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Summary 

Background 
The ​SARS-CoV-2 virus responsible for COVID-19 poses a significant challenge to           

healthcare systems worldwide. Despite governmental initiatives aimed at containing the          
spread of the disease, several countries are experiencing unmanageable increases in the            
demand for ICU beds, medical equipment, and larger testing capacity. Efficient COVID-19            
diagnosis enables healthcare systems to provide better care for patients while protecting            
caregivers from the disease. However, many countries are constrained by the limited            
amount of test kits available, the lack of equipment and trained professionals. In the case of                
patients visiting emergency rooms (ERs) with a suspect of COVID-19, a prompt diagnosis             
can improve the outcome and even provide information for efficient hospital management. In             
this context, a quick, inexpensive and readily available test to perform an initial triage at ER                
could help to smooth patient flow, provide better patient care, and reduce the backlog of               
exams. 

Methods 
In this Case-control quantitative study, we developed a strategy backed by artificial            

intelligence to perform an initial screening of suspect COVID-19 cases. We developed a             
machine learning classifier that takes widely available simple blood exams as input and             
predicts if that suspect case is likely to be positive (having SARS-CoV-2) or negative(not              
having SARS-CoV-2). Based on this initial classification, positive cases can be referred for             
further highly sensitive testing (e.g. CT scan, or specific antibodies). 

We used publicly available data from the Albert Einstein Hospital in Brazil from 5,644              
patients. Focussing on using simple blood exams, a sample of 599 subjects that had the               
fewest missing values for 16 common exams were selected. From these 599 patients, only              
81 were positive for SARS-CoV-2 (determined by RT-PCR).  

Based on this data, we built an artificial intelligence classification framework,           
ER-CoV, aiming at determining which patients were more likely to be negative for             
SARS-CoV-2 when visiting an ER and that were categorized as a suspect case by medical               
professionals. 

The primary goal of this investigation is to develop a classifier with high specificity              
and high negative predictive values, with reasonable sensitivity. 
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Findings 
We identified that our framework achieved an average specificity of 92.16% [95% CI             

91.73 - 92.59] and negative predictive value (NPV) of 95.29% [95% CI 94.65% - 95.90%].               
Those values are completely aligned with our goal of providing an effective low-cost system              
to triage suspected patients at ERs. As for sensitivity, our model achieved an average of               
63.98% [95% CI 59.82% - 67.50%] and positive predictive value (PPV) of 48.00% [95% CI               
44.88% - 51.56%]. 

An error analysis identified that, on average, 45% of the false negative results would              
have been hospitalized anyway, thus the model is making mistakes for severe cases that              
would not be overlooked, partially mitigating the fact that the test is not high-sensitive. 

All code for our AI model, called ER-CoV is publicly available at            
https://github.com/soares-f/ER-CoV​. 

 

Interpretation 
Based on the capacity of our model to accurately predict which cases are negative              

from suspected patients arriving at emergency rooms, we envision that this framework can             
play an important role in patient triage. Probably the most important outcome is related to               
testing availability, which at this point is extremely low in many countries. Considering the              
achieved specificity, we would reduce by at least 90% the number of SARS-CoV-2 tests              
performed at emergency rooms, with the chance of getting a false negative at around 5%.               
The second important outcome is related to patient management in hospitals. Patients            
predicted as positive by our framework could be immediately separated from the other             
patients while waiting for the results of confirmatory tests. This could reduce the spread rate               
inside hospitals since in many hospitals all suspected cases are kept in the same ward. In                
Brazil, where the data was collected, rate infection is starting to quickly spread, the lead time                
of a SARS-CoV-2 can be up to 2 weeks. 

Funding 
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Introduction 
 

The ​SARS-CoV-2 virus responsible for Covid19 has posed a significant challenge to            
healthcare systems worldwide ​(Phelan et al., 2020)​. Despite governmental initiatives aimed           
at containing the spread of the disease, several countries are experiencing unmanageable            
increases in the demand for ICU beds, medical equipment, and larger testing capacity. By              
April 5, 2020, more than 1.2 million people were infected by the new coronavirus, with over                
60,000 deaths according to the World Health Organization (WHO) situation report 76 . 1

Efficient COVID-19 diagnosis enables healthcare systems to provide better care to           
patients while protecting caretakers from the disease. Most tests for the ​SARS-CoV-2 virus             
responsible for COVID-19 may either (i) detect the presence of a virus or a protein, called                
molecular test, or (ii) detect ​antibodies produced as a reaction for virus exposure ​(Li et al.,                
2020)​. Tests of type (i) are usually related to Polymerase Chain Reaction (PCR) which is               
labor-intensive in terms of laboratory procedures ​(Corman et al., 2020)​. Tests of type (ii)              
usually detect the IgG and IgM immunoglobulins related to SARS-CoV-2 and can be             
commercialized in the form of rapid tests ​(Li et al., 2020)​. However, the global clinical               
industry is currently incapable of meeting such demand. For instance, in Brazil, with a              
population of more than 200 million people, according to the Health Ministry , the country              2

received at the end of March/2020 only 500,000 rapid tests.  

The frontline of medical care for COVID-19 is the emergency rooms at hospitals or              
health centers, which have to identify patients with COVID-19 from the ones with similar              
symptoms but that present other respiratory diseases, such as fever, cough, dyspnoea, and             
fatigue ​(Lake, 2020)​. The quick determination of patient status regarding COVID-19 may            
determine follow-up procedures that can improve overall patient outcome, as well as protect             
medical professionals. Thus, a quick, inexpensive and broadly available testing for this            
scenario is of utmost interest. 

 
Research in context 

Evidence before this study 

We searched PubMed on April 7, 2020, for studies using the terms            
("SARS-CoV-2" OR "COVID-19" OR “coronavirus”) AND ("artificial       
intelligence" or "machine learning" or "data science") without any restrictions          
regarding language or article type. We found no articles describing predictive           
methods (tests) for suspected patients based only on blood components.          
Articles regarding artificial intelligence in this context were found for automatic           

1 
https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200405-sitrep-76-c
ovid-19.pdf?sfvrsn=6ecf0977_2 
2 
https://www.saude.gov.br/noticias/agencia-saude/46623-brasil-inicia-a-distribuicao-de-500-mil-testes-r
apidos 
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assessment of chest CT. Previous studies correlated the C reactive protein to            
viral infections, mildly elevated alanine aminotransferase (ALT) in acute         
respiratory distress syndrome (ARDS) patients, leukopenia and lymphopenia. 

Added value of this study 

This is the first study to report a predictive system with high specificity and              
acceptable sensibility for the triage of suspected cases of COVID-19 in           
emergency rooms using only simple blood exams. We achieved an average           
specificity of 92.16% with negative predictive value of 95.29%. The average           
rate of false negatives is only 4.06%. 

More specific tests are already available in the market, but at the current             
moment of the SARS-CoV-2 pandemic, stocks are short and result delivery           
time is long. With our solution, practically any clinical laboratory would be able             
to produce the information that is used as input in our method (ER-CoV) at              
very low cost. 

Implications of all the available evidence 

Our findings support that it would be possible to reduce at least 90% the              
number of SARS-CoV-2 tests performed at emergency rooms, with the          
chance of getting a false negative at around 5%, thus making screening more             
accessible for the population. Secondary implications are related to patient          
management, since with daily blood samples it would be possible to track            
patients that may have developed COVID-19 inside the hospital, then allowing           
better facility isolation. 

 

Artificial Intelligence (AI) methods have already been used in other medical           
scenarios, such as for the detection of colorectal cancer using blood plasma ​(Soares et al.,               
2017)​, prediction of drug-plasma binding ​(Kumar et al., 2018)​, and identification of patients             
with atrial fibrillation during sinus rhythm ​(Attia et al., 2019)​. In the field of metabolomics, AI                
also plays an important role ​(Bahado-Singh et al., 2019)​. 

Considering the aforementioned successes in integrating AI and medicine, we          
propose ER-CoV, an artificial intelligence-based screening method that uses blood exams to            
triage patients suspect of COVID-19 arriving at emergency rooms.  
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Methods 
 
Study population 

We performed a retrospective case-control study on data collected by the Brazilian            
Albert Einstein Hospital, a leading facility in the management of COVID-19 in the state of               
São Paulo. The data is of public access and anonymized, encompassing 5,644 patients,             3

and 108 exams. 

According to the data provider, the anonymized data was collected from patients            
seen at the hospital’s emergency room who were initially suspected cases of COVID-19             
according to the hospital’s workflow for SARS-CoV2 . The main criteria by the latest             4

guidelines (01/04/2020) are SpO2 >= 93% or altered pulmonary auscultation; and lack of             
clinical deterioration or organ dysfunction. 

From the 108 variables available in the dataset, we devoted our research to the ones               
that can be quickly obtained in most  laboratories: 

1. Mean platelet volume 
2. Leukocytes 
3. Mean corpuscular volume (MCV) 
4. Creatinine 
5. Red blood cells 
6. Basophils 
7. Monocytes 
8. Potassium 
9. Lymphocytes 
10. Mean corpuscular hemoglobin concentration (MCHC) 
11. Red blood cell distribution width (RDW) 
12. Sodium 
13. Mean corpuscular hemoglobin concentration (MCHC) 
14. Eosinophils 
15. C reactive protein 
16. Urea 

 
The reference method for determining if the individual was positive for SARS-CoV-2            

was reported to be the reverse-transcriptase polymerase chain reaction (RT-PCR) method           
as described in the national Brazilian guidelines .  5

 

3 ​https://www.kaggle.com/einsteindata4u/covid19 
4 
https://medicalsuite.einstein.br/pratica-medica/Documentos%20Doencas%20Epidemicas/Manejo-de-c
asos-suspeitos-de-sindrome-respiratoria-pelo-COVID-19.pdf​ - In Portuguese 
5 
https://portalarquivos2.saude.gov.br/images/pdf/2020/marco/04/2020-03-02-Boletim-Epidemiol--gico-
04-corrigido.pdf 
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Proposed workflow for patient screening using artificial intelligence 

The scenario we developed our solution for is for patients arriving at a hospital’s              
emergency room. In Figure 1 we depict our proposed workflow for the usage of this artificial                
intelligence (AI) model. 

 

 

 

Figure 1: Diagram of our envisioned workflow using the ER-CoV artificial intelligence model 
in a hospital emergency room (ER). 

 

A patient would initially be evaluated by health professionals to determine if she/he is              
a probable case of COVID-19. 

Once the patient is determined as a suspect case, simple blood exams would be              
requested, since they are the input for the ER-CoV artificial intelligence model. Our model              
uses the blood exams mentioned in the study population section. 

The results of these exams are used as input to a pre-trained ER-CoV model that will                
output a positive or negative result. In the case of a positive result, due to its relatively lower                  
sensitivity, we recommend that a second test be performed, such as PCR based, antibodies              
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rapid kits, or CT scan. If the result is negative, the patient is very likely to not have                  
COVID-19. 

In a global scenario of an extreme shortage of testing kits and of laboratory supplies               
for PCR related exams, we foresee that our proposed method can have a great impact on                
patient diagnosis at ER, especially in developing and low income countries. 

 

Proposed artificial intelligence method for COVID-19 triage at ERs (ER-CoV) 

The AI method requires a series of blood exams already listed and uses advanced 
techniques to model healthy subjects and predict the status of new patients regarding 
COVID-19. The overall flowchart of our method (ER-CoV) is shown in Figure 2. 

 

 

Figure 2: Flowchart for ER-CoV, our AI based method for prediction of COVID-19 in 
suspected patients in ERs. The output from the AI model may not be final if its output is 

positive. 

 

In this case, the blood exams are fed to ER-CoV, which will provide an initial               
prediction of COVID-19 status for the suspect ER patient. As found in the dataset, this initial                
prediction may be misclassified with other respiratory infections, especially influenza. To           
reduce possible false positives, we included an intermediary step if a “positive” result is              
predicted: rapid testing for Influenza A and Influenza B since they are common respiratory              
diseases with some of the same symptoms. If the result is positive for any of the two                 
Influenza strains, the final prediction will then be reclassified as “negative”. In the dataset              
there were no positive cases of both Influenza A or B and COVID-19.  

If Influenza tests are not available, one could consider the case as “positive”.             
Analogously, if other additional rapid tests are available, such as for H1N1            
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Rhinovirus/Enterovirus, they could be added to the intermediary step for differential           
diagnosis before deeming the sample as positive.  

The AI model is trained using a combination of three techniques: Support Vector             
Machines ​(Boser et al., 1992)​, SMOTEBoost ​(Chawla et al., 2003)​, and ensembling            
(Rokach, 2010)​. Before training our model, C reactive protein missing values (99 out of 599)               
were imputed using the kNN algorithm ​(Torgo, 2016)​ (k=5). 

Support Vector Machines (SVM) are an AI technique that can be used for             
classification (i.e. given a sample, predict if that sample is “positive” or “negative”). This              
algorithm has been successfully used in many biomedical applications and tends to present             
good performance. However, due to the small number of “positive” samples in the dataset              
(13.52%), the algorithm is prone to favor the majority class, that is, predicting all samples as                
“negative”, resulting in extremely low sensitivity. Oversampling and ensemble methods were           
applied to mitigate against this problem. SMOTE (Synthetic Minority Oversampling          
Technique) takes account of the relatively small number of positive examples by creating             
additional synthetic examples of this class.  

The boosting algorithm identifies the incorrect predictions and assigns a larger weight            
for that sample, such that at the next iteration the algorithm will pay more attention to it.                 
SMOTEBoost combines both approaches to improve classification performance for the          
smaller class. 

Ensembling by its turn is based on the assumption that when one combines a              
collection of predictions from different models, the final prediction will have better            
performance. In our case, we trained 200 SVM-based SMOTEBoost models. The initial            
prediction of our AI model is the average probability for all the 200 models, which is given as                  
“positive” if the probability is greater than 0.5, otherwise, the model will predict the sample as                
“negative”. Details about model training are provided in the supplementary material, as is             
the source code. 

Incremental developments will be updated at ​https://github.com/soares-f/ER-CoV​. 

 

Numerical Analysis 

For the statistical analysis, we computed the following statistics: Sensitivity,          
Specificity, Positive Predictive Value (PPV), Negative Predictive Value (NPV) ​(Kirkwood &           
Sterne, 2010)​.  

AI models may be affected by a specific partition of the data, that is, the particular                
samples used to calibrate and evaluate the model (the training and test sets). To counter               
that, we repeated the process of training and evaluation 100 times using different partitions              
of data for training and testing and storing all information from each run. Approximately 90%               
of the data was assigned for training, and 10% for testing. Partitioning of the data training                
and test was carried out using stratified random sampling r to ensure that training and test                
samples have approximately the same proportion of positives and negatives.  
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After running these steps for ER-CoV, as depicted in Figure 2, we computed the              
average of the aforementioned statistics and their 95% confidence interval evaluated           
through BCa bootstrapping ​(Efron, 1987) with 500 replicates. All models and statistics were             
carried out in R version 3.6.3. 

 

Results 

Characterization of patients 

A total of 599 patients were included in this study, corresponding to a subsample of               
the original dataset of 5,644 individuals. The subsampling was performed to select only             
patients that have reported blood exams.  

Due to the anonymization process performed by the hospital, we do not have access              
to the nominal values of the exams, but their standardized values (i.e. zero mean and unit                
standard deviation). The same is true for patient age, which was split in quantiles but no                
additional information was given regarding this data, therefore we did not rely on age in any                
of our computations. Gender, race, and possible time of infection were not available. 

A total number of 81 positive cases were present in the dataset, while 518 were               
negatives, giving a prevalence of 13.52%. When computing the prevalence in the original             
dataset, with the missing values, we found a prevalence of 9.88%. In Figure 3, we present                
the diagram showing the flow of patients. 
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Figure 3 : Diagram representing the process to select the included patients in our 
study. Notice that from an initial number of 5,644 patients, we had adequate data for only 

599. 

 

Results for the artificial intelligence predictive model 

We applied our proposed AI method to the already described dataset and repeated             
the training of the model and the evaluation of the metrics of interest in the test set 100                  
times, to guarantee that the results we report are not biased by a specific data partition. We                 
also use the values of the replications to create the confidence intervals for each metric. 

Reported Specificity was 92.16% [95% CI 91.73 - 92.59]; Sensitivity was 63.98%            
[95% CI 59.82 - 67.50], Negative Predictive Value (NPV) was 95.29% [95% CI 94.65% -               
95.90%], whereas Positive Predictive Value (PPV) was 48.00% [95% CI 44.88% - 51.56%].             
In Figures 4 to 7, we show the distribution of these metrics.  

Table 1 presents the average contingency table taken as proportions over the 100             
performed 100 replications of our test. One can notice an average of only 4% false               
negatives, which corroborates the findings of our study and the robustness of ER-CoV. 
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Table 1: Average contingency table shown as proportions for the 100 replications of 
ER-CoV 

  Reference test (RT-PCR) 

  Positive Negative Total 

 
Our test 
(ER-CoV) 

Positive 6.50% 7.07% 13.57% 

Negative 4.06% 82.37% 86.43% 

Total 10.56% 89.444 100% 

 

 

 

 
Figure 4: Histogram for the sensitivity of ER-CoV considering the 100 repetitions 
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Figure 5: Histogram for the specificity of ER-CoV considering the 100 repetitions 

 
Figure 6: Histogram for the NPV of ER-CoV considering the 100 repetitions 

 
Figure 6: Histogram for the PPV of ER-CoV considering the 100 repetitions 
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We found that the proposed AI method was successful at discarding negative            
patients, while flagging potential positive patients for COVID-19. When performing error           
analysis of the 100 replications, we found that 99 out of 599 patients were misclassified at                
least once, as shown in Table 2.  

 

Table 2: Summary of the number of unique patients that were misclassified during 
the repetitions of our experiments and their status regarding hospital admission 

 RT-PCR Positive RT-PCR Negative 

Admitted 27 3 

Non-Admitted 33 36 

Total 60 39 

 

45% of the patients misclassified as negative, that is false negatives, were admitted             
to hospital anyway, possibly due to the severity of their symptoms or potentially other factors               
such as comorbidities that would be available to the clinician justifying hospital admittance.             
For comparison, only 9.31% of the COVID-19 positive patients in the entire data set were               
hospitalised. Thus, even with an average sensitivity of 63.98% using only a limited number              
of blood exams (which already is an important finding), it is also relevant to take into account                 
the severity of their symptoms and their clinical evaluation by a professional, with             
hospitalisation instead of going back to the community where they could transmit the             
infection.  

Due to length limit, we added as supplementary material the results achieved using             
other setup scenarios, such as different training and test ratios and other classifiers. All              
results can be reproduced using the  R Markdown file provided. 

 

Discussion 

By the simple introduction of the AI model, given its average specificity of 92.16%,              
the number of traditional tests already employed at the hospital’s ER would be reduced by               
this factor. That is, only around 9% of suspected COVID-19 cases would needed to be sent                
for further testing. Due to its high Negative Predictive Value of 95.29%, less than 5% of                
patients would be misclassified as not being infected with COVID-19. 

ER-CoV has the potential to improve COVID-19 screening at emergency rooms. The            
first, and possibly most important, benefit is the reduction of the number of tests required to                
be performed on patients that are negative for COVID-19.Another benefit is the potential to              
develop prioritisation queues for patients that our algorithm identifies as positive, thus            
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speeding up results for potentially infected patients. An additional positive impact is related             
to hospital and patient flow management. Hospitals would be able to provide better isolation              
of COVID-19 patients, given that blood samples could be drawn on a daily basis and               
ER-CoV would identify patients that should be moved to another ward, for instance a ward of                
suspected positive patients. 

A limitation of our study is that we were not capable of identifying with high certainty                
which blood exams contribute the most to the classification due to the nature of our AI model                 
framework. However, previous studies already identified that C reactive protein ​(Ling, 2020)​,            
leukocytes ​(Cheng et al., 2020; Qin et al., 2020)​, platelets ​(Cheng et al., 2020)​, and               
lymphocytes ​(Xu et al., 2020) are altered at different levels in COVID-19 patients. Thus, we               
envision for future research a detailed study of which blood exams are more informative for               
differential diagnosis, as well as for understanding how the SARS-CoV-2 virus alters blood             
components.  

Another possible limitation is that data were collected only at the emergency room,             
with patients already displaying symptoms compatible with COVID-19. At this point, due to             
the lack of data from asymptomatic patients, we cannot generalize how our model would              
perform for a group of individuals that are not compatible with characteristic symptoms of              
COVID-19.  

In this paper we report a novel method for the classification of COVID-19 patients at               
emergency rooms. ER-CoV is low-cost and relies only on simple blood exams that are fast               
and highly available, and resort to artificial intelligence methods to model such patients. We              
achieved extremely significant results and foresee many applications of this framework.           
Thus, we call for additional initiatives such as this one executed by the Albert Einstein               
Hospital, since data that can be easily anonymized could provide important insights in             
longitudinal studies of disease progression. 
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