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The SIR (‘susceptible-infectious-recovered’) formulation is used to uncover the generic spread
mechanisms observed by COVID-19 dynamics globally, especially in the early phases of infectious
spread. During this early period, potential controls were not effectively put in place or enforced in
many countries. Hence, the early phases of COVID-19 spread in countries where controls were weak
offer a unique perspective on the ensemble-behavior of COVID-19 basic reproduction number Ro.
The work here shows that there is global convergence (i.e. across many nations) to an uncontrolled
Ro = 4.5 that describes the early time spread of COVID-19. This value is in agreement with
independent estimates from other sources reviewed here and adds to the growing consensus that
the early estimate of Ro = 2.2 adopted by the World Health Organization is low. A reconciliation
between power-law and exponential growth predictions is also featured within the confines of the
SIR formulation. Implications for evaluating potential control strategies from this uncontrolled Ro

are briefly discussed in the context of the maximum possible infected fraction of the population
(needed for assessing health care capacity) and mortality (especially in the USA given diverging
projections). Model results indicate that if intervention measures still result in Ro > 2.7 within 49
days after first infection, intervention is unlikely to be effective in general for COVID-19. Current
optimistic projections place mortality figures in the USA in the range of 100,000 fatalities. For
fatalities to be confined to 100,000 requires a reduction in Ro from 4.5 to 2.7 within 17 days of
first infection assuming a mortality rate of 3.4%. This rapid reduction in Ro is outside the range of
possibilities for the USA.

INTRODUCTION

A heated dispute about the effectiveness versus risk
of smallpox inoculation was playing out in eighteenth-
century France, which was to launch the use of math-
ematical models in epidemiology. This dispute moved
inoculation from the domain of philosophy, religion,
and disjointed trials plagued by high uncertainty into
a debate about mathematical models - put forth by
Daniel Bernoulli (in 1766) and Jean-Baptiste le Rond
D’Alembert (in 1761), both dealing with competing risks
of death and interpretation of trials [1]. Since then, the
mathematical description of infectious diseases continues
to draw significant attention from researchers and prac-
titioners in governments and health agencies alike. Even
news agencies are now seeking out explanations to models
so as to offer advice and clarity to their audiences during
the (near-continuous) coverage of the spread of COVID-
19 [2]. The prospect of using mathematical models in
conjunction with data is succinctly summarized by the
Nobel laureate Ronald Ross, whose 1916 abstract [3] en-
lightens the role of mathematics in epidemiology today.
A quotation from this abstract below, which foreshadows
the requirements and challenges for mathematical models

to describe emerging epidemics such as COVID-19 [4, 5],
needs no further elaboration:

It is somewhat surprising that so little math-
ematical work should have been done on the
subject of epidemics, and, indeed, on the dis-
tribution of diseases in general. Not only is
the theme of immediate importance to hu-
manity, but it is one which is fundamentally
connected with numbers, while vast masses of
statistics have long been awaiting proper ex-
amination. But, more than this, many and
indeed the principal problems of epidemiology
on which preventive measures largely depend,
such as the rate of infection, the frequency
of outbreaks, and the loss of immunity, can
scarcely ever be resolved by any other meth-
ods than those of mathematical analysis.

The classic susceptible-infectious-recovered (SIR)
paradigm, initiated in the late 1920s [6], now provides
a mathematical framework that describes the core
transmission dynamics of a range of human diseases
[7–12], including COVID-19 [13]. A key parameter in the
SIR paradigm is the basic reproduction number (Ro).
The Ro is defined by the average number of secondary
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cases arising from a typical primary case in an entirely
susceptible population of size So [14–16]. The usefulness
of Ro and uncertainty in its estimation are not a subject
of debate, as reviewed elsewhere [17], and therefore are
not further discussed here.

In the analysis herein, the SIR model is used to un-
cover generic spread mechanisms observed by COVID-
19 dynamics globally, especially in the early phases of
infectious spread. During this early period, potential
controls were not effectively put in place or enforced in
many countries around the world despite early warning
signals from China, Iran, and later on, Italy. Hence,
the early phases of COVID-19 spread in many countries
where controls were weak offer a unique perspective on
the ensemble-behavior of COVID-19 Ro. The analysis
shows that there is global convergence (i.e. across many
nations) to an uncontrolled Ro = 4.5 for COVID-19 de-
scribing early times spread. The implications for evalu-
ating potential control strategies from this reference Ro
are briefly discussed in the context of mortality and max-
imum infections.

THEORY

Definitions and Nomenclature

Mathematical models of disease spread assume that
a population within a compartment (e.g., city, region,
country) can be subdivided into a set of distinct classes
[11]. The SIR model classifies individuals in the compart-
ment as one of three classes: susceptible (S), infectious
(I), and recovered or removed (R). Infectious individu-
als spread the disease to susceptible and remain in the
infectious class for a given period of time known as the
infectious period before moving into the recovered (or
removed) class. Individuals in the recovered class are
assumed to be immune for an extended period (or re-
moved from the population). For the total population
N = S+ I+R, the dynamical system describing the SIR
equations are given as

dS

dt
= −

(
β
I

N

)
S (1)

dI

dt
= +

(
β
I

N

)
S − γI (2)

dR

dt
= +γI, (3)

where λ(I) = β(I/N) is known as the force of infec-
tion and coefficients β and γ must be externally supplied.
Moreover, this system requires the specification of 3 ini-
tial conditions S(0), I(0), and R(0). For COVID-19, it is
assumed that R(0) = 0 and I(0) << S(0). For the initial
conditions selected here, N = S(0) + I(0) +R(0) ≈ S(0),
which is labeled So for consistency with the SIR litera-

ture. The basis of the latter assumption is that the num-
ber of deceased individuals is << N . The dynamical
system in equation (3) has only one equilibrium point:
I = 0 for any S and R, which is a disease-free stable
equilibrium. The SIR model makes a number of as-
sumptions, including a closed system with no changes
in natural births or natural deaths occurring during the
short-lived outbreak. The infection is assumed to have
negligible latent period so that an individual becomes
infectious when infected. Disease transmission occurs
through individual-to-individual contact directly (skin-
to-skin), indirectly (skin-infected surfaces), or airborne
(pathogens transmitted through air by small particles af-
ter coughing or sneezing). Recovering from infection is
also assumed to confer long-term immunity, yet to be ver-
ified for COVID-19. The most objectionable assumption
in SIR dynamics is the use of the mass-action principle.
As with all compartment models, mass action assumes
that the rate of encounter between I and S is propor-
tional to their product. For this assumption to hold,
it requires that members of I and S be uniformly dis-
tributed in the space of the compartment [18]. Individu-
als – unlike molecules in an ideal solution within a closed
container – do not mix homogeneously. At minimum,
the use of the mass action principle serves as a reference
model to compare more detailed mechanisms or explore
data.

The parameters γ and β encode the main properties
of the epidemics and the population response to it. The
γ = 1/D is generally interpreted as the inverse of the
mean recovery time D. The D varies with the nature of
the disease and the recovery from it which depends on the
medical facilities and resources available. For COVID-
19, the best information on the speed of recovery comes
from a World Health Organization study examining more
than 55000 cases in China [19]. They found that for mild
illness, the time from the onset of symptoms to natural
recovery is, on average, 14 days. This estimate was also
supported in other published studies [e.g. 20], though as
much as 6-8 weeks were recorded for severe infections.
Because I is dominated by mild cases thus far, D = 14 d
is selected here.

With this assumption, the remaining model parameter
β must be determined empirically or from separate stud-
ies. The β reflects the multiplicative effect of two factors:
(1) the transmissibility of the infectious disease (= Tr) or
the probability of disease transmission after an encounter
between a susceptible and an infected and (2) the num-
ber of contacts per unit time k each infected individual
has with susceptibles. Hence, β = k Tr. Factors such
as hand-washing and sanitizing reduce Tr whereas social
distancing, self-isolation, and closure of public spaces re-
duce k. It is evident that dI/dt will be positive (out-
break) or negative (epidemic contained) depending on
the sign of (β(S/So)− γ), which is one of the main rea-
sons the basic reproduction number is sought.
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The basic reproduction number

As earlier stated, the average rate of recovery is set to
γ = 1/D. Given the value of D (in days), the probability
that an individual remains infected in an infinitesimal
time period δτ is 1 − γ(δτ). Therefore, the probability
that this individual remains infected for an amount of
time τ is limδτ→0(1 − γδτ)τ/(δτ) = exp (−γτ). In other
words, τ , the time that an infected individual remains
infected, is exponentially distributed with an average of
D = 1/γ.

In a compartmental model such as the SIR, every indi-
vidual is susceptible and the average number of suscepti-
bles that encounter an infected individual over a period
τ is simply β τ . It follows that the average number of
new infections caused by an infected individual, which is
the basic reproduction number Ro, is given by [21]

Ro = β

∫ ∞
0

τ p(τ)dτ = β γ

∫ ∞
0

τe−γτdτ = β/γ, (4)

where the γ after the second equality is to normalize p(τ).
While the compartmental SIR model, in use here, as-

sumes an exponentially distributed recovery time and a
heavily peaked distribution of encounters with all So in-
dividuals, the Poisson random graph SIR model assumes
a heavily peaked recovery time of D = 1/γ and a Pois-
son distributed number of encounters for each individual
[22], both more realistic assumptions. However, it can
be shown that the dynamics of a discrete-time SIR com-
partmental model (Reed-Frost model) and the SIR on a
Poisson random graph are the same [23]. Because of the
aforementioned correspondence, the use of the tractable
compartmental SIR model as a proxy to the more com-
plex social network SIR model may be justified here.

Early-times dynamics of the SIR system

An illustration of the canonical SIR dynamics during
an epidemic is shown in Figure 1, where the SIR dynam-
ics is solved here for S(t), I(t), and R(t) when setting
Ro = 4.5, γ = (1/14) d−1 and S(0) = 100, 000. For
small γt (dimensionless time), the fraction of suscepti-
bles S(t)/So does not deviate appreciably from unity as
seen from Figure 1. For such early times, I(t) can be
made non-dimensional by So and decoupled from S(t)
using the approximation

1

γ

di

dt
≈ i (Ro − 1) , (5)

where i = I/So is the dimensionless fraction of infected
individuals and Ro = β/γ as before. When Ro > 1,
di/dt > 0 leading to an epidemic or, conversely, a con-
tainment of the disease. The solution of equation (5)
is an exponential function I(t)/I(0) = exp [(Ro − 1) γt]
also shown in Figure 1.

The Ro may be determined by regressing log(i) against
t, and the slope of this regression determines Ro when γ
can be separately estimated. More sophisticated fitting
procedures can also be conducted on sampled I(t) versus
t. A major limitation to this exercise is that I(t) at
early times, often determined from reported confirmed
cases, is uncertain and depends on testing frequency that
may vary in time as I increases. An alternative is to
regress di/dt upon i at early times to detect the highest
slope, which can then be used to infer Ro. This approach
is also featured in Figure 1, which illustrates that the
SIR dynamics exhibit rapid deviations from a linear di/dt
with i set by early times thereby underestimating Ro (for
a given γ). Evidently, inference of Ro requires estimates
of early time slope, which cannot be easily detected in
practice.

A non-conventional approach is to present confirmed
infection data using a double-log representation of di/dt
versus i, which is also featured in Figure 1. This pre-
sentation has a number of advantages and limitations in
the analysis of COVID-19 discussed elsewhere [24]. The
main advantage is that the early time slope (= Ro − 1)
persists over much of the graph. A significant decline in
di/dt is also required before ‘registering’ a drop in such a
representation. This insensitivity to moderate declines in
di/dt from its initial value may be advantageous in Ro es-
timates. The other main limitation, which is inherent to
all such analyses, is shifts in testing frequency at high i,
and thus the increase in confirmed cases due to expanded
testing. It is to be noted that a log-log representation
will be more robust to these shifts, because the overall
graph will be biased by the initial slope prior to the ini-
tialization of expanded testing. Such bias should lead to
increases in di/dt versus i, not declines from the initial
slope (Ro−1) that can be detected. As later shown, such
an increase has been noted in several data sets.

With this representation, it is now shown that initial
inaction to COVID-19 across many countries around the
globe allowed an ensemble estimate of the uncontrolled
Ro. Because Ro is likely to be at maximum when no
action to COVID-19 are implemented early on, a maxi-
mum theoretical ‘boundary-line’ can then be derived to
describe the spread of COVID-19 for large So (on log-log
representation). This boundary-line analysis can then be
used as a logical reference to assess whether measures to
reduce β are effective.

RESULTS AND DISCUSSION

Estimating an early-time Ro

The same log-log scheme featured in Figure 1 is now
applied to the global data set supplied by the European
Center for Disease Prevention and Control (ECDPC).
The data source provides daily confirmed infections I(t)
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FIG. 1. Top left: The numerical solution for the SIR model
compartments S(t), I(t), R(t) normalized by So as a func-
tion of dimensionless time γt with So = 100, 000, γ = (1/14)
d−1, and Ro = 4.5. Top right: Variations of i = I/So in
dimensionless time γt for early times γt < 1 revealing strictly
exponential growth (dashed) and deviations from exponen-
tial (SIR solution). Bottom: Variations of (Soγ)−1dI/dt with
I(t)/So in linear (left) and double-log (right) representations.
The dashed line is (Ro − 1) where Ro = 4.5. Declines from
the dashed line reflect the incipient point where I(t) deviates
appreciably from exponential growth. Note the emphasis on
early-times slope (Ro − 1) behavior in the double-log repre-
sentation.

and deaths reported for each country. The population of
each country, used to estimate So (i.e. all members are
susceptible), was obtained from the 2018 United Nations
census and provided as part of the ECDPC data base.
While daily data are supplied, not all countries report
consistently on a daily I(t). For this reason, daily data
on infections were smoothed with a 7 day block-average
and dI/dt was estimated from the smoothed data. The
results show a global convergence to Ro = 4.5 from early
time-analysis in Figure 2. Examples for specific countries
are also featured in Figure 3 illustrating the same early
slope patterns. Mindful of all the pitfalls in determining
Ro [17], the global estimate here of Ro = 4.5 is roughly
commensurate with other entirely independent estimates
for COVID-19. The most recent update from the China
study suggests an Ro = 4.1 [25] whereas for France, the
most recent estimate for early times is Ro = 4.9 [26].
The initially reported and the much cited Ro = 2.2 value
[4] from Wuhan, China appears to be low [27]. A more
elaborate estimate of Ro based on case reports, incu-
bation periods, high-resolution real-time human travel
data, infection data combined with agent-based mathe-
matical models result inRo = 4.7−6.6 [27]. Other studies
report values between 3.3 and 6.6 [28]. It must be empha-
sized that the Ro determined here reflects ‘country-scale’
early times assuming the entire country population to be
So, γ = (1/14)d−1 and does not accommodate any early
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FIG. 3. Same as Figure 2 but for sample countries top
left: the United States of America (US), the United King-
dom (UK), and Canada (CA); bottom left: Belgium (BE),
Germany (DE), the Netherlands (NL); top right: Italy (IT),
Spain (ES), and France (FR); bottom right: Australia (AU),
New Zealand (NZ), and South Africa (ZA).

measures enacted to reduce β or increase γ, which were
undertaken in China [13].

Sub-national dynamics and interventions

The same analysis performed for World countries is
now applied at a sub-national level, considering Upper
Tier Local Authorities (UTLAs) in the UK and provinces
in Italy (Fig. 4). Results show a higher variability
than country-level data (as expected) but the theoreti-
cal ‘boundary-line’ of Ro = 4.5 is shown to hold also at
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FIG. 4. Same as Figure 2 but for sample UTLAs in the UK
(top left) and provinces in Italy (bottom left). Selected UT-
LAs and provinces are shown in the top right and bottom
right panels, respectively.

finer spatial scales. Cases reported at the beginning of
April, demonstrate that UK regions are at an early phase
of the epidemics (with more ramp-up in testing as later
discussed), while Italian provinces are approaching the
peak of infections due to strict interventions put in place
by national authorities.

To consider the impact of interventions - which have
direct effects on local scale dynamics [13] - the SIR model
can be solved with a time-varying Ro that decreases from
the initial uncontrolled value of 4.5 to, e.g. Ro = 1.1
after 2/γ days. To this purpose, the Ro is expressed as a
logistic function

Ro(t) = Ro,c +
Ro,u −Ro,c

1 + exp(kc(t− t50))
, (6)

where Ro,c and Ro,u are the ‘controlled’ and ‘uncon-
trolled’ values of Ro (set to 4.5), kc is the steepness of
the intervention curve and t50 is the time when Ro(t) =
(Ro,c + Ro,u)/2. Model results accounting for different
intervention scenarios (Fig. 5) resemble the trends ob-
served in the Italian provinces with the timing and mag-
nitude of Ro reductions shifting the linear relation down
and decreasing the maximum fraction of infected indi-
viduals. Such jumps are smoothed over at the national
level where a clear deviation from exponential is observed
(Fig. 3).

An alternative hypothesis: power-law vs exponential

Whether these results are suggestive of a global con-
vergence to an uncontrolled Ro = 4.5 or to some other

10
-4

10
-3

10
-2

10
-1

10
0

I/S
o

10
-4

10
-3

10
-2

10
-1

10
0

(d
I/
d

t)
(

 S
o
)-1

0 2 4

 t

0

2

4

R
0
(t

)

FIG. 5. Modeled (1/So)(dI/dt) as a function of I/So when
considering a time-varying Ro(t). Five scenarios are illus-
trated (inset): no intervention (red) with Ro = 4.5 set to its
uncontrolled value, Ro,c = 1.1 (epidemic near containment)
and kc = 0.7 (blue), Ro,c = 1.1 and kc = 0.15 (magenta),
Ro,c = 2.5 (typical of countries with strong initial interven-
tion) and kc = 0.7 (green). The other parameters of the
logistic functions are Ro,u = 4.5 and t50 = 1.5/γ.

dimensionless property must not be overlooked. A linear
relation on a log-log representation may also be indica-
tive of power-law solutions at early times, already docu-
mented in a number of studies for COVID-19 [29, 30]. In
fact, published analysis of infection data from the top 25
affected countries reveals approximate power-law behav-
ior of the form I ∼ ta (or log(i) = a log(t) + b) with two
different growth patterns [29]: steady power law growth
with moderate scaling exponents (i.e., a =3-5) or explo-
sive power law growth with dramatic scaling exponents
(i.e., a =8-11).

Within the confines of the SIR dynamical system
framework here, we ask: what are the necessary mod-
ifications to obtain power-law solutions at early times?
Such a solution, while not unique, may be possible by
revising the force of infection as λ(I) = β(I/N)m. The
original SIR model is recovered when m=1. For this non-
linear force of infection, the SIR system becomes

dS

dt
= −β

(
I

N

)m
S (7)

dI

dt
= +β

(
I

N

)m
S − γI (8)

dR

dt
= +γI. (9)

This revision ensures that the total population maintains
its constant value N ≈ So here. The early times dynam-
ics (i.e. S(t) ≈ So) for the non-dimensional infection
compartment i = I/So are now governed by

1

γ

di

dt
= +

β

γ
(i)

m − i. (10)

When m < 1, maintaining a definition of Ro = β/γ > 1
(epidemic), and noting that i << 1, the first term on
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the right-hand side of equation (10) is much larger than
the second term. In fact, to obtain a maximum exponent
enveloping the early-time relation between di/dt and i,
the linear term can be dropped so that di/dt ≈ βim

(only a growth phase). On a log-log representation,
log(di/dt) = m log(i) + log(β). A constant slope such
as those featured in Figures 2 and 3 may simply be esti-
mates of m instead of Ro. The initial conjecture is that
a power-law solution emerges from the modified SIR dy-
namics when m < 1. However, the slope here (= 3.5)
actually exceeds unity contradicting this revised analy-
sis. This finding supports the view that a global con-
vergence to an uncontrolled Ro = 4.5 is a more likely
explanation than a power-law alternative arising from a
non-linear force of infection in an SIR framework. To
be clear, there are other causes for power-law solutions
(e.g. a stochastic β as discussed elsewhere [31]), but those
fall outside the domain of deterministic SIR approaches
adopted here. Nonetheless, and as a bridge between the
studies reporting power-law growth in time for I and the
modified SIR here, a relation between m and a is sought.
The solution to equation 10 can be expressed as

i(t) =
(
i(0)1−m + β(1−m)t

)1/(1−m)
, (11)

which is a power-law in t. For dimensionless time γt >>
(i(0)1−m/[Ro(1−m)], i(t) ∼ t1/(1−m) (m < 1). It directly
follows that m = (a−1)/a¡1 (as expected), where a > 1 is
determined by regressing early-times log(i) versus log(t).
Reported a for what has been termed as ’explosive’ cases
such as the US, UK Canada, Russia, among others [29] all
yield an a > 8 (with the US a > 16). Such high a simply
confirms that m ≈ 1 (and without much variations), and
the early time SIR dynamics does describe reasonably
those cases. For low a values, termed as ’steady’, the
mean a ≈ 4.8), and thus yields an m ≈ 0.8, still not too
far from unity. The short-coming of analyzing I(t) upon
t is that absolute figures of I(t) are sensitive to increased
COVID-19 testing in time, which is considered next.

Impact of testing ramp-up

A further explanation of early-time deviation from the
SIR model (noted in several data sets here) may be time-
dependent ramp-up of testing, which reveals existing in-
fections at a rate faster than the infection spread. This
hypothesis can be implemented in the SIR model con-
sidering the temporal dynamics of the testing capacity,
f . Assuming the maximum fraction of individuals that
can be tested is f = 1 and testing capacity grows at
a rate k, independent of I, gives, f(t) = 1 − exp (kt).
Therefore, the apparent number of infections, ia, ini-
tially grows according to the superposition of the infec-
tious spread rate and testing capacity increase rate, i.e.,
exp [(R0 − 1 + k)t] and log (dia/dt) ∼ (R0−1+k) log (ia).
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FIG. 6. Relation between maximum infection fraction
Imax/So and Ro.

Therefore, the log-log slope will be initially greater than
(R0 − 1) while the rate of testing increases and then
converge to (R0 − 1) asymptotically as testing reaches
steady-state. Indeed, this effect is widely observed in the
global and smaller-scale data, indicating that the imprint
of testing ramp-up fully dissipates (at least at the coun-
try scale) and the observed convergent slope remains a
robust indicator of the early phases of virus dynamics.

Size of the epidemic

The maximum infections Imax (where dI/dt = 0) can
be derived as a function of So and Ro by first dividing
the budgets of dS/dt and dI/dt, solving the resulting
equation, and noting that dI/dt = 0 when S(t)/So = γ/β
at Imax to yield

Imax
So

= 1− 1

Ro
[1 + log(Ro)] . (12)

Variations of Imax/So versus Ro are featured in Figure 6
For Ro = 4.5, Imax/So = 0.44, which is much higher than
values obtained for the common cold or the flu (Ro =
2−3) or influenza (Ro = 1.4−2.8). The most significant
use of Ro is an estimate of the size of the epidemic. The
total fraction of infected individuals may be inferred from
1−S(∞)/S(0), where S(∞)/S(0) = 1−R(∞)/S(0) > 0
because I(∞) = 0. The relation between S(t) and R(t)
can be derived

dS

dR
= −β

γ

S

So
, (13)

which when integrated between t = 0 and t =∞ yields,

log

[
S(∞)

S(0)

]
= Ro

(
S(∞)

S(0)
− 1

)
. (14)

The solution requires solving a transcendental equation
for S(∞)/So, which can be achieved numerically. For
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pre-specified Ro, the total fraction of infected individu-
als is shown in Figure 7. With such a high Ro = 4.5, some
98% of the population will be infected. When mortality is
assumed to be some fraction of the total infected individ-
uals, then the mortality fraction is αm[1− S(∞)/S(0)].

As of March 5, 2020, global mortality estimates from
COVID-19 by the World Health Organization (WHO)
are at αm = 3.4% virtually identical to the current USA
value (as of April 8, 2020; Confirmed cases = 428,901 and
Mortality = 14,600). For the USA, now the epicenter
of COVID-19, we ask how much Ro should be reduced
by deliberate intervention to maintain mortality below
a certain threshold size Mo. With S(0) = 327M, we
determine how much Ro should be reduced as a function
of Mo assuming αm = 3.4%. These results are featured
in Figure 8 and suggest that to maintain mortality below
1 million, Ro < 1.15, a factor of 4 reduction over its
uncontrolled value.

A natural extension of this exercise is to consider tem-
poral changes in Ro following the logistic form in equa-
tion 6. The maximum number of infected Imax at time t
and cumulative number of infections R(∞) ≈ R(γt ≈ 14)
can be made to vary as the slope kc and t50 are changed

(equation 6). A larger kc signifies more rapid enforcement
of intervention policies and a larger t50 represents later
enforcement. To provide a physical meaning for kc, we
define tfo as the time after first infection at which Ro is
fo% of the way through its total decline fromRo,u toRo,c.
With these definitions, tfo = t50 + log[fo/(1 − fo)]/kc.
An obvious choice for Ro,u = 4.5, the global average
when no intervention is enforced. A logical choice for
fo = 80% and is consistent with the point at which the
logistic function enters the ’flattening phase’. We choose
Ro,c = 1.0 to represent the most optimistic scenario of
a near-containment by intervention. For reference, the
South Korea data suggests that early intervention, even
when rapidly enforced shortly after the outbreak, re-
sulted in Ro = 1.5 [32]. The effectiveness of interven-
tions and any delays can now be converted to mortal-
ity and severity by varying t50 and t80 on R(γt ≈ 14)
and Imax as shown in figure 9. These figures present
how R(γt ≈ 14), a number connected to the cumulative
number of fatalities, and Imax, a number representing
the degree to which existing resources (i.e., hospital beds
will be overwhelmed), are contained for only a restricted
envelope of speed and timeliness of policy enforcement.
The results in Figure 9 indicate that if Ro > 2.7 within
t = 3.5/γ (about 49 d here), a > 10% reductions relative
to So in Imax or R(∞) are unlikely.

Back to the discussion about US mortality from
COVID-19, current optimistic projections place that fig-
ure in the range of 100,000 fatalities [33]. One implication
from figure 9 is that if Ro failed to decrease to at least
2.7 by 49 days after first infection, 8 million people are
expected to die with an assumed constant mortality rate
of 3.4%. For mortality to be confined to 100,000, then a
reduction of Ro from 4.5 to 2.7 must be achieved within
17 days of first infection, an unlikely scenario now.

Last, it is to be noted that the fraction of individuals
that must be immune (either through vaccination or re-
covery from prior COVID-19 infections) must exceed the
herd immune threshold (HIT), which is given by

pc = 1− 1

Ro
= 0.78. (15)

This estimate of HIT sets the limit on the immune popu-
lation needed to overcome another COVID-19 pandemic
(assuming a global constant Ro = 4.5 and no interven-
tion). Should immunity from prior COVID-19 infections
be transient, this estimate then sets the upper bound on
the fraction of population that must be vaccinated and
the vaccine needed in the future.

CONCLUSION

The work here has shown a global convergence of
Ro = 4.5 when no deliberate intervention was taken for
COVID-19. This Ro was shown to describe reasonably
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FIG. 9. Variation in cumulative number of infected relative to
total population So (top) and in maximum number of infected
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logistic form of Ro. The Ro was set to vary from Ro,c = 4.5
to Ro,u = 1.0. t50 and t80 are the times at which Ro is half
and 80% through the the total decline.

the maximum initial exponential growth rate of COVID-
19 (=(Ro−1)γ, where γ = (1/14)d−1) in many countries
that did not initiate preventive measures within γt = 2.
The findings here further supports the growing consen-
sus that the initial Ro = 2.2 estimate from Wuhan, China
are low. The value of Ro = 4.5 is much more in line with
other estimates (Ro = 4− 6) derived from far more com-
plex models. The critical herd immunity level that must
be reached is 78% to ensure COVID-19 does not become
an epidemic again. This estimate sets a maximum limit
on the vaccination required. For the USA, our results
show that to maintain death figures below 1M , the de-
liberate measures to be taken must reduce uncontrolled
Ro by a factor of 4.
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