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Abstract

COVID-19 challenges the daily function of nearly every institution of society. In
response to these challenges, mathematical models allow us to combine a mechanistic
understanding of disease spread in general with the best information currently available
on the particulars of this disease to analyze the costs and benefits of any mitigative
action. We here provide one such mathematical model to explore the epidemiological
consequences of allowing standard intake and unaltered within-jail operational dynamics
to be maintained during the ongoing COVID-19 pandemic, and contrast this with
proposed interventions to reduce the burden of negative health outcomes. In this way,
we provide estimates of the infection risks, and likely loss of life, that arise from current
incarceration practices. We provide estimates for in-custody deaths and show how the
within-jail dynamics lead to spill-over risks, not only affecting the incarcerated people,
but increasing the exposure, infection, and death rates for both corrections officers with
whom they interact within the jail system, and the broader community beyond the
justice system. We show that, given a typical jail-community dynamic, operating in a
business as usual way will result in significant and rapid loss of life. Large scale
reductions in arrest and speeding of releases are likely to save the lives of incarcerated
people, jail staff, and the community at large.

Introduction 1

As the COVID-19 pandemic sweeps the globe, one of the critical functions of 2

epidemiology is to consider how society can transform current practice to increase the 3

health and safety of the public. Given the widespread risk of infection and the high case 4

fatality rates, especially in older or medically compromised populations, the most 5

effective strategies to reduce the impact of the disease may require that we be willing to 6
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consider structural reforms to our institutions to promote an overall greater good. To 7

these ends, we have already seen systemic shifts in institutional practices that would be 8

unthinkable under normal conditions: shelter-in-place orders closing businesses and 9

restricting freedom of individual movement [1], school closures to limit transmission 10

compromising the ongoing education of children [2], etc. Another clearly important 11

institution that affects a substantial portion of the public directly [3] and an even 12

greater portion indirectly [4–7], is our criminal legal system. The currently unfolding 13

public health crisis makes clear the urgent need for rigorous analyses of the impact of 14

maintaining current practices within these institutions, including both the costs to 15

incarcerated people and their families as well as the costs to the community at large. 16

We therefore explore the epidemiological costs associated with our current system’s 17

functions as a necessary part of the policy conversation that must ensue to decide 18

whether or not they should be maintained or altered in response to a growing global 19

crisis. 20

Analyzing incarcerated populations poses a unique epidemiological problem for 21

several reasons. The population experiences high rates of movement and turnover [8, 9]. 22

Incarcerated people are responsible for purchasing their own hygiene products with 23

limited resources [10, 11]. It is difficult or impossible for incarcerated people to practice 24

CDC recommendations such as social distancing [12]. The incarcerated population has a 25

higher expected rate of existing health conditions than the community from which they 26

come [13–15]. Jails are dependent completely on a workforce that moves in and out of 27

the jail and the community including vendors, lawyers, corrections officers, medical staff, 28

etc. And, there is strong evidence that incarceration itself has profound adverse effects 29

on the health of incarcerated people [16–18]. These descriptors make jails highly likely 30

not only to place detained people at increased risk of infection and resulting severe 31

outcomes, but also to function as a driver for increased infectivity, adversely impacting 32

attempts to contain and mitigate disease spread in the broader communities in which 33

jails are located. To study the dynamics of this system and provide quantitative metrics 34

for risk to incarcerated populations and the populations with which incarcerated people 35

necessarily interact, we construct and tailor a epidemiological model of COVID-19 36

transmission, and then use that model to consider how some possible reforms to the 37

system (i.e. reduction in arrest intake, increased rates of returning incarcerated people 38

to their homes, and improvement of conditions within the jails) will alter these baseline 39

risks. 40

Model/Methods 41

Transmission Model 42

We begin by tailoring a standard SEIR model to the specific dynamics of COVID-19. 43

We first split our total population into four categories of risk: Children under 18 44

(denoted with the subscript K), Low-risk adults (denoted with the subscript L), 45

High-risk adults (denoted with the subscript H), and Elderly adults (denoted with the 46

subscript E). We also designate a separate population category for jail staff, O (note: 47

while O was the selected notation, it is meant to capture all staff working at the jail, not 48

only the corrections officers). These populations are then assigned into disease-related 49

health status compartments: Susceptible (S), Exposed (in which individuals are 50

presymptomatic, but do already produce low levels of infection transmission to others, 51

E), Infected (in which individuals are both symptomatic themselves and fully infectious 52

to others, I), Medically Treated (those infectious individuals whose disease severity and 53

healthcare access results in removal from the population into a medical care facility that 54

prevents any further transmission of infection back into the population, M), and 55
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Removed (those who have either recovered from the infection and are now immune or 56

those who have died, R). We also allow for the possibility that an Infected person with 57

sufficient disease severity to warrant medical treatment is unable to obtain care, and 58

designate rates associated with this case, as designated by the subscript U . For clarity 59

of the results, we do not consider death from any non-COVID-19 cause; this is done to 60

highlight the COVID-19-specific dynamics. Additionally, as a simplifying assumption 61

due to their low rates of both infections and complications, we do not model 62

hospitalizations or deaths in children. Similarly, once hospitalized, patients are assumed 63

not to spread COVID-19 further, as additionally modeling the impact of 64

healthcare-associated COVID-19 cases is well beyond the scope of this model. Lastly, 65

we split our population into segments depending on the subsection of the community or 66

jail system in which they are currently functioning: the community at large, C, the 67

processing system for the jail, P , the court system T , and the jail system, J . 68

A schematic for this model can be seen in Fig. 1, and the differential equations 69

comprising the model are in SI Appendix 1. The model was implemented in R 3.6.3 70

using the deSolve package, with the visualization of results primarily using ggplot2. 71

Statistical analysis of one parameter (see below) was done using the flexsurv package. 72

The code and data used in this analysis is available at 73

https://www.github.com/epimodels/COVID19-Jails. As this study used only publicly 74

available data and does not involve human subjects, IRB approval was not required. 75
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Fig 1. Schematic for a mathematical model of COVID-19 in a linked urban community
- jail system. The population is represented in one of five possible compartments:
Suseptible (S), Exposed (E), Infected (I), Needing Medical Care (M) and
Recovered/Removed (R). Additionally, the population is divided into five distinct
sub-populations: Children under 18 years of age, Elderly Adults over 65 years of age,
Low Risk Adults between 18 and 65, High Risk Adults between 18 and 65 and Jail Staff
(assumed to be between 18 and 65 years of age). Arrested adults move between the
Community, Processing and the Court System and Jail, while Jail Staff move between
the Community and Jail. Children are assumed not to be eligible for arrest.

Population Movement Into, Within, and Out Of the Jail System 76

Our model captures movement between the community (denoted with superscript, C), 77

processing (P ),jail (denoted with superscript, J), and court appointments (denoted with 78

T for trial, though this is meant to encompass all court appointments). It assumes staff 79

move only between the community and jail; they are not arrested in our model. We 80

base the parameters of movement into, within, and out of the jail on Allegheny County, 81

Pennsylvania, where detailed data on the jail population and facilities are available, 82

including an automatically updating dashboard giving statistics for the jail population.1 83

In Allegheny County, the population at large is approximately 1.2 million people. The 84

size of the jail population hovers around 2,500. We use these population figures to 85

initialize our model. 86

In our model, individuals in the community are arrested at a rate of approximately 87

100 people per day.2 Arrested individuals are brought to processing. From processing, 88

individuals can either be released back into the community (60%) or taken to jail (40%)3. 89

This results in an in-flow to the jail of approximately 40 individuals per day, which is 90

1https://perma.cc/93RG-4WZ8
2https://perma.cc/9DSP-9CTY
3https://perma.cc/93RG-4WZ8
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consistent with Allegheny County’s reporting. While in jail, individuals transition back 91

and forth between the jail and court appointments. The number of movements between 92

jail and court appointments is described as “well over 100” on the jail’s website. We 93

assume movement of approximately 150 people per day between the jail and court. For 94

each court appointment, we assume individuals spend half a day on average at the court 95

facility. Importantly, we also assume that there is mixing in the court facility between 96

those who are there for processing after arrest and those that are present there for court 97

appointments. From the jail, individuals are released back into the community at a rate 98

that is consistent with the reported 62 day average length of stay. One limitation of our 99

model is that we do not account for post-jail destinations that are not the community, 100

i.e. we do not model people moving from jail to prison. According to [19], the yearly 101

number of admissions to prison is about 600,000 while the yearly number of admissions 102

to jail is around 10.6 million. So, assuming that all prison admissions first had one jail 103

admissions, around 95% of all jail admissions do not go on to prison; they are released 104

back into the community as in our model. Thus, we expect that the omission of prison 105

from our model does not substantially impact the overall findings. 106

An online database of public employees salaries in Allegheny County shows a 107

population of 384 people whose job title is corrections officer, whose job location is the 108

jail, and who are listed as active. Although this is certainly an underestimate of the 109

total number of the jail’s staff, which includes other types of employees, we think this is 110

a useful approximation to the total number of staff. We use this figure as the number of 111

staff members moving between community and jail. Staff transition between community 112

and jail at a rate that assumes 8 hour shift lengths in the jail per day with the 113

remaining 16 hours per day spent in the community. 114

Estimation Population Mixing and Contact Rates 115

We estimate parameters that describe the relative rate of transmission between each of 116

the community categories: Children, Low-risk adults, High-risk adults, and Elderly 117

adults from other studies. We use βC∗
qr to denote the relative rate of transmission to 118

category q from category r. We estimate this as 119

βC∗
qr = mqrcqp

−1
q tq.

mqr is the number of times a person in category q is in contact with a person in 120

category r. We use the category-category contact rates given in [20]. cq is the 121

proportion of COVID-19 cases that occurred for people in category q and pq is the 122

proportion of the total population in category q. The ratio of these two terms, cqp
−1
q , is 123

meant to capture the relative proclivity for people in group q to be infected by the virus. 124

We use case counts and population information for South Korea as reported by 125

Statista.4. ti is the number of daily contacts for individuals in category q, as reported 126

in [21]. The β∗s are normalized such that the Child-Child transmission is equal to one. 127

The resulting values of βC∗ is shown in Table 1. 128

child adult elderly
child 1.00 0.51 0.08
adult 0.57 2.43 1.05

elderly 0.02 0.30 0.49

Table 1. Relative transmission rates of COVID-19 from an individual per row to an
individual per column, scaled so that the Child-Child rate is one.

4COVID-19 case proportions: https://www.statista.com/statistics/1102730/south-korea-coronavirus-
cases-by-age/
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Within the jail and processing, we assume that mixing patterns are not 129

category-dependent. We set βJ∗ = βJ∗qr = βC∗
LLcj , β

P∗ = βP∗
qr = βC∗

LLcp, and 130

βT∗ = βT∗
qr = βC∗

LLct, where β
C∗
LL is the low risk adult to low risk adult base transmission 131

rate in the community and cj , cp, and ct are factors that denotes how times more 132

contacts per day a person in jail or processing, respectively, has than a person in the 133

community. We set these values to be cj = 3 and cp = ct = 6, corresponding to an 134

assumption of three and six times more contact in jail and processing/trial, respectively, 135

than take place in the community. 136

The β∗s are defined on an arbitrary scale. To get simulations that resemble the real 137

spread of the virus, we calibrated the model. We set βCqr =
c0β

C∗
qr

nc
, βJ = c0β

J∗

nj
, 138

βT = c0β
T∗

nt
, and βP = c0β

P∗

np
, where nc = 1, 200, 000, nj = 2, 600, nt = 250, and 139

np = 250 are the size of the population in the community, jail, and processing, 140

respectively, and c0 is a calibration parameter. Scaling each of the β terms in the model 141

by the population sizes amounts to the assumption that transmission is contact-based. 142

This assumption leads to conservative estimates of the speed of the spread in the jail 143

system relative to a fomite-based transmission model. To calibrate the model, we then 144

find a c0 such that approximately 80% of the population is ultimately infected by the 145

time the spread dies out in our model. We selected an 80% final infection rate for 146

consistency with predictions of the spread of COVID-19 under the assumption of no 147

mitigation measures in place from an influential micro-simulation model [22]. 148

Estimation of Other Model Parameters 149

Parameters concerning the natural history of COVID-19, patient progression, etc. were 150

primarily obtained from existing estimates in the modeling literature, where possible 151

using estimates from as close to the modeled catchment area as possible (i.e. CHIME 152

from UPenn Medicine, https://penn-chime.phl.io/). Citations for specific parameter 153

values may be found in Table 2. 154

In one case, γ̂, or the asymptomatic period−1, the original source reported that their 155

estimate was likely an underestimation due to censoring. However, given that the 156

authors provided the data within their manuscript [23], the data was re-estimated to 157

account for censoring using a parametric survival model assuming an exponential 158

distribution (the distribution typically implied by the uniform hazard of transitioning 159

from one compartment to another within a compartmental model). The fit for this 160

exponential model may be found in SI Appendix 2. 161

Modeled Scenarios and Interventions 162

We represented the effects of several policy interventions or failures as changes to various 163

parameters in this model. We consider four categories of scenarios that could vary the 164

rate of spread: in addition to modeling shelter-in-place (reduced mixing) conditions in 165

the community, we modeled scenarios related to reductions in arrest rates, increases in 166

release rates, and changes to within-jail conditions. These scenarios are detailed below 167

in Table 3. Most scenarios are additive; that is, all arrest reduction interventions 168

assume a baseline scenario of shelter-in-place in the community. The scenarios involving 169

faster release of individuals in jail all assume both shelter-in-place in the community, 170

and were each run under each of the “Arrest Reduction” scenarios to determine the 171

cumulative effects of arrest reduction, increased release rates, and community 172

shelter-in-place conditions. The mixing reduction scenario in the jail assumes 173

shelter-in-place in the community as well as a 25% reduction in arrests (equivalent to 174

the “Bail Eligible” Arrest Reduction scenario), as it is unlikely that jails will be able to 175

effectively reduce contact rates without reducing their average daily population. Finally, 176
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Parameter Value Description
1 σ 0.50 Percent reduction in transmission during

asymptomatic period (compared to symp-
tomatic) [24]

2 γ−1 5.1 days Incubation Period [25]
3 γ̂−1 6.7 days Asymptomatic Period [23]
4 δ−1 10 days Symptomatic Period [24]
5 δ−1

Discharge 9 days Hospitalization Length of Stay (Discharged
Alive) [26]5

6 δ−1
Death 4.2 days Hospitalization Length of Stay (Discharge

Dead) [26]
7 δ−1

DeathU 4.2 days Time to Death for Unhospitalized Critical
Cases

8 ωL 5.9 days−1 ∗ 0.0625 Time from Symptom Onset to Hospitaliza-
tion * Probability of Needing Hospitaliza-
tion (low risk) [26,27]

9 ωH 5.9 days−1 ∗ 0.118 Time from Symptom Onset to Hospitaliza-
tion * Probability of Needing Hospitaliza-
tion (high risk) [26,27]

10 ν 95% Hospitalized Case Survival Rate (low risk)
[28]

11 νH 66.6% Hospitalized Case Survival Rate (high risk)
[28]

12 νU 0.0% Unhospitalized Critical Case Survival Rate
(low risk)

13 νUH 0.0% Unhospitalized Critical Case Survival Rate
(high risk)

14 αL 3.57e-06 Per Capita Hourly Arrest Rate (low risk).
Equates to 60 arrests per day.

15 αE 7.35e-06 Per Capita Hourly Arrest Rate (elderly).
Equates to 1 arrest per day.

16 αH 1.11e-03 Per Capita Hourly Arrest Rate (high risk).
Equates to 40 arrests per day.

17 ψC 12 hours−1 ∗ 0.60 Processing Time from Arrest to Returning
to Community * Probability of Release Af-
ter Arrest

18 ψJ 12 hours−1 ∗ 0.40 Processing Time from Arrest to Jail * Prob-
ability of Jail After Arrest

19 κ 2.60e-03 Per Capita Hourly Probability of Scheduled
Court Appearance

20 τ 12 hours Time from Scheduled Court Appearance to
Return to Jail

21 ρ−1 62 days Length of Stay in Jail 6

22 µ−1
C 8 hours Shift Length for Jail Staff

23 µ−1
J 16 hours Time Spent in the Community for Jail Staff

24 ζ 1.00 Probability an Incarcerated Person Needing
Treatment Will Receive It

25 pop 1.22 million people Population of Jail Catchment Area

Table 2. Parameter values, meanings and sources for a community-jail transmission
model of COVID-19.
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in the reduced detection scenario, we assume shelter-in-place, but vary the likelihood 177

that serious cases of COVID-19 is caught and treated in a timely manner. 178

Below, vulnerable populations are defined as individuals over the age of 65 or at 179

increased risk of complications form COVID-19 due to other co-morbidities. We 180

estimate that 40% of the jail population is vulnerable by this definition, according to 181

information from the Bureau of Justice Statistics [29]. We estimate that around 25% of 182

those arrested are bail eligible, based on information from Allegheny county that cash 183

bail was used in 28% of cases between February and June of 2019 [30]. 184

Scenario Name Parameters Multiplier
of Baseline

Scenario Description

Shelter in Place βC∗ 0.625 Effective contact rate in
the community is reduced
by a factor of 1/1.6.

Arrest Reduction
Bail Eligible αL, αH , αE 0.75 Divert all bail-eligible ar-

rests (estimated at 25% of
all arrests)

Vulnerable Only αH , αE 0.10 Divert arrests of 90% of
vulnerable populations. [9]

Low Level αL, αH , αE 0.17 Divert all low-level arrests
(estimated at 83% of ar-
rests).

Arrest Fewer People αL, αH , αE 0.10 Divert 90% of current ar-
rests.

Faster Release
Increase Release Speed ρ−1 2 2x rate of release from jail
Vulnerable Only ρ−1

H 2 2x rate of release for vul-
nerable only

In-Jail Scenarios
Mixing Reduction βT , βP , βJ 0.625 Reduction of baseline con-

tact rates in jails by the
same factor as the commu-
nity under shelter-in-place

Reduced Detection ζ 0.99,0.95,0.90 Reduction in infection de-
tection and timely hospi-
talization in jails by 1-ζ

Table 3. Scenarios and parameter adjustments for a number of policy-based
interventions to curtail COVID-19 in jail and the community.

Results 185

Unsurprisingly given the epidemiological dynamics of COVID-19, absent any 186

intervention there is a substantial outbreak in the community, causing 926,108 infections 187

(both symptomatic and asymptomatic) as well as requiring 51,497 hospitalizations and 188

ultimately resulting in 12,133 fatalities over the 180 days of the simulation, with the 189

peak of infections occurring 88 days after the first infective case appeared in the 190

population. Among those incarcerated, the outbreak is considerably more severe, 191

causing a cumulative 4,949 cases requiring 264 hospitalizations and 79 deaths among 192

those incarcerated, the 2500 person jail being 0.2% the size of the wider community (Fig 193
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2). The peak of this within-jail epidemic is also considerably earlier, with the peak of 194

the epidemic occurring 31 days after the first infective case appeared in the community. 195

Fig 2. Epidemic curves from a simulated COVID-19 epidemic in an urban community
(right) and the connected population of persons in a jail (left). The magnitude of the
peak in the population in jail is much higher and shifted a full 57 days earlier.

Given the dominant approach to controlling COVID-19 in the community and the 196

widespread calls to “flatten the curve,” for the remaining results we assume the presence 197

of a shelter-in-place order or similar social distancing intervention only in the community 198

as the comparator scenario, represented as a reduction in the mixing frequency of all 199

age groups in the community. In line with the experience of communities undergoing 200

such distancing interventions, this decrease in overall contacts results in a substantially 201

delayed epidemic, with 450,621 infections in the community as well as far lower burdens 202

in terms of both hospitalizations and fatalities. In contrast, the early dynamics of the 203

COVID-19 outbreak within the incarcerated population are identical, while in the latter 204

half of the simulation the outbreak dynamics in the incarcerated population are 205

markedly worse, resulting in 7421 infections after 180 days and proportionately more 206

hospitalizations and COVID-19 related fatalities (Fig 3). Shelter-in-place orders had no 207

discernible impact on the health outcomes of the staff of the jail. 208
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Fig 3. Cumulative infections, hospitalizations and deaths in the community (first
column), among persons in jail (second column) and among jail staff (third column) for
scenarios with (green) and without (orange) a shelter-in-place social distancing
intervention. Such social distancing dramatically reduces the burden of infections and
resulting adverse outcomes in the community, but results in a larger and more
prolonged outbreak among persons in jail. Sensitivity of the number of infections to
alterations in parameter values used are presented in SI Appendix 3.

All of the four considered arrest deferral scenarios had substantial impacts on the 209

course of the epidemic in the incarcerated population, while also lessening the impact of 210

the epidemic on the community and, to a lesser extent, the jail’s staff. Discontinuing 211

the arrest of bail-eligible individuals, which corresponds to a ≈25% reduction of 212

admissions into the jail, resulted in a 22.9% reduction in infections in the incarcerated 213

population, and a 3.9% reduction in infections within the community. 214

Broader, more sweeping arrest deferral programs resulted in correspondingly larger 215

impacts in both the incarcerated population and the community as a whole. The 216

discontinuation of arresting individuals for low level offenses (≈83.4% reduction) and 217

the blanket reduction of arrests by 90% resulted in a 74.0% and 77.3% reduction in 218

infections within the incarcerated population (with correspondingly fewer 219

hospitalizations and deaths) respectively. These strategies also resulted in the greatest 220

decrease in infections among staff (10.2% and 12.9%) and in the community at large 221
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(19.7% and 22.5%). Finally, a strategy built on deferring the arrest of individuals at 222

high risk of developing COVID-19 related complications by 90%, tailoring the 223

intervention to groups of epidemiological importance rather than the nature of their 224

offense, resulted in a 28.1% decrease in infections within the incarcerated population 225

and a 57.3% decrease in deaths among the same population. 226

In comparison, a strategy deferring the same number of people with no regard to 227

their underlying risk (≈36.5%), resulted in a 7.3% decrease in overall infections within 228

the incarcerated population, but a 60.9% increase in deaths among incarcerated persons 229

compared to the scenario specifically targeting those at greatest risk of averse outcomes 230

for deferred arrest (Fig 4). The deferral strategy targeting individuals for high risk 231

outcomes caused 1.4% more infections in the community compared to the same 232

proportionately large but broader strategy, and the decreased number of deaths among 233

persons in jail was partially offset by this increase, with the targeted strategy resulting 234

in a combined number of COVID-19 fatalities in both the population of persons in jail 235

and in the community of 4208 compared to 4131 fatalities under the broader strategy. 236
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Fig 4. Cumulative infections, hospitalizations and deaths in the community (first row),
among persons in jail (second row) and among jail staff (third row) for several
incarceration deferment scenarios. More aggressive scenarios, such as a 90% decrease in
all incarcerations or discontinuing incarceration for low level offenses result in large
improvements in the epidemic within the jail, with a smaller impact among staff and
the community. Deferring incarceration for people particularly at risk for adverse
outcomes results in a markedly pronounced decrease in deaths among persons in jail.

Pairing increased arrest deferral with a more rapid release of persons who were 237

already incarcerated enhanced the impact of those interventions, reducing infections, 238

hospitalizations and deaths overall (Fig 5). The rate of decrease was less dramatic in 239

the community and staff populations, especially at lower levels of accelerated release 240

schedules. 241
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Fig 5. Cumulative infections, hospitalizations and deaths in the community (first row),
among persons in jail (second row) and among jail staff (third row) for several
combinations of incarceration deferment and accelerated release. Negative outcomes
among persons in jail, the community as well as staff improve with faster levels of
release, while the community experiences slightly worse negative outcomes.

When accompanied by the deferred arrest of bail-eligible individuals to reduce the 242

incarcerated population, supplementary measures to reduce transmission among 243

incarcerated persons have a marked benefit in both reducing the amplitude of the 244

epidemic curve in incarcerated people and jail staff, as well as shifting the overall 245

community epidemic curve later (Fig 6). These interventions may be thought of as 246

either measures to reduce mixing — such as allowing greater space between individuals 247

in common areas or the staggering of the use of shared facilities — or the provision of 248

supplies such as soap and hand sanitizer that reduces the level of viral contamination of 249

patient’s hands, physical surfaces, etc. Compared to the baseline mixing rate among 250

persons in jail, a reduction to an equivalent level of mixing as the community while 251

sheltering in place would reduce infections in this population by 14.6% as well as delay 252

the peak of the epidemic by approximately two weeks. 253
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Fig 6. Epidemic curves for the community (top panel), persons in jail (middle panel)
and jail staff (bottom panel) under a shelter in place order as well as the deferment of
bail-eligible persons. The curves show the impact of increased reduction in mixing (e.g.
from the ability to physically distance persons in jail while in common areas) from
baseline (dark blue) to identical to the community’s shelter-in-place order (green). This
shifts the epidemic curve in the community slightly, and results in both a shifted and
decreased curve among persons in jail as well as staff.

An increase in the detection of severe COVID-19 cases among incarcerated persons 254

from 95% to 100% (equivalent to the same detection of the need for medical treatment 255

available in the community) unsurprisingly increased the number of hospitalizations, as 256

5 out of every 100 incarcerated persons needing hospitalization were no longer missed, 257

either for lack of access to care, insufficient diagnostic capacity, or other reasons. 258

Similarly, owing to the vast reduction in the case fatality rate between hospitalized 259

(CFR = 5% for low risk and 33.3% for high risk) severe cases and unhospitalized severe 260

cases (CFR = 100% for both groups), the number of deaths dropped by 72.2% when the 261

detection of severe cases rose to the same level as the community. Between these 262

scenarios, the number of infections rose slightly with better detection, increasing by 263

0.08% (Fig 7). This is likely due to the slightly longer time an untreated severe case 264

spends in the incarcerated population before they are removed due to death vs. when a 265

treated case is transferred for hospitalization. This effect will only be present if the level 266
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of viral shedding is constant (or increasing) over the course of a clinical infection. If 267

instead the mechanism by which a severe COVID-19 patient dies is a cytokine storm or 268

other process not involving the virus overwhelming the immune system, we would not 269

expect this effect to be observed. However, even in the pessimistic case wherein viral 270

shedding is constant throughout the clinical course of infection, the slight rise in 271

infections is offset by the decrease in the number of COVID-19 related fatalities. 272

Fig 7. Infections, hospitalizations and deaths from COVID-19 among incarcerated
persons under three scenarios of the probability that a severe case will be detected and
receive adequate medical care. Increasing this probability results in more
hospitalizations, dramatically reduced deaths, and a very slight rise in the number of
infections among incarcerated persons.

Discussion 273

Failure to adequately protect jail populations will have a profound impact on the health 274

of incarcerated people, corrections officers, workers in the judicial system, and members 275

of the broader community. Our model demonstrates that, in the absence of community 276

mitigation such as strict social distancing, by only 30 days after the introduction of the 277

first infection to the community, we can expect 2566 infections among incarcerated 278

people, resulting in three in-custody deaths. When contrasted with a baseline model of 279

the general population without interaction with a jail, we see that the existence of 280

jail-driven disease dynamics increase the total number of cases in the population by 365 281

and the total number of deaths by 267. 282

These results clearly follow from the features of the jail system themselves in 283

challenging ways. While only 1% of the population entering into the jail system are 284

elderly [31], incarceration in jail itself degrades the health of incarcerated people [16–18], 285

leaving them more vulnerable to infection and severe outcomes from infection [32]. As 286

individual robustness to disease decreases, the epidemiological result is the increased 287

vulnerability of the whole jail population. 288

Beyond the direct implications for the health of incarcerated people, jail populations 289

have high rates of re-entry into the general community and they depend on people who 290

regularly mix with the outside community. Jail populations are largely composed of 291

individuals who have not been convicted of a crime, and therefore will be released 292

quickly back into the general community rather than to further incarceration within the 293

carceral system. Jails with disease prevalence higher than the general populations they 294
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serve will therefore act as sources of infection, re-seeding infection into communities that 295

may be striving to contain or mitigate ongoing outbreaks, or even reintroducing 296

infection into otherwise disease-free populations. It is important to note that this would 297

happen even if no one were released given the volume of people coming in and out of 298

jails in staff and vendor roles, so should therefore not be construed as an implication 299

that releases should be suspended or impeded. 300

We are not helpless to effect change. Some obvious potential courses of action 301

suggest themselves immediately. New arrests mean that people of unknown disease 302

status may be regularly brought into jails, increasing the likely severity of outbreaks 303

both by the plausible continuous introduction of new sources of infection and by the 304

maintenance of higher rates of contact among susceptible incarcerated people due to the 305

density and structure of jail housing arrangements. If jurisdictions across the country 306

reduce their intake by significant percentages, our models demonstrate that we will 307

meaningfully directly reduce the disease incidence in the incarcerated population (as 308

seen in Fig 4). Moreover, these same strategies also clearly produced a reduction in the 309

source of risk to incarcerated people’s families, jail staff, and the broader community 310

(Fig 4). These strategies could be enacted in a number of ways, such as (but not limited 311

to) replacing misdemeanor arrests with citations, avoiding recommendations for jail 312

time or prohibitive terms for bail conditions, or refusing to detain anyone for 313

nonpayment of fines or fees during the course of the outbreak. 314

Having considered these potential strategies for categorical reduction in intake into 315

jails, we also considered the case in which the categorical consideration for reduction in 316

intake stemmed instead from the health of the arrested person. In this case, we get the 317

expected reduction in the within-jail outbreak that would have been associated with a 318

general reduction of the same percent intake (≈36.9%, allowing for a small number of 319

incarcerations in these groups), but we fail to achieve any significant reduction in 320

disease burden in the broader community by taking this action. It is therefore more 321

effective to reduce the intake rate across the entire population than to attempt to single 322

out particular categories of individuals due to their likely susceptibility to severe 323

morbidity or mortality from infection. The larger the reduction in overall intake, the 324

greater the reduction in disease achieved for all populations (incarcerated people, the 325

broader community, and jail staff, in decreasing proportion of effect). These broader 326

interventions are also likely to be relatively straightforward to implement 327

administratively, without knowledge of an individual’s underlying comorbidities, if any. 328

In addition to reducing rates of intake into the jail system, another obvious, concrete 329

step we might take to reduce disease risks for everyone is to increase the rate of release 330

from jails. This should clearly be coupled with a decreased rate of intake rather than 331

enacted in isolation, since increasing release rates while maintaining the same rate of 332

intake would increase infection risks for incarcerated people, the staff who work at the 333

jails and court systems, and the broader community. This may even still occur when 334

expedited release is coupled with decreased rates of intake if the rate of release is 335

insufficient; see Fig 5. Again, our results clearly demonstrate that the greater the 336

proportion of the incarcerated population we can include in such a policy, the more 337

effective the intervention is at mitigating the outbreak. 338

To be maximally effective, each of these interventions should anticipate, rather than 339

react to, widespread infection incidence in jail populations. 340

Critically, the factors that cause these outbreak dynamics and drive the resulting 341

efficacy of proposed interventions are features implicit in the nature of the jail system 342

itself. The living conditions foster disease spread. Incarcerated people are shuttled back 343

and forth to court or, where court proceedings are halted due to this pandemic, forced 344

to remain in their cells or dorms. Incarcerated people occupy shared spaces in which 345

physical distancing is impossible either due to space, overcrowding, or the requirement 346
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of constant supervision. Incarcerated people are often not provided with the means to 347

disinfect their surroundings or practice all of the hygiene guidelines suggested by the 348

CDC. Improved facility sanitation, access to free personal hygienic care, such as warm 349

water, free soap, free hand sanitizer, and free cleaning products, increased time spent 350

outside, increased physical/social distancing measures, decreased population density 351

achieved by releasing people, increased access to free medical care, and improved 352

nutrition are all factors resulting in instant and obvious improvements in individual 353

health outcomes for people incarcerated within the jail system. Alterations to function 354

and practice of the jail system that can correct for these challenges are unlikely to occur 355

quickly enough or substantially enough to improve the epidemiological risks for the 356

incarcerated people within the jail system. As our results have shown, even when the 357

within-jail transmission rates are improved by interventions such as reduction in intake 358

from new arrests leading to a decrease in the size of the incarcerated population, we 359

cannot effectively reduce the outbreak of infection in either the staff or incarcerated 360

people down to the levels of the broader community. 361

As with all models, the conclusions of this study depend on an accurate 362

representation of the flow of individuals between the jail system and the wider 363

community, either due to arrests or due to their employment as jail staff, as well as the 364

values of the parameters used to determine how swiftly this flow occurs. The inherent 365

nature of emerging epidemics makes both of these things uncertain — the clinical and 366

biological aspects of the pathogen might not be fully understood, and the data needed 367

to parameterize these models is often sparse and incomplete. This problem is especially 368

acute in models of this sort, which seek to present a ”what-if” scenario to stave off a 369

public health crisis, rather than analyze how that crisis unfolded after the fact. 370

Nevertheless, while the exact projected magnitudes may be sensitive to these unknowns, 371

in truth, the greatest utility of models such as these in in determining best courses of 372

action and likely magnitudes of the effects that can be gained from those actions, rather 373

than exact predictions of precise numbers of individuals [33]. Due to the logical nature 374

of the processes studied, so long as errors in the parameters used are consistent across 375

scenarios, they will not impact the understanding that results from our projections 376

about which courses of action achieve the best outcomes, even if those errors would alter 377

our understanding of the precise amount of effect achieved by each intervention. 378

Conclusion 379

Conditions within jails must be immediately improved to decrease the probabilities of 380

disease transmission and support better health for incarcerated people to protect not 381

only themselves, but also jail staff and the community at large. Decreasing population 382

density both directly decreases disease exposure, interrupting transmission dynamics, 383

and also facilitates many other interventions. It is a natural result of reduced intake. 384

We can achieve/enable many desired benefits with just that one, simple action, but to 385

achieve maximal benefits to society, preventing the greatest burden from disease both 386

within the jails and without, broad actions that include alterations to both intake and 387

release and also many of the within-jail strategies for improving the individual means to 388

enact personal hygiene, protection through social distancing, and access to medical care 389

are all needed. 390

Acknowledgments 391

EL was supported by the CDC Cooperative Agreement RFA-CK-17-001-Modeling 392

Infectious Diseases in Healthcare Program (MInD-Healthcare). 393

April 30, 2020 17/26

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 4, 2020. ; https://doi.org/10.1101/2020.04.08.20058842doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.08.20058842
http://creativecommons.org/licenses/by-nc-nd/4.0/


References

1. Mervosh S, Lu D, Swales V. See Which States and Cities Have Told Residents to
Stay at Home. New York Times. 2020;.

2. Bayham J, Fenichel EP. The Impact of School Closure for COVID-19 on the US
Healthcare Workforce and the Net Mortality Effects. Available at SSRN 3555259.
2020;.

3. Sharp R. The Incarceration Nation: Interpreting the United States Imprisonment
Rate. 2018;.

4. Sykes BL, Pettit B. Measuring the Exposure of Parents and Children to
Incarceration. In: Handbook on Children with Incarcerated Parents. Springer;
2019. p. 11–23.

5. Weidner RR, Schultz J. Examining the relationship between US incarceration
rates and population health at the county level. SSM-Population Health.
2019;9:100466.

6. Kelley S. MASS INCARCERATION. Human Ecology. 2019;47(1):15–15.

7. Enns PK, Yi Y, Comfort M, Goldman AW, Lee H, Muller C, et al. What
percentage of Americans have ever had a family member incarcerated?: Evidence
from the family history of incarceration survey (FamHIS). Socius.
2019;5:2378023119829332.

8. Lester HD, Miller MJ. Discrete Event Simulation of Jail Operations in Pursuit of
Organizational Culture Change. In: Computer Security. Springer; 2019. p.
307–322.

9. Minton TD. Jail Inmates at Midyear 2010 - Statistical Tables. Bureau of Justice
Statistics. 2011;.

10. Raher S. The Company Store: A Deeper Look at Prison Commissaries; 2018.
Available from: https://www.prisonpolicy.org/reports/commissary.html.

11. Bick JA. Infection control in jails and prisons. Clinical Infectious Diseases.
2007;45(8):1047–1055.

12. Hoge CW, Reichler MR, Dominguez EA, Bremer JC, Mastro TD, Hendricks KA,
et al. An Epidemic of Pneumococcal Disease in an Overcrowded, Inadequately
Ventilated Jail. New England Journal of Medicine. 1994;331(10):643–648.
doi:10.1056/NEJM199409083311004.

13. Nowotny KM. Health care needs and service use among male prison inmates in
the United States: A multi-level behavioral model of prison health service
utilization. Health & justice. 2017;5(1):9.

14. Mignon S. Health issues of incarcerated women in the United States. Ciencia &
saude coletiva. 2016;21:2051–2060.

15. Barnert ES, Perry R, Morris RE. Juvenile incarceration and health. Academic
pediatrics. 2016;16(2):99–109.

16. McClelland DC, Alexander C, Marks E. The need for power, stress, immune
function, and illness among male prisoners. Journal of Abnormal Psychology.
1982;91(1):61.

April 30, 2020 18/26

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 4, 2020. ; https://doi.org/10.1101/2020.04.08.20058842doi: medRxiv preprint 

https://www.prisonpolicy.org/reports/commissary.html
https://doi.org/10.1101/2020.04.08.20058842
http://creativecommons.org/licenses/by-nc-nd/4.0/


17. Jacobs ET, Mullany CJ. Vitamin D deficiency and inadequacy in a correctional
population. Nutrition. 2015;31(5):659–663.

18. Kouyoumdjian FG, Andreev EM, Borschmann R, Kinner SA, McConnon A. Do
people who experience incarceration age more quickly? Exploratory analyses
using retrospective cohort data on mortality from Ontario, Canada. PloS one.
2017;12(4).

19. Wagner P, Sakala L. Mass incarceration: The whole pie. Prison Policy Initiative.
2014;12.

20. Yuan HY, Baguelin M, Kwok KO, Arinaminpathy N, van Leeuwen E, Riley S.
The impact of stratified immunity on the transmission dynamics of influenza.
Epidemics. 2017;20:84–93.

21. Rohani P, Zhong X, King AA. Contact network structure explains the changing
epidemiology of pertussis. Science. 2010;330(6006):982–985.

22. Ferguson N, Laydon D, Nedjati Gilani G, Imai N, Ainslie K, Baguelin M, et al.
Report 9: Impact of non-pharmaceutical interventions (NPIs) to reduce
COVID19 mortality and healthcare demand. 2020;.

23. Hu Z, Song C, Xu C, Jin G, Chen Y, Xu X, et al. Clinical characteristics of 24
asymptomatic infections with COVID-19 screened among close contacts in
Nanjing, China. Science China Life Sciences. 2020; p. 1–6.

24. Weitz JS. COVID-19 Epidemic Risk Assessment for Georgia. Available on
GitHub. 2020;.

25. Lauer SA, Grantz KH, Bi Q, Jones FK, Zheng Q, Meredith HR, et al. The
incubation period of coronavirus disease 2019 (COVID-19) from publicly reported
confirmed cases: estimation and application. Annals of internal medicine. 2020;.

26. Verity R, Okell LC, Dorigatti I, Winskill P, Whittaker C, Imai N, et al.
Estimates of the severity of COVID-19 disease. MedRxiv. 2020;.

27. Tindale L, Coombe M, Stockdale JE, Garlock E, Lau WYV, Saraswat M, et al.
Transmission interval estimates suggest pre-symptomatic spread of COVID-19.
medRxiv. 2020;.

28. COVID C. Severe Outcomes Among Patients with Coronavirus Disease 2019
(COVID-19)—United States, February 12–March 16, 2020;.

29. Maruschak LM, Berzofsky M, Unangst J. Medical problems of state and federal
prisoners and jail inmates, 2011-12. US Department of Justice, Office of Justice
Programs, Bureau of Justice . . . ; 2015.

30. Pennsylvania A. Punishing Poverty: Cash Bail In Allegheny County; 2019.
Available from: https://aclupa.org/sites/default/files/field_
documents/allegheny_county_report_final.pdf.

31. Allegheny County Jail Population Management: Interactive Dashboards; 2020.
Available from:
https://www.alleghenycountyanalytics.us/index.php/2019/11/04/

allegheny-county-jail-population-management-dashboards-2/.

April 30, 2020 19/26

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 4, 2020. ; https://doi.org/10.1101/2020.04.08.20058842doi: medRxiv preprint 

https://aclupa.org/sites/default/files/field_documents/allegheny_county_report_final.pdf
https://aclupa.org/sites/default/files/field_documents/allegheny_county_report_final.pdf
https://www.alleghenycountyanalytics.us/index.php/2019/11/04/allegheny-county-jail-population-management-dashboards-2/
https://www.alleghenycountyanalytics.us/index.php/2019/11/04/allegheny-county-jail-population-management-dashboards-2/
https://doi.org/10.1101/2020.04.08.20058842
http://creativecommons.org/licenses/by-nc-nd/4.0/


32. Binswanger IA, Blatchford PJ, Forsyth SJ, Stern MF, Kinner SA. Epidemiology
of infectious disease–related death after release from prison, Washington State,
United States, and Queensland, Australia: A Cohort Study. Public Health
Reports. 2016;131(4):574–582.

33. Lofgren ET, Halloran ME, Rivers CM, Drake JM, Porco TC, Lewis B, et al.
Opinion: Mathematical models: A key tool for outbreak response. Proceedings of
the National Academy of Sciences. 2014;111(51):18095–18096.

34. Stein M. Large sample properties of simulations using Latin hypercube sampling.
Technometrics. 1987;29(2):143–151.

Supporting information

SI Appendix 1. According to the logic presented in the Model/Methods section 1
define the following system of equations to capture the epidemiological dynamics of our
system:

Within the Broader Community:
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C
E − δDeath(1− νH)MC

E

dRCE
dt

= δICE + γ̂ECE + δDischargeνHM
C
E + δDeath(1− νH)MC

E − αHR
C
E + ψCR

P
E

+ ρRJE

dSCH
dt

= −βCHKSCH
(
ICK + σECK

)
− βCHLS

C
H

(
ICL + ICO + σ

(
ECL + ECO

))
− βCHES

C
H

(
ICE + σECE

)
− βCHHS

C
H

(
ICH + σECH

)
− αHS

C
H + ψCS

P
H + ρSJH

dECH
dt

= βCHKS
C
H

(
ICK + σECK

)
+ βCHLS

C
H

(
ICL + ICO + σ

(
ECL + ECO

))
+ βCHES

C
H

(
ICE + σECE

)
+ βCHHS

C
H

(
ICH + σECH

)
− (γ + γ̂)ECH

− αHE
C
H + ψCE

P
H + ρEJH

dICH
dt

= γECH − δICH − ωHI
C
H−αHICH + ψCI

P
H + ρIJH

dMC
H

dt
= ωHI

C
H − δDischargeνHM

C
H − δDeath(1− νH)MC

H

dRCH
dt

= δICH + γ̂ECH + δDischargeνHM
C
H + δDeath(1− νH)MC

H−αHRCH + ψCR
P
H

+ ρRJH

dSCO
dt

= −βCOKSCO
(
ICK + σECK

)
− βCOLS

C
O

(
ICL + ICO + σ

(
ECL + ECO

))
− βCOES

C
O

(
ICE + σECE

)
− βCOHS

C
O

(
ICH + σECH

)
− µJS

C
O + µCS

J
O

dECO
dt

= βCOKS
C
O

(
ICK + σECK

)
+ βCOLS

C
O

(
ICL + ICO + σ

(
ECL + ECO

))
+ βCOES

C
O

(
ICE + σECE

)
+ βCOHS

C
O

(
ICH + σECH

)
− (γ + γ̂)ECO − µJE

C
O + µCE

J
O

dICO
dt

= γECO − δICO − ωLI
C
O − µJI

C
O + µCI

J
O

dMC
O

dt
= ωL

(
ICO+I

J
O

)
− δDischargeνM

C
O − δDeath(1− ν)MC

O

dRCO
dt

= δICO + γ̂ECO + δDischargeνM
C
O + δDeath(1− ν)MC

O − µJR
C
O + µCR

J
O

Within the Processing System:

dSPL
dt

= −βPLLSPL
(
IPL + ITL + σ

(
EPL + ETL

))
− βPLES

P
L

(
IPE + ITE + σ

(
EPE + ETE

))
− βPLHS

P
L

(
IPH + ITH + σ

(
EPH + ETH

))
+ αLS

C
L − ψCS

P
L − ψJS

P
L
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dEPL
dt

= βPLLS
P
L

(
IPL + ITL + σ

(
EPL + ETL

))
+ βPLES

P
L

(
IPE + ITE + σ

(
EPE + ETE

))
+ βPLHS

P
L

(
IPH + ITH + σ

(
EPH + ETH

))
− (γ + γ̂)EPL + αLE

C
L

− ψCE
P
L − ψJE

P
L

dIPL
dt

= γEPL − δIPL + αLI
C
L − ψCI

P
L − ψJI

P
L

dRPL
dt

= αLR
C
L − ψCR

P
L − ψJR

P
L + δIPL + γ̂EPL

dSPE
dt

= −βPELSPE
(
IPL + ITL + σ

(
EPL + ETL

))
− βPEES

P
E

(
IPE + ITE + σ

(
EPE + ETE

))
− βPEHS

P
E

(
IPH + ITH + σ

(
EPH + ETH

))
+ αES

C
E − ψCS

P
E − ψJS

P
E

dEPE
dt

= βPELS
P
E

(
IPL + ITL + σ

(
EPL + ETL

))
+ βPEES

P
E

(
IPE + ITE + σ

(
EPE + ETE

))
+ βPEHS

P
E

(
IPH + ITH + σ

(
EPH + ETH

))
− (γ + γ̂)EPE + αEE

C
E

− ψCE
P
E − ψJE

P
E

dIPE
dt

= γEPE − δIPE + αEI
C
E − ψCI

P
E − ψJI

P
E

dRPE
dt

= αER
C
E − ψCR

P
E − ψJR

P
E + δIPE + γ̂EPE

dSPH
dt

= −βPHLSPH
(
IPL + ITL + σ

(
EPL + ETL

))
− βPHES

P
H

(
IPE + ITE + σ

(
EPE + ETE

))
− βPHHS

P
H

(
IPH + ITH + σ

(
EPH + ETH

))
+ αHS

C
H − ψCS

P
H − ψJS

P
H

dEPH
dt

= βPHLS
P
H

(
IPL + ITL + σ

(
EPL + ETL

))
+ βPHES

P
H

(
IPE + ITE + σ

(
EPE + ETE

))
+ βPHHS

P
H

(
IPH + ITH + σ

(
EPH + ETH

))
− (γ + γ̂)EPH + αHE

C
H

− ψCE
P
H − ψJE

P
H

dIPH
dt

= γEPH − δIPH+αHI
C
H − ψCI

P
H − ψJI

P
H

dRPH
dt

= αHR
C
H − ψCR

P
H − ψJR

P
H + δIPH + γ̂EPH

Within the Trial System:

dSTL
dt

= −βTLLSTL
(
IPL + ITL + σ

(
EPL + ETL

))
− βTLES

T
L

(
IPE + ITE + σ

(
EPE + ETE

))
− βTLHS

T
L

(
IPH + ITH + σ

(
EPH + ETH

))
+ κτSJL − κSTL

dETL
dt

= βTLLS
T
L

(
IPL + ITL + σ

(
EPL + ETL

))
+ βTLES

T
L

(
IPE + ITE + σ

(
EPE + ETE

))
+ βTLHS

T
L

(
IPH + ITH + σ

(
EPH + ETH

))
− (γ + γ̂)ETL + κτEJL − κETL

dITL
dt

= γETL − δITL + κτIJL − κITL

dRTL
dt

= κτRJL − κRTL + δITL + γ̂ETL
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dSTE
dt

= −βTELSTE
(
IPL + ITL + σ

(
EPL + ETL

))
− βTEES

T
E

(
IPE + ITE + σ

(
EPE + ETE

))
− βTEHS

T
E

(
IPH + ITH + σ

(
EPH + ETH

))
+ κτSJE − κSTE

dETE
dt

= βTELS
T
E

(
IPL + ITL + σ

(
EPL + ETL

))
+ βTEES

T
E

(
IPE + ITE + σ

(
EPE + ETE

))
+ βTEHS

T
E

(
IPH + ITH + σ

(
EPH + ETH

))
− (γ + γ̂)ETE + κτEJE − κETE

dITE
dt

= γETE − δITE + κτIJE − κITE

dRTE
dt

= κτRJE − κRTE + δITE + γ̂ETE

dSTH
dt

= −βTHLSTH
(
IPL + ITL + σ

(
EPL + ETL

))
− βTHES

T
H

(
IPE + ITE + σ

(
EPE + ETE

))
− βTHHS

T
H

(
IPH + ITH + σ

(
EPH + ETH

))
+ κτSJH − κSTH

dETH
dt

= βTHLS
T
H

(
IPL + ITL + σ

(
EPL + ETL

))
+ βTHES

T
H

(
IPE + ITE + σ

(
EPE + ETE

))
+ βTHHS

T
H

(
IPH + ITH + σ

(
EPH + ETH

))
− (γ + γ̂)ETH + κτEJH − κETH

dITH
dt

= γETH − δITH + κτIJH − κITH

dRTH
dt

= κτRJH − κRTH + δITH + γ̂ETH

Within the Jail System:

dSJL
dt

= −βJLLSJL
(
IJL + σEJL

)
− βJLES

J
L

(
IJE + σEJE

)
− βJLHS

J
L

(
IJH + σEJH

)
− βJLOS

J
L

(
IJO + σEJO

)
+ ψJS

P
L − κτSJL − ρSJL + κSTL

dEJL
dt

= βJLLS
J
L

(
IJL + σEJL

)
+ βJLES

J
L

(
IJE + σEJE

)
+ βJLHS

J
L

(
IJH + σEJH

)
+ βJLOS

J
L

(
IJO + σEJO

)
− (γ + γ̂)EJL + ψJE

P
L − κτEJL − ρEJL + κETL

dIJL
dt

= γEJL − δIJL − ωLζI
J
L − (1− νU ) (1− ζ) δDeathU

I
J
L − νU (1− ζ) δDischargeI

J
L

+ ψJI
P
L − κτIJL − ρIJL + κITL

dMJ
L

dt
= ωLζI

J
L − δDischargeνM

J
L − δDeath(1− ν)MJ

L

dRJL
dt

= δIJL + γ̂EJL + δDischargeνM
J
L + δDeath(1− ν)MJ

L + δDeathU
(1− νU )(1− ζ)I

J
L

+ δDischargeνU (1− ζ) IJL + ψJR
P
L − κτRJL − ρRJL + κRTL

dSJE
dt

= −βJELSJE
(
IJL + σEJL

)
− βJEES

J
E

(
IJE + σEJE

)
− βJEHS

J
E

(
IJH + σEJH

)
− βJEOS

J
E

(
IJO + σEJO

)
+ ψJS

P
E − κτSJE − ρSJE + κSTE

dEJE
dt

= βJELS
J
E

(
IJL + σEJL

)
+ βJEES

J
E

(
IJE + σEJE

)
+ βJEHS

J
E

(
IJH + σEJH

)
+ βJEOS

J
E

(
IJO + σEJO

)
− (γ + γ̂)EJE + ψJE

P
E − κτEJE − ρEJE + κETE
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dIJE
dt

= γEJE − δIJE − ωHζI
J
E − (1− νUH) (1− ζ) δDeathU

I
J
E

− νUH (1− ζ) δDischargeI
J
E + ψJI

P
E − κτIJE − ρIJE + κITE

dMJ
E

dt
= ωHζI

J
E − δDischargeνHM

J
E − δDeath(1− νH)MJ

E

dRJE
dt

= δIJE + γ̂EJE + δDischargeνHM
J
E + δDeath(1− νH)MJ

E

+ δDeathU
(1− νUH)(1− ζ)I

J
E + δDischargeνUH (1− ζ) IJE + ψJR

P
E

− κτRJE − ρRJE + κRTE

dSJH
dt

= −βJHLSJH
(
IJL + σEJL

)
− βJHES

J
H

(
IJE + σEJE

)
− βJHHS

J
H

(
IJH + σEJH

)
− βJHOS

J
H

(
IJO + σEJO

)
+ ψJS

P
H − κτSJH − ρSJH + κSTH

dEJH
dt

= βJHLS
J
H

(
IJL + σEJL

)
+ βJHES

J
H

(
IJE + σEJE

)
+ βJHHS

J
H

(
IJH + σEJH

)
+ βJHOS

J
H

(
IJO + σEJO

)
− (γ + γ̂)EJH + ψJE

P
H − κτEJH − ρEJH + κETH

dIJH
dt

= γEJH − δIJH − ωHζI
J
H − (1− νUH) (1− ζ) δDeathU

I
J
H − νUH(1− ζ) δDischargeI

J
H

+ ψJI
P
H − κτIJH − ρIJH + κITH

dMJ
H

dt
= ωHζI

J
H − δDischargeνHM

J
H − δDeath(1− νH)MJ

H

dRJH
dt

= δIJH + γ̂EJH + δDischargeνHM
J
H + δDeath(1− νH)MJ

H

+ δDeathU
(1− νUH) (1− ζ) IJH + νUH (1− ζ) δDischargeI

J
H + ψJR

P
H

− κτRJH − ρRJH + κRTH

dSJO
dt

= −βJOLSJO
(
IJL + IJE + IJH + σ

(
EJL + EJE + EJH

))
− βJOOS

J
O

(
IJO + σEJO

)
+ µJS

C
O

− µCS
J
O

dEJO
dt

= βJOLS
J
O

(
IJL + IJE + IJH + σ

(
EJL + EJE + EJH

))
+ βJOOS

J
O

(
IJO + σEJO

)
+ µJE

C
O − µCE

J
O − (γ + γ̂)EJO

dIJO
dt

= µJI
C
O − µCI

J
O + γEJO − δIJO − ωLI

J
O

dRJO
dt

= µJR
C
O − µCR

J
O + δIJO + γ̂EJO

SI Appendix 2. The exponential survival model fit to Hu et al., 2020 estimated a
mean asymptomatic shedding period of 11.79 days (95% CI: 7.86, 18.61), which is
indeed a higher estimate than that found in the original manuscript, which did not
account for censoring. As 5.1 of those days are already accounted for in the original
estimate for γ−1, this yielded an estimate for γ̂−1 of 6.7 days. Compared to a
Kaplan-Meier fit of the available data, the exponential model fit well, and adequately
models underlying survival function (Fig 8).
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Fig 8. Proportion of patients with viral shedding among a cohort of asymptomatic
COVID-19 patients in China. Original data from Hu et al., 2020. Dashed black line
depicts a non-parameteric Kaplan-Meier fit, while the solid blue line depicts the fit of
an exponential survival function.
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SI Appendix 3. In order to determine model sensitivity to parameter values that
could not be estimated directly from published/reported data, we performed a Latin
hypercube sensitivity analysis [34]. We arbitrarily selected the range of the values
sampled for each parameter to be [0.9X, 1.1X] where X the value reported for that
parameter in Tables 1 and 2. Unsurprisingly, as with most epidemic models, this model
is most sensitive to parameters that govern the duration and intensity of infectivity (i.e.
σ, γ & γ̂ and δ). The model was also relatively insensitive to changes in the assumed
increased rates of mixing among incarcerated persons in either jail or processing,
suggesting that so long as there is an increase in mixing between incarcerated persons
due to the structure of jails there will remain the risk of an infectious disease outbreak,
rather than this being a feature of a particular combination of parameter values.

ICom IInc ISta
σ 0.347336 −0.456785 −0.0004290
γ 0.469421 0.587536 0.735222
γ̂ −0.595468 −0.350117 −0.735132
ω −0.105962 −0.004185 −0.0009146
ωH 0.0352838 −0.059627 −0.0012778
δ −0.600617 0.607748 0.0035495
δDischarge 0.0495378 −0.0692823 0.0007294
δDeath 0.0487173 −0.0709513 −0.00146202
δDeathU 0.0473402 −0.0711741 −0.00243121
ν 0.0494655 −0.0686944 0.00136101
νH 0.0450316 −0.072549 −0.00471153
cJ 0.0594902 0.094403 0.00545029
cP 0.053514 −0.0617216 −0.00146722

Table 4. The sensitivity of total infections (in the Community, ICom, in Incarcerated
People, IInc, or in the Jail Staff, ISta) after 180 days in the “Shelter in Place” scenario
to perturbation of each of the parameters. For completeness, these calculations include
all individuals who are ever asymptomatically infected, even if they never progress to
symptomatic infection.
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