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Abstract: With the recent COVID-19 pandemic, healthcare sys-
tems all over the world are struggling to manage the massive
increase in emergency department (ED) visits. This has put
an enormous demand on medical professionals. Increased wait
times in the ED increases the risk of infection transmission. In
this work we present an open-source, low cost, off-body system
to assist in the automatic triage of patients in the ED based on
widely available hardware. The system initially focuses on two
symptoms of the infection - fever and cyanosis. The use of vis-
ible and far-infrared cameras allows for rapid assessment at a
1m distance, thus reducing the load on medical staff and lower-
ing the risk of spreading the infection within hospitals. Its utility
can be extended to a general clinical setting in non-emergency
times as well to reduce wait time, channel the time and effort of
healthcare professionals to more critical tasks and also priori-
tize severe cases.

Our system consists of a Raspberry Pi 4, a Google Coral USB
accelerator, a Raspberry Pi Camera v2 and a FLIR Lepton 3.5
Radiometry Long-Wave Infrared Camera with an associated IO
module. Algorithms running in real-time detect the presence
and body parts of individual(s) in view, and segments out the
forehead and lip regions using PoseNet. The temperature of the
forehead-eye area is estimated from the infrared camera image
and cyanosis is assessed from the image of the lips in the visible
spectrum. In our preliminary experiments, an accuracy of 97%
was achieved for detecting fever and 77% for the detection of
cyanosis, with a sensitivity of 91% and area under the receiver
operating characteristic curve of 0.91.

Although preliminary results are promising, we note that the
entire system needs to be optimized before use and assessed for
efficacy. The use of low-cost instrumentation will not produce
temperature readings and identification of cyanosis that is ac-
ceptable in many situations. For this reason, we are releasing
the full code stack and system design to allow others to rapidly
iterate and improve the system. This may be of particular bene-
fit in low-resource settings, and low-to-middle income countries
in particular, which are just beginning to be affected by COVID-
19.
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Introduction
With a dramatic increase in emergency department (ED) visit
rates over the last four decades, both in the United States and
around the world [24, 19, 20, 29], accurate and timely triage

is essential for assuring patients’ safety and optimal resource
allocation. Crowding in the ED can affect the triage process,
leading to longer waiting times for triage, longer ED length
of stays and potentially poorer outcomes [14]. More acutely,
crowding in ED during a pandemic such as COVID-19 could
increase the risk for health professionals as well as patients.

Computer-aided triage systems have been proposed over
the years with the help of browser-based applications that ex-
change information with existing medical records [1], wear-
able sensors [11] and automatic initial interpretation of CT
scans [12]. However, most existing methods either require
significant interaction between the patients and the healthcare
workers or need active input from the patients. Hence, there
is an emerging need for an automatic triage system that works
passively and requires minimal attention and interaction from
both patients and health professionals. In this work, we focus
on real-time identification of febrile status and cyanosis in
patients, since these are two critical symptoms in the recent
COVID-19 crisis.

The Emergency Severity Index (ESI), used by most EDs in
the United States [17], records the febrile state of young chil-
dren and manifestation of cyanosis in all age groups. While
core temperature is difficult to measure non-invasively, there
is some evidence that infrared cameras are able to do so to
some level of acceptable accuracy [8]. In particular, we con-
sidered temperature in the forehead area and color distribu-
tion of the lip as indicators for the febrile state and cyanosis.

Many systems that detect a febrile state via infrared imag-
ing [22, 26, 27, 13] have been reported and evaluated over
the years and a deep learning method was introduced for
face segmentation in [13]. Cyanosis is a bluish discoloration
of the skin or other areas of the peripheral body resulting
from poor circulation or inadequate oxygenation of the blood.
More specifically, it is due to increased concentration of re-
duced hemoglobin (Hb) in the circulation and is clinically ev-
ident at an oxygen saturation of 85% or less. Mild cyanosis is
more challenging to detect. Cyanosis can be observed in the
lips, ears, trunk, nailbed, hands and conjunctiva. Circumoral
areas (around the mouth) have been compared in detecting
cyanosis resulting from arterial hypoxemia. It has been noted
that while the tongue is the most sensitive area, the lips are
more specific ([6], chapter 45). For this work, we therefore
focused on the lips, since they are easier to observe than the
tongue and have been identified in ED emergency response
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assessment systems.
Our proposed system consists of a low cost minicomputer

- a Raspberry Pi (RasPi), a Google Coral USB accelerator
tensor processing unit (TPU), a visible camera and a thermal
camera, which are all portable and relatively inexpensive. By
leveraging object detection and machine learning classifica-
tion techniques, the system was designed to be capable of
segmenting out regions of interest and classify febrile state
and cyanosis in real-time.

Methods

Hardware configuration. Fig. 1 shows the proposed sys-
tem. The various parts and their approximate costs are: a
RasPi 4 with 4 GB of RAM ($55) and a 16 GB microSD card
($7), a Google Coral USB accelerator ($74.99), a visible light
(Red, Green and Blue; RGB) RasPi Camera v2 ($10.99) and
a FLIR Lepton 3.5 Radiometry Long-Wave Infrared Camera
($200) with its associated IO module ($100). The total off-
the-shelf cost of the system is around $450. The visible light
and thermal videos are captured at 25hz and 9hz, respectively.
The RasPi was used as the main processor which takes in
the video streams, processes them and can display the result-
ing video in real-time on an external monitor (via the HDMI
connector). The forehead and lip detection were computed
on the Google Coral USB accelerator, since this part of the
algorithm required a deep neural network and hence signifi-
cantly more computational power. The full setup can be seen
Fig. 2.

Fig. 1. Hardware configuration consisting of a Raspberry Pi 4 (4 GB RAM), a
Google Coral USB accelerator (top), a RasPi Camera v2 and a FLIR Lepton 3.5
Radiometry Long-Wave Infrared Camera.

Fig. 2. Installation of system with all cabling including power and external monitor
for visualization (not show, or needed for detection).

Overview of algorithms. Our algorithm performs two func-
tions: fever estimation and cyanosis classification. For fever
estimation, we detect the forehead region, and for cyanosis
classification we detect the lip region. These regions are then
analyzed to identify color distributions indicative of fever or
cyanosis using a post processing machine learning algorithm.
The overall flow is shown in Fig. 3 and a more detailed de-
scription of the algorithms now follows.

Fig. 3. AutoTriage pipeline. The purple boxes denote inputs and outputs at different
stages. The green boxes denote computations.

Forehead and lip detection. To detect and segment out
the forehead and lips for further analysis, a computer vision-
based human pose detection algorithm knows as PoseNet is
used [23]. This algorithm uses a convolutional neural net-
work to regress the six degrees of freedom camera pose from
a single RGB image in an end-to-end manner with no need
for additional engineering or optimisation. PoseNet detects
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“keypoints” - the image coordinates of key parts of the body,
such as the elbow, knee, eyes and nose. We use the keypoints
of the left and right eye as references to identify a bounding
box around the forehead and lips. If we define the distance
between the eyes to be D pixels, for the forehead, we use a
bounding box that has width 2D and a height 1.2D. The base
of the bounding box is 0.2D below the eyes. This ensures that
the forehead-eyes area is captured. This is an important site,
since the inner canthus of the eye is consistently the warmest
area on the head and the most suitable area for fever detection
[28]. For the lips, we move a distance D below the eyes and
create a bounding box with width D and height 0.5D. These
values were set empirically (through trial and error using the
authors) to best capture the lips. In future experiments these
values can be optimized on larger datasets. Note that the co-
ordinates obtained by applying this heuristic are rounded to
the closest integer value. Fig. 4 shows an example of the
forehead and lip detection on one of the authors using this
approach in the visible spectrum (upper plot) and the cor-
responding FLIR image (lower plot). Note that the images
have slight FOV, image angle and translational differences
since the cameras cannot take images from the same location
in space and operate at different (non-synchronous) sampling
rates.

It is important to note that there are other state-of-the-
art object detection algorithms that are capable of detecting
faces, such as YOLO [25]. YOLO can also be used to seg-
ment out the forehead and lips. However, using PoseNet
in this implementation allows for rapid deployment on the
Google Coral Accelerator TPU and is therefore simple to im-
plement in real time. Another benefit of using PoseNet is
that the keypoints generated by it for the rest of the body
could potentially be used in the future to further enhance as-
sessment of other symptoms such as posture or balance ab-
normalities, or behaviors such as vomiting, falls, and tonic-
clonic seizures.

Febrile state detection. Unlike the previous studies, our
proposed system detects key points using visible light video
and then transforms the coordinates of the bounding boxes
of the region of interest (ROI) to coordinates in the thermal
video. After finding the ROI in the thermal video, the aver-
age of the ten pixels exhibiting the highest temperatures were
averaged to produce a final temperature estimate. Lastly, a
threshold was set to determine the febrile state.

Thermal output calibration. To achieve a more accurate mea-
surement of the body temperature, we followed the guide-
lines from the FLIR Lepton 3.5 datasheet [10] and meth-
ods detailed in previous studies [13] that used a similar in-
frared camera and performed the radiometry calibration on
the FLIR Lepton camera. The conversion from the 14 bit
pixel values from the FLIR Lepton camera to a temperature
in Celsius can be written as:

T = B

exp(R/S −O)+F
−273.15 (1)

Fig. 4. Bounding boxes detected for the forehead and lips from a 1m range in visible
light video (upper image) and thermal video (lower image) using PoseNet.

Fig. 5. Illustration of the water calibration experiment. The bright spot in the lower
left quadrant of the FLIR output represents the water heated to varying known tem-
peratures.

where S denotes the output pixel value from the FLIR Lep-
ton, T denotes the actual temperature and R,B,F,O are pa-
rameters required for the conversion. Within the FLIR Lep-
ton’s operating temperature range, the typical values of F
and B are 1 and 1428, respectively. We used bottles (with
open lids) of heated water with temperature ranging from
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35 − 40◦C as a heat source and located them at one meter
to the camera and approximately in the center of the field
of view (FOV). (See Fig. 5.) The reference temperature of
the water was measured three times using a Braun IRT6500
thermometer and averaged. The reference has an accuracy of
±0.2◦C within the 35 − 42◦C measurement range. Also, the
top ten pixels in the heat source were selected and averaged
as the final output of the FLIR Lepton camera. R (camera
responsivity) and O (the offset) in Eq. 1 are then fitted using
the above-described experiment via a nonlinear least square
method with soft l1 loss as follows:

L1;soft(z) = 2 · ( 1
(1+z)0.5 −1). (2)

The Root Mean Square Error (RMSE) metric was used to
evaluate the fitting error. The fitted curve was then imple-
mented to convert pixels values to temperature output.

ROI registration in thermal video. Since the forehead-eyes
area is detected in the visible light image sequences, a co-
ordinates transformation is needed to find the forehead-eyes
location in the thermal video. The transformation depends
on the resolutions and FOVs of the two cameras and the rel-
ative physical displacement between them. The resolution
of the RasPi Camera was set at 1640 × 1232 pixels and the
corresponding FOV was 62.2◦ horizontally and 48.8◦ ver-
tically. The resolution of the FLIR Lepton camera was set
to be 160 × 120 pixels and the corresponding FOV was 57◦

horizontally and 71◦ diagonally. Since there only exist less
than 2 cm distance and consequently a small angle difference
between the cameras, the transformation can be expressed as:

xLthermal = xLvisible+xbias
xratio

yLthermal = yLvisible+ybias
yratio

xRthermal = xRvisible+xbias
xratio

yRthermal = yRvisible+xbias
yratio

(3)

Where xL,yL are the coordinates for the left vertex of
the bounding box and xR,yR denote the right vertex.
xratio,yratio are the resolution ratios between RasPi Cam-
era and FLIR Lepton Camera. And xbias,ybias are the view
difference caused by different FOVs and can be calculated as:

h = tan FOVhorizontal−thermal
2 /tan FOVhorizontal−visible

2
v = tan FOVvertical−thermal

2 /tan FOVvertical−visible
2

xbias = Resolutionvisible−horizontal · h−1
2

ybias = Resolutionvisible−vertical · v−1
2

(4)
In practice, because of the angle difference and distance be-
tween the cameras, which varies with different mounting
schemes, empirical offsets were added to ensure accurate
transformation.

Threshold selection. The Merck Manual [3] defines fever
as an elevated body temperature that is higher than 37.8◦C
orally [16] and Cleveland clinic advised patients with a fever
higher than 100.4◦F / 38◦C to isolate themselves as of April

2020 [7]. Forehead (temporal) temperature is usually 0.5 ◦F
(0.3◦C) to 1◦F (0.6◦C) lower than an oral temperature mea-
surement [9].

Experimental setup. The preliminary test was conducted on
a healthy male subject. A heated cloth was put on the sub-
ject’s forehead to raise the temperature of the subject’s fore-
head. The estimated temperature from the proposed system
was recorded immediately after a measurement from the ther-
mometer in the center of the subject’s forehead. The subject
was sitting one meter away from the cameras. The RMSE
between the estimated value and temperature from the ther-
mometer was used to evaluate the accuracy of our proposed
system.

Cyanosis detection. Once the lip region is segmented from
the face, an algorithm to detect cyanosis is applied to the re-
gion. Various algorithms were tested on a small dataset. The
algorithm that performed the best is used to classify images
from the camera as cyanotic or non-cyanotic. Leave-one-out
cross validation method was used to report the results.

Dataset. We created a small dataset consisting of images of
cyanotic and non-cyanotic lips from the internet. It consists
of 35 images of cyanotic lips and 35 images of non-cyanotic
lips. The images belong to various races, ages and genders,
although this is not balanced. The number of lighter skin
colored images are higher than darker skin images, more so
for cyanotic images. Also, the number of images of young to
middle-aged people is higher than the number of images of
other age groups. This is due to the limited number and types
of cyanotic images available on the internet. The dataset is
included in our Github repository [5].

Classification algorithm. We implemented three classifiers:
K nearest neighbors (KNN), logistic regression (LR) and sup-
port vector classifier (SVC). The input to these classifiers
were frequency of pixel intensities from each channel (R, G,
B channels) using a simple histogram with eighteen equally
spaced bins (six for each of the three color channels). The
rationale behind this was that the color distribution would be
different in cyanotic and non-cyanotic lips, but there would
be some colors in common. In other words, not all of the lip
would be cyanotic, and some areas outside of the lip would
be included. The bins representing these colors could then
be regularized out. For the KNN algorithm, we used k=3
neighbors, uniform weights and the Euclidean distance met-
ric. (We chose three clusters for the KNN to capture the two
classes plus noise.) L2 regularization was used for the logis-
tic regression implementation. For the SVC a regularization
parameter C = 2 was chosen via grid search. Radial basis
function kernel was used to make SVC a non-linear classi-
fier. We used the sklearn package in Python3.7.3 for each of
these implementations and used the default values for param-
eters not stated above.
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Results
Febrile state detection. Fig. 6 shows the measurements
used in the calibration process and the fitted results. The cal-
ibrated values of R and O were determined to be 580061 and
25113, respectively, and the resultant RMSE was 0.57◦C2.
Fig. 7 shows the measured data points in the preliminary ex-
periment, in which the proposed system achieved an RMSE
of 0.41◦C and a Pearson correlation coefficient of 0.96.
When applying 37.4◦C as the threshold for febrile state de-
tection, an accuracy of 96.7% and an area under receiver op-
erating characteristic curve (AUC) of 0.97 were achieved.

Fig. 6. Calibration of FLIR images using a bottle of water: The least square curve of
best fit between the average temperature from the thermometer and the FLIR pixel
values had a root mean square error (RMSE) of 0.57 ◦C.

Fig. 7. Estimated temperature vs. temperature measured from thermometer. The
correlation between the parameters was found to be 0.96 and the RMSE difference
between them was 0.41 ◦C.

Table 1. Confusion Matrix for KNN for cyanosis detection.

Cyanosis detection. Tables 1, 2, 3 show the confusion ma-
trices for each classifier. Fig. 8 shows the receiver operating

Table 2. Confusion Matrix for LR for cyanosis detection.

Table 3. Confusion Matrix for SVC for cyanosis detection.

characteristic curve and AUC of each classifier. Table 4 sum-
marizes the accuracies, AUC, sensitivity and specificity of
the three classification models.

Fig. 8. Receiver Operating Characteristic Curves for the three classifiers evaluated
in this work for cyanosis detection. The filled circles represent the operating points
resulting in the other performance statistics. (Small differences exist due to the
LOOCV approach.)

Fig. 9. Weighting of features from logistic regression. The features are the his-
togram values the R, G and B channels. Positive coefficients refer to cyanotic con-
dition and negative refer to non-cyanotic.

To assess the relative importance of the features used for
classification, we visualized the weights assigned to different
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Table 4. Performance of assessed cyanosis detection classifiers.

Algorithm Accuracy (%) AUC Se Sp
KNN 71.4 0.76 0.83 0.63
LR 74.3 0.73 0.77 0.71

SVC 77.2 0.83 0.91 0.63

features by the logistic regression classifier, since this is eas-
ier to interpret that the parameters of the SVR or KNN. Fig.
9 shows the weights for the eighteen features used (six bins
each for each of the three R, G and B channels). The first six
features correspond to the red channel (R1 - R6). The next
six features correspond to the green channel (G1 - G6) and
the last six features correspond to the blue channel (B1 - B6).

Discussion
Forehead and lip segmentation. Detecting and segmenting
out the forehead and lips is the first step in our pipeline.
The accuracy of this stage can determine the accuracy of the
remaining stages. This step is dependent on the performance
of PoseNet, which sometimes has false positive detection of
people. In this implementation, it is limited to detecting 10
people at a time.

Fever detection. Previous meta-reviews suggest that periph-
eral temperature may not be sufficient to determine fever [21,
18]. This suggests that our proposed system, along with all
traditional methods that measure peripheral temperature, like
an ear thermometer, are not suitable to be used to perform
an accurate diagnosis of febrile state. However, the proposed
system is useful to perform mass early screening of the febrile
state as a triage tool. The body temperature varies throughout
the day in accordance with the circadian rhythm ([6], chapter
218). Taking this into account and having a dynamic thresh-
old can reduce the number of false positive and false negative
fever detection. Besides, body temperature could vary based
on the ambient temperature. Having a reference temperature
can help solve this issue. Additionally, the thermal camera in
selection does not innately have the level of accuracy required
for this task. Thus, a calibration for the targeted temperature
range needs to be performed. However, the temperature cal-
ibration of the thermal camera is not a trivial task and can
be inaccurate depending various aspects, like environmental
temperature and surface condition. Also, a previous study
suggests that improper use and interpretation of the infrared
camera can lead to inaccurate triage [15]. Hence, it is impor-
tant to understand that the proposed system is only reliable
for the designated task under limited conditions. For exam-
ple, the presence of common cosmetics or clothing such as a
turban or hijab can affect the accuracy of the estimated tem-
perature from thermal camera [30]. With a higher budget, the
use of a thermal camera with higher accuracy and, if possible,
one which is pre-calibrated can lead to a more reliable sys-
tem. But a higher cost will inevitably lower the accessibility
of the system.

Cyanosis detection. For the detection of cyanosis, out of the
three classification approaches evaluated, the SVC exhibited
the highest accuracy (77.1%) and KNN has the highest AUC
(0.93), although this is not significantly higher than the AUC
of 0.91 for the SVR. The SVR also produces the fewest false
negatives (missed cynaosis), which at triage, is probably the
most important feature of this system. For the open source
implementation, we therefore chose the SVR, although we
note this is somewhat arbitrary at this point given the size of
the data set we used.

To visualize the effect of the features on the overall classi-
fication we plot the LR coefficients for each features (see Fig.
9). It can be observed that the red channel exhibits higher im-
portance for cyanosis detection. When creating a histogram
of the pixel values with six equally spaced bins for each of
the three color channels, it can be seen that every channel (R,
G and B) contributes to the classification.

Limitations. We note that the lip cyanosis dataset we used is
relatively small and contains relatively good quality images.
In the wild, the quality of images is not guaranteed to be high.
This may be due to variations in lighting, occlusions, move-
ment, angle of presentation, distances much greater than 1m,
among other issues. Consistency of ambient lighting is an im-
portant factor to ensure correct classification of cyanosis [6].
Camera parameters such as field of view and shutter speed
can also influence the absolute color detected by the cam-
era. Applying a color correction by using a color reference
in the frame can solve this issue [2]. Cosmetics applied to
and around the lip can also interfere with the classification.
In practice, we observed that if the mouth is open or teeth
are visible, the cyanosis classifications tend to be inaccurate.
Lighting conditions also play a major role in the algorithm’s
output.

Perhaps the most important issue to consider is that of skin
color and the variation of presentation of cyanosis across the
human race. This is an under-explored area of research, but
research into racial bias in facial recognition algorithms [4]
has highlighted just how dangerous it can be to use these al-
gorithms out-of-the-box, without tuning to a population or
thought about the bias it can create.

Conclusion
In this work, we have proposed a system that can detect fever
and cyanosis using a combination of visible light and ther-
mal camera operating on an edge computation platform that
is running state-of-the-art deep learning. The system does
not require any direct interaction between the device and ei-
ther patients or healthcare workers. The source code needed
to replicate our proposed system can be found on Github [5].
It is important to note that PoseNet is image size and rota-
tionally invariant (at least for most behaviors), and although
we optimize the analysis to work at a 1m distance from the
camera, this invariance should create a robustness to move-
ment to and from the camera, as well as within the frame.
Many improvements can be made to this system to increase
the classification performance and stability, including larger
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population studies and end-to-end deep learning. However,
the need for something is acute and will be increasingly so
in low resource areas. We therefore feel it is appropriate to
release this work prior to peer-review to solicit feedback and
encourage others to improve the system.

Through this work, put together as a rapid response under
a few days under lockdown, we hope to provide a starting
point for automatic triage in clinical settings. Improving on
this work could lead to novel implementations that can help
streamline triage in clinics and hospitals, potentially during
the current pandemic, where non-contact and rapid screening
has distinct advantages for infection reduction.
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