curvature of the log(ΣNs)
curve between days 10 to 20, R0 must be gradually de-
creased from day 7 (March 17) to day 18 (March 28): R0 =
[3.2 2.3 1.4 1.2 1.1 1.0 1.0 0.9 0.8 0.6 0.5 0.45]. The starting
date of the decrease corresponds to the beginning of the con-

tainment following the second speech of the President of the
French Republic, Mr Macron, on March 16. To reproduce
the flat almost horizontal end of the data from day 21 (March
31), it is necessary to reduce R0 = 0.35 from day 19 (March
29) until the end of the process (i.e. day 80).

With this model, the maximum Nc = 25± 3 is reached near
day 28 (April 7) about 3 weeks after the beginning of the con-
tainment. After this date, the number of critical cases sharply
decreases to reach a low base level about 4 weeks later, i.e.
during the first week of May.

To illustrate the role played by R0 during the containment
period, we present the results for 2 models with the same
parameter values as for model 1 excepted during the contain-
ment. We set R0 = 0.6 in model 2 (Fig. 3) and R0 = 0.8 for
model 3 (Fig. 4). Both models 2 and 3 fit the data as well as
model 1 excepted for the flattening part of the ΣNs data after
day 21 (March 31). This indicates that the determination of
R0 during the containment is constrained only by the most
recent data values. The quality and reliability of these data is
then of a great importance to derive models able to predict an
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Fig. 2. Model 1 results. A) semi-logarithmic (Natural logarithm) plot of the cumulative number ΣNs of severe cases. Green bars = data and red bars = model. B)
Instantaneous numberNI of infectious. C) same as (A) in linear axis. D) Instantaneous numberNc of critical cases. Green bars = data and red bars = model. E) Cumulative
number ΣNd of deceased patients. Green bars = data and red bars = model. The parameter values used in the model are shown in the upper-right part of the figure together
with the time-variation of the basic reproductive number R0. The red rectangles represent the 80% confidence interval centred on the median.

Fig. 3. Results for model 2 with the same parameters as model 1 (Fig. 2) excepted for the containment R0 = 0.6 from day 19 (March 29).
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Fig. 4. Results for model 3 with the same parameters as model 1 (Fig. 2) excepted for the containment R0 = 0.8 from day 19 (March 29).

eventual decrease of critical cases.
Model 2 (Fig. 3) corresponds to the containment R0 = 0.6
and gives a maximum number of critical cases of the same
order and at the same date as the one obtained with model 1
(Fig. 2). However, the decrease following the maximum is
less steep and low values are reached about 3 weeks later with
respect to what is observed with model 1. This translates into
a larger cumulative number of critical case and, consequently,
in a larger number of deceased patients (compare Fig. 2E and
Fig. 3E).
Model 3 (Fig. 4) corresponds toR0 = 0.8. As can be verified
in Figure 4A,C, the flattening of the data after day 21 (March
31) is poorly reproduced making this model less likely than
models 1 and 2. However, owing that the flattening of the
ΣNs curve relies on a small part of the most recent data,this
pessimistic model cannot be totally excluded at the time of
writing this article. The maximum values of critical cases
may reach a maximum of 30 critical patient followed by a
plateau with a small slope during which the instantaneous
numberNc remains around 15-20 one month after the date of
the maximum. This correspond to a situation where the treat-
ment of numerous critical patients must be sustained during a
long period, implying the disposal of a sufficiently large med-
ical staff and amount of equipment. As can be observed in
Figure 4E the number of deceased patients increases steadily.

Concluding remarks

A common characteristic to all 3 models presented above, is
the need of a quite large number ZI = 80 of initial infectious
persons coupled with a large R0 ' 4 at the beginning of the
epidemic spread. This large ZI could be explained either by
the importation of a large number of infected persons or the
presence of several super contaminators able to contaminate

tens of persons during meetings in a short period of time (see
(13, 14) for the effects of mass gathering). Let us remark
that large R0 are reported by others; for instance, Tang et al.
report values as high as 6.47 for data from China. These au-
thors mention that this high R0 corresponds to data collected
during a period of intensive social contacts (i.e. before the
Chinese New Year). Mizumoto and Chowell report R0 val-
ues as high as 10 for the case of Diamond Princess, and for
the same data Rocklöv et al. find a maximum R0 = 14.8 and
a 8-fold reduction to R0 = 1.78 during isolation and quaran-
tine.
Another characteristic of the model is the need to signifi-
cantly reduce R0 to fit the decelerating curvature of the ΣNI
data curve (e.g. Fig. 2A). This reduction is delayed by about
3 days with respect to the beginning of the containment and
confirms an overall good respect of the social distancing rules
by the population of Guadeloupe. Several French national
media published articles stating that Guadeloupe was relativ-
ity spared from the disease (18). Such a claim could have trig-
gered a common sense reflex of protection applied through
social distancing and usage of rules of hygiene. To fit the
most recent ΣNI data, a low R0 = 0.35 must be applied. If
true, this would indicate that people of Guadeloupe continued
to improve their social behaviour during the 3 weeks after the
beginning of the containment.
The models allows to get an estimate of the number of in-
stantaneous infectious NI and cumulative recovered patients
ΣNR. In absence of systematic detection of COVID-19
among the population, no NI data are available and the NI
curve is actually indirectly constrained by the fit to the ΣNs
and Nc data and by the switching probabilities ps and pc.
However, the values given to these probabilities fall in ranges
widely recognised by the medical community and we may
safely consider them sufficiently reliable to give credit to the
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Fig. 5. Effects of uncontrolled end of containment. Same model as in Figure 2 but with an uncontrolled end of containment at day 70 with a sudden resetting of R0 = 4.0.
The model indicates that, after approximately one month of low-level infectious spread, the number of cases again dramatically increases after day 90.

modelled NI and ΣNR curves. A simple assessment may be
done by dividing ΣNd by the observed number of deceased
patients. On day 28 (April 7), this ratio equals 0.7%, a value
slightly lower than the generally recognised ratio of 1− 2%
(19).
For the models discussed above, several thousands of per-
sons have been infected and a large fraction of them have
recovered and are supposed protected against another infec-
tion. However, these supposedly protected persons represent
a relatively small part of the total population and the number
of susceptible persons remains sufficiently large to ensure a
restart of a second epidemic spread of the disease. This is
shown in Figure 5 which represents a long-term simulation
with model 1 as in Figure 2 but with an abrupt resetting of
R0 = 4.0 at day 70 (mid-May), about 2 months after the be-
ginning of the containment. This corresponds to a situation
of uncontrolled end of containment. Because of the existence
of only several infectious cases, the spread of the virus pro-
ceed at a low-level during approximately 3 weeks (i.e. until
day 90) before exponentially exploding again into a second
epidemic crisis. These results illustrate the future difficulty
to control such a restart of the virus propagation and the ne-
cessity to maintain a low R0 for a long period of time. The
simulation shown in Figure 5 assumes that the patients who
recovered during the first epidemic crisis cannot be infected
during the second crisis, a medical assumption that remains
to be confirmed.
The first version of the article was made released on April 16
2020. A third appendix Posterior model assessment with data
acquired after April 11, 2020 was added in a second version
of the article where the model of Figure 2 is compared to
more recent data from April 12 to May 25, 2020 (Fig. 10).

Figure 10 shows that our predictive model remained partic-
ularly accurate during the whole period of COVID-19 de-
crease, i.e. for a duration of more than 6 weeks. This very
good performance of the model may result from the conjunc-
tion of several positive factors discussed in appendix Pos-
terior model assessment with data acquired after April 11,
2020. We believe that the most important factors are: i) the
design of the model and the data used to constrain the pa-
rameters were validated by physicians (MA, PC and MC) be-
longing to the local University Hospital where all COVID-19
cases of Guadeloupe were treated. This point is crucial to ob-
tain reliable data as emphasised by Sperrin et al. (20). ii) the
early confinement made the Guadeloupe archipelago a closed
system with no input/output flux of people susceptible to ei-
ther import or export COVID-19. This made the situation
stable and easier to model.
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Supplementary Note 1: Stochastic Monte
Carlo model

A. Description of the model structure. The stochastic
model used in the present study falls in the class of exact
stochastic Monte Carlo models (2). In such models, the en-
tire population exposed to an infection is represented by a
network where each node represents a person. This type of
models offers very large possibilities to design epidemic pro-
cesses that agree with the medical knowledge of the virus
dissemination and its possible pathological issues.
A set of stochastic rules determines the evolution of each
node at each time iteration. The infection simulation pro-
cess begins by choosing a given number of nodes initialised
as "infected" to put the pathogen in the network. Other initial
conditions can be imposed to fix the state of the population.
For instance, we may fix the number of vaccinated persons.
In the case of COVID-19 for which no vaccine exists at the
present time, the main initial condition is to fix the number
ZI of initially infected individuals. The nest phase of the
modelling is a loop over the time steps covering the period to
simulate. For each time-step, the state of each node is even-
tually modified depending on its present stage and according
to the set of stochastic rules that define the way by which the
infectious disease propagates (a flowchart of the stochastic
process is shown in Figure 1).
In our model, we define 6 different possible states for the
nodes (Fig. 1):

1. state "S" for susceptible corresponds to non-infected
people and likely to become infected. In this sense,
state "S" is also equivalent to the commonly defined
"exposed" state. We note NS instantaneous number of
"S" persons.

2. state "I" for infectious is for people infected by
COVID-19 and presenting either no or only minor
symptoms. These persons are likely to remain unde-
tected by the medical services and expected to pursue
their daily activities and maintain contacts with other
people. By this way, they are the primary cause of in-
fection diffusion among the set of "S" nodes. The basic
reproductive number, R0, defined as the likely number
of "S" infected by a single "I" case during his infec-
tious period TI . We note NI the instantaneous number
of "I" patients.

3. state "s" for severe is for people with enough severe
symptoms to either see an urban doctor or be admitted
in a hospital. These patients are considered to be iso-
lated either at home or at the hospital and are no more
able to infect other people. We note Ns the instanta-
neous number of "s" patients and ΣNs the correspond-
ing cumulative number.

4. state "c" for critical is for patients in a critical state
and necessitating intensive care in hospitals. As for
"c", these patients are considered isolated from the "S"
population and unable to infect others. We note Nc the
instantaneous number of "c" patients.
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5. state "R" for recovered is for patients "I", "s" or "c"
that recovered after a period of time that depends on the
considered state. The recovery periods will be respec-
tively written ∆TI , ∆Ts and ∆Tc for states "I", "s" and
"c". In the specific case of COVID-19, the main med-
ical opinion is that "R" persons are protected against a
new infection by the virus. We note ΣNR the cumula-
tive number of "R" patients.

6. state "d" for deceased patients. We note ΣNd the
cumulative number of "d" patients.

A stochastic set of rules determines the probability to switch
from one state to another. In our model, these rules are (Fig.
1):

1. rule S −→ I determines the condition to switch
from non-infected to infected. The main parameters
of this rule are the infectious period TI and the basic
reproductive number R0. In our model, this rule is ap-
plied to each new "I" node, i.e. nodes that were "S"
one day before. For such new "I", an average number
of R0 are randomly taken among the "S" persons and
are randomly set in state "I" in the next TI days.

2. rule I −→ s determines the conditions to switch
from infectious to state severe. This is controlled by
a probability level ps.

3. rule s −→ c determines the conditions for a patient
with severe symptoms to become critical and will be
admitted in a critical care unit. This is controlled by a
probability level pc.

4. rule c−→ d determines the conditions for a critical
patient to die. This is controlled by a probability level
pd.

5. rule ∗ −→ R represents the switch to state "recov-
ered". This transition applies to "I", "s" and "c" states
with probability 1 as long as the patients respectively
remained in their state for a duration of ∆TI , ∆Ts and
∆Tc.

The explicit definition of the rules and the fact that they ap-
ply to each node of the network provides a great flexibility
to account for more or less sophisticated conditions. For in-
stance, the switching probabilities may easily account for the
age of each person. Also, and indeed the model does it, we
may consider that a switch from one state to another takes
place in a given time interval whose duration is constrained
by clinical data. The model is also able to use a time-varying
basic reproductive number R0(tk) in order to account for the
effects of containment and social isolation. The nodes may
be assigned to different subsets in order to define regions with
given populations. Rules may be defined to account for inter-
actions between regions. In the present study, this possibility
has not been implemented due to the lack of data to constrain
the process.

B. Model parameters. The model is totally determined by
the following parameters:

1. the total number N of nodes, i.e. of persons forming
the population. For Guadeloupe, we set N = 399847
from the age distribution (21).

2. the number ZI of initial "I".

3. the basic reproductive number, R0. This parameter
may be time-varying in order to account for different
social behaviours. It is generally assumed that R0 is
large for COVID-19, and the range of possible values
is large (22). In the present study, we experimentally
determine the value of R0 that best reproduces the ob-
served data. This point will be discussed in details in
section Bootstrapping method of data analysis.

4. the infectious period TI is typically assumed to be of
the order of 20 days with possible values as large as
37 days in some exceptional circumstances. In the
present study, we determine a value for TI that best
matches with both the data and the prior assumptions
taken other studies. This point is considered in section
Bootstrapping method of data analysis.

5. the recovery periods ∆TI , ∆Ts and ∆Tc are con-
strained by clinical data.

6. the switching probabilities ps, pc, and pd are con-
strained by clinical data. These probabilities are com-
pleted by switch periods, δTs, δTc and δTd during
which a given state "I", "s" and "c" may respectively
switch to "s", "c" and "d".

C. Simulation examples. In this section we present several
simulations to illustrate the effects of the key parameters of
the model. This will help the reader to understand where
information able to put constrains on the parameters can be
obtained from the data processed in section Bootstrapping
method of data analysis. In order to quantify the random
fluctuations due to the stochastic nature of the model, each
simulation is performed 20 times to compute the median and
the confidence intervals of the results.
The first simulation corresponds to a duration of 80 days with
a basic reproduction number R0 = 2.0 from day 1 to day 39,
and R0 = 1.2 afterwards. The model started with ZI = 500
initial infected "I" and the duration of the infectious period
is fixed to TI = 14 days. All other parameters are kept fixed
during the process: ps = 0.14, pc = 0.25, pd = 0.20, ∆TI =
20 days, ∆Ts = 14 days, ∆Tc = 21 days, and the switch
periods δTs = [4−10] days, δTc = [3−9] days, δTd = [3−8]
days.
Figure 6 shows the results of the simulation for the time vari-
ations of NI (Fig. 6B), and of ΣNs and Ns (Fig. 6C). The
three curves together with Nc are represented in a common
semi-logarithmic graph in Figure 6A. The Natural logarithm
is used throughout the present paper.
As a starting point for the discussion, it can first be ob-
served that the time variations of NI and Ns significantly
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C Simulation examples

Fig. 6. Stochastic simulation for a period of 80 days. B) time variations of NI . C) time variations of ΣNs and Ns (D) . A) The same
curves together with Nc displayed in a semi-logarithmic graph (Natural logarithm). The upper right panel of the figure shows the
parameters β obtained for the 8 linear segments identified in the curves shown in (A). The R0 values have been derived from β using
equation 2 with TI = 14 days. The model started with ZI = 500 initial infectious "I" and R0 = 2.0. At day 40, the basic reproduction
number changed to R0 = 1.2. During all the process, the other parameters remained unchanged: ps = 0.14, pc = 0.25, pd = 0.20,
∆TI = 20 days, ∆Ts = 14 days, ∆Tc = 21 days, and the switch periods δTs = [4−10] days, δTc = [3−9] days, δTd = [3−8] days.

depart from a pure exponential pattern, particularly because
of the presence of smooth bumps in the curves around day
55. These bumps can be better understood in the semi-
logarithmic plot of Figure 6A where the NI and Ns curves
appear partly linear in two segments. The same linear seg-
ments are also visible in theNc curve. The presence of linear
segment in the curves indicates an exponential time variation.
In the NI curve (orange symbols), a first linear segment goes
from day 1 until day 39 with slope β = 0.108. A second lin-
ear segment with slope β = 0.035 starts at day 50. A curved
segment locates in between the two linear segments, from day
40 to day 50.
The slopes β of the linear segments are related to the basic
reproductive number through,

R0 = exp
(
β× TI2

)
. (2)

In the present example, taking TI = 14 days, we have R0 '
2.1 for the first segment of NI , Ns and Nc. For the second
segment, R0 ' 1.3 for curves NI , Ns and Nc. These val-
ues agree very well with the input values used in the model.
The linear segment of NI is slightly biased by the presence
of a small jump at day 20 that corresponds to the recovery
time ∆TI = 20 days of the initially infected patients (i.e.
500 persons in this simulation). This cohort of initial infec-
tious massively contaminates ZI×R0 = 1000 persons, some
of these initials switched to state "s" but most of them (i.e.
' ZI × (1−ps) = 430) recovered and suddenly switched to
state "R" at day 20. This produces a sharp decrease of the
instantaneous number of infectious patients in the NI curve.
This jump is transmitted in the other curves but highly blurred
by the switching process (through stochastic causal convolu-

tions).
The parameter β is a primary quantum of information that
can be obtained from the data, and equation 2 shows that the
parameters R0 and TI are linked:

log(R0)× 2
TI

= β. (3)

This equation shows that, if β is the only information avail-
able, the pairs of parameters [R0,TI ] cannot be determined
uniquely unless additional information is available through
the knowledge of either R0 or TI .
Information about TI can be obtained by recognising that
this period of time corresponds to the duration of the smooth
curved segment that separates the two linear segments dis-
cussed above. In curve NI , the curved segment starts at day
40 when the change of R0 occurs. However, because new in-
fectious patients do not immediately contaminate others but
instead do that during the period of time TI , an abrupt change
of R0 appears smoothed. Consequently, this is only after day
50, that a linear segment corresponding to the new value of
R0 appears in the NI curve. This phenomena is of a consid-
erable practical importance because it represents a latency (or
an inertia) of the control measures taken by the authorities to
reduce and extinct the epidemic process. Such a latency has
to be clearly explained to the population in order to encour-
age people to maintain they efforts to remain in containment.
The two linear segments of the Ns curve (Fig. 6A) are de-
layed by 9 days with respect to the segments of theNI curve.
This duration of 9 days corresponds to the onset period of the
Ns curve during days 1 to 9 of the process (filled blue dots
in Fig. 6A). The delay of 9 days is caused by existence of
the time period δTs = [ts1, ts2] during which a "I" patient is
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able to become "s" (in this simulation, δTs runs from day 4 to
day 10). Consequently, the first "s" patients begin to appear
after a delay of ts1 days (i.e. 4 days in this example) and all
"s" patients are created at day t2s10. This explains the dura-
tion and the shape of the onset period visible at the beginning
of the Ns curve. Consequently, the onset period of the Ns
curve may provide information about the switch period δTs.
The same onset phenomena is observed in the Nc curve but
with a delay equals to the sum of ts1 + tc1 = 7 days. The end
of the onset period falls at day ts2 + tc2 = 19.
We now turn to the case of the ΣNs curve (green circles in
Fig. 6A) which is particularly important because it generally
corresponds to the available data. Contrarily to the instan-
taneous quantities NI and Ns which give the number of ei-
ther "I" or "s" patient at a given time, ΣNs is a cumulative
quantity which gives the total number of patients who passed
by stage "s" anytime before present. We emphasise that this
quantity is NOT the integral of Ns and, as a consequence,
the slopes of the linear segments present in the ΣNs curve
are not simply related to those of the Ns curve. Indeed, a
careful examination of the ΣNs reveals that the segments are
not strictly linear. At the beginning of the process, we have
ΣNs = Ns until the end of the time periods where first "s"
patients begin to switch either to the state "R" or "c". At that
time, the two curves begin to diverge. The slopes of the linear
segments in ΣNs are always slightly larger than the slopes of
Ns and the formula 2 and 3 are no more exact for the ΣNs
case. Indeed, the R0 values derived for ΣNs in the exam-
ple (upper right part of Fig. 6) are significantly biased, and
to obtain reliable R0 estimates, it is necessary to use data at
the very end of the process, in the narrow time-window com-
prised between the end of the onset period and the beginning
of the switching from "s" to "c".
The size of the confidence intervals appears constant in the
semi-logarithmic plots (Fig. 6A). This is typical of a multi-
plicative noise where the amplitude of the statistical fluctua-
tions is proportional to the data amplitude as can be checked
in Figure 6B,D. In our case, this multiplicative noise may be
explained by the growing Brownian divergence of some ran-
dom walks in the network. Practically, this conducts to the
appearance of some outlier simulations and justifies the use
of the median.
We now address another important characteristic of the epi-
demic process through the random variations occurring at the
very beginning of the process. The features we want to dis-
cuss are illustrated in Figure 7 where the plots have been
obtained by running the model with a different number on
initial infected ZI . In the case of rather small values of ZI
(i.e. 1, 10 or 20 in Fig. 7A,B,C), random fluctuations perturb
the beginning of the curves, with a longer persistence for the
Ns curve. For larger values of ZI (i.e. 40, 60 or 80 in Fig.
7D,E,F), the random fluctuations almost disappear while the
starting sequence becomes steeper. Consequently, a careful
observation of the starting sequence may provide some in-
formation about the number ZI of initial infectious persons.
Let us remark that these features can only be obtained with a
stochastic model as the one developed in the present study.
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C Simulation examples

Fig. 7. Stochastic simulations obtained for 6 different values of the initial number of infectious. The value of ZI is indicated on each
subplot.
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Supplementary Note 2: Bootstrapping
method of data analysis

A. Presentation of the data. This section gives details on
the method used for the data analysis and presents the results
used to constrain the stochastic model presented in section
Stochastic Monte Carlo model.
Figure 8 shows the data used in the present study, namely
the numbers Ns and Nc of severe and critical case observed
in Guadeloupe from March 13th until April 2 of year 2020.
These data are presented in both linear and semi-logarithmic
plots in order to better emphasise a possible exponential-like
pattern. Because of the small number of data available at the
time of writing the present paper, the exponential increase of
either Ns or Nc is not as conspicuous as for the synthetic
case presented in Figure 6. However, for the data set Ns, the
semi-logarithmic plot (Fig. 8B) is reasonably linear in the
[day 7− day 16] period. The first 6 points are expected to
correspond to the δTs onset period of 6 to 7 days. For the
Nc data, a linear segment may be identified in the [day 6−
day 19] period.
By comparing the onset period in the data with the simulation
results of Figure 7, we may claim that the onset sequence of
the data curve Ns corresponds to a rather large number of at
least 80 initial infectious persons. These persons could for
instance be passengers of an aircraft or members of a group
infected by a single infectious during a meeting.

B. Data bootstrapping and parameter determination.
In order to determine the β parameter and its uncertainty lim-
its from the small-size data sets of Figure 8, we use a boot-
strapping approach (23). Let us recall that this method relies
on a statistical resampling of the data sets in order to reconsti-
tute the statistical variability of the estimated parameter β. In
the present study, we performed 1000 bootstrap resamplings
for each data set Ns and Nc, and the so-obtained 1000 es-
timates of β may be used to compute the probability density
kernels shown in Figure 9A. The two probability distributions
are poorly statistically coherent with a small overlap of the
two curves. Equation 2 may be used to compute R0 (using
TI = 14 days) from the β probability curves. The estimate
for R0 ' 1.85± 0.03 is coherent with the values published
by Li et al. (22) who found R0 = 2.2 with a 95% confidence
interval [1.4−3.9].
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B Data bootstrapping and parameter determination

Fig. 8. Data used in the present study. Number ΣNs of severe cases (A) andNc of critical cases (C) as a function of time. In plots B and
D, the data are presented in a semi-logarithmic graph. The filled symbols represent the data points used in the bootstrap computations
and are assumed to belong to the linear part of the semi-logarithmic curves when an exponential regime is established.

Fig. 9. A) Probability density kernels for the parameters βs and βc obtained by respectively bootstrapping the data ΣNs and Nc.
The data used are represented as filled symbols in Figure 8. B) Kernels for R0 obtained by applying equation 2 to the bootstrapped
parameters βs and βc.
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Supplementary Note 3: Posterior model as-
sessment with data acquired after April 11,
2020
The present Section was added in version 2 of the paper to
compare the data published after April 11 2020 to the predic-
tions of the model published in the first version of the article.
The results are shown in Figure 10 where the data used to
constrain the model in version 1 of the article are shown as
red vertical bars, and the new data (from April 12 to May
25, 2020), neither used to improve or update the model, are
shown as blue vertical bars. It is worth mentioning that the
model shown in Figure 10 has been run with the same pa-
rameters as those of the "best model" of Figure 2 already
published in version 1 of the article. Slight discrepancies be-
tween the model results of Figures 2 and 10 are attributable
to random fluctuations due to the stochastic nature of the al-
gorithm.
As can be observed in Figure 10, there is a remarkably good
agreement between the model predictions and the new data
which span a time range of more than 6 weeks. This posterior
assessment of our model indicates that modelling the covid-
19 spread in Guadeloupe with a stochastic approach, al-
though constrained with a relatively small number of param-
eters, was reliable. This result contradicts repeated claims
reporting that the predictions of COVID-19 models are un-
reliable and should not be used as decision tools (e.g. (24)).
Such a negative statement is clearly at odd for the model pro-
posed in the present study and it is interesting to examine
why our model has good performances when compared with
the low level of performance usually assigned to COVID-19
predictive models.

1. It is worth mentioning that 3 (MA, PC, MC) among the
4 co-authors of the present study are practitioner physi-
cians of the local University Hospital which was the
focal point for COVID-19 cares in Guadeloupe. This
point is clearly a mandatory condition to obtain reli-
able data and put pertinent constrains on the model as
emphasised by Sperrin et al. (20).

2. The fourth co-author (DG), although not permanently
leaving in Guadeloupe, frequently leaves in Guade-
loupe since 20 years and has a good knowledge of the
social structure of the population.

3. Items 1 and 2 allowed to optimally choose the numeri-
cal approach for the Guadeloupe model elaboration:

(a) At the time of the model construction, the input of
new information concerning the COVID-19 dis-
ease was frequent, abundant and puzzling. The
physician co-authors evaluated this amount of in-
formation and selected the information to inte-
grate in the model.

(b) The necessity to progressively integrate new
and possibly non-linear constrains in the model
favoured the choice for an explicit stochastic ap-
proach.

4. Specific circumstances concerning the COVID-19
spread in Guadeloupe certainly concurred to the suc-
cess of our model:

(a) Despite the fact that Guadeloupe is an
archipelago, most of the population stays
on the Grande Terre and the Basse Terre islands
separated by the Rivière Salée with a width of
some tens of metres. The industrial, commercial
and economic structure of Guadeloupe favours
numerous social contacts among the population
which can be considered homogeneous with
respect to COVID-19 spread.

(b) The spread of COVID-19 in Guadeloupe started
several weeks after the spread in Europe and, par-
ticularly, in France. For this reason, the con-
tainment began a few days after the onset of the
COVID-19 spread in Guadeloupe. This probably
created a very stable situation during the whole
duration of the containment, making the spread
more predictable.

(c) Another important particularity of Guadeloupe is
that medical and administrative authorities made
a very tight control of passengers arriving in
Guadeloupe either by plane of by boat. This
made the archipelago a closed territory easier to
model than open areas.

(d) A coherent and documented communication pro-
cedure driven by both the medical and adminis-
trative authorities enabled to broadcast convinc-
ing and understandable messages to the popula-
tion. This was reinforced by the fact that these
messages were given by respected local physi-
cians with an accurate knowledge of the local
sanitary situation.
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B Data bootstrapping and parameter determination

Fig. 10. Same Model 1 as in Figure 2 but with the data acquired from April 12 to May 25 2020 (vertical blue bars), i.e. not used to
constrain the model.
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