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ABSTRACT (250 words for AJHG) 

Phenotypes extracted from Electronic Health Records (EHRs) are increasingly prevalent in genetic 

studies. EHRs contain hundreds of distinct clinical laboratory test results, providing a trove of health 

data beyond diagnoses. Such lab data is complex and lacks a ubiquitous coding scheme, making it more 

challenging than diagnosis data. Here we describe the first large-scale cross-health system genome-wide 

association study (GWAS) of EHR-based quantitative lab measurements. We meta-analyzed 70 labs 

matched between the BioVU cohort from the Vanderbilt University Health System and the Michigan 

Genomics Initiative (MGI) cohort from Michigan Medicine. We show high replication of known 

association for these labs, validating EHR-based measurements as high-quality phenotypes for genetic 

analysis. Notably, our analysis provides the first replication for 700 previous GWAS associations across 

46 different labs. We discovered 31 novel associations at genome-wide significance for 22 distinct labs, 

including the first reported associations for two labs. We replicated 22 of these novel associations in an 

independent tranche of BioVU samples. The summary statistics for all association tests are available 

through an interactive webtool to benefit other researchers. Finally, we performed mirrored analyses in 

BioVU and MGI to assess competing analytic practices for lab data. We find that using the mean of all 

available lab measurements provides a robust summary value, but alternate summarizations can 

improve power in certain labs. This study provides a proof-of-principle for cross health system GWAS 

and is a framework for future studies of quantitative traits in EHRs. 
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Introduction 

Laboratory testing is a key component of modern medicine. Lab measurements provide a glimpse into 

the functioning of the human body, allowing clinicians to diagnose and monitor disease. In most health 

systems, lab measurements are routinely captured in patient Electronic Health Records (EHRs) alongside 

disease diagnoses, free text notes and medical procedures to provide a detailed, longitudinal health 

history 
1
. EHRs present exciting research potential by providing broad phenotyping on large cohorts with 

minimal cost
2,3

.  

Several large-scale genetic studies have already used EHRs as the source of phenotypes 
4–6

, most 

commonly based on International Classification of Diseases (ICD) codes mapped to dichotomous 

phenotypes
7
. Although disease is often thought of in all-or-nothing binary state, many diseases exist on 

a continuum with the ultimate clinical diagnosis occurring once a relevant quantitative lab measurement 

exceeds a pre-determined threshold. For example, hypercholesteremia, diabetes mellitus and chronic 

kidney disease are each diagnosed almost entirely on lab tests for low density lipoprotein (LDL), glycated 

hemoglobin (or glucose) and creatinine, respectively. The lab values are therefore a more sensitive 

measure of underlying health than diagnosis and may provide a more powerful analysis. As an example, 

hypercholesterolemia and coronary artery disease risk locus PSCK9 was initially discovered based on 

quantitative LDL measurement rather than clinical diagnosis 
8,9

. In contrast to binary disease 

phenotypes, there are fewer examples of genetic analyses of EHR-derived quantitative lab values
10–12

. 

This rich data source of quantitative lab measurements in large cohorts comes with unique concerns: 

Quantitative traits collected specifically for research purposes typically use a controlled experimental 

design to ensure consistency among samples. In contrast, lab values contained in EHRs are a historical 

record of medical care. As such, patients may have hundreds of lab measurements for some traits and 

none for others, depending on their specific health problems and utilization of the health system. The 

measurements can be collected in times of sickness or good health leading to substantial variation in 

values for the same lab. Lab measurements can be artificially modified by prescription medicine, such as 

statin use for LDL cholesterol.  Moreover, recruitment mechanisms and demographics of a biobank can 

dramatically shape the overall health of the cohort, which in turn dictate lab measurements available for 

analysis. The impact of using such “real world” measurements for genetic association studies is unclear. 

Questions remain over the effect and robustness of analytic choices made when analyzing EHR-based 

labs including how best to summarize complicated, longitudinal lab measurements and whether 

diseases highly correlated with lab measurements should be considered. Prior studies are not consistent 

in addressing these concerns. For example, a genome-wide analysis of EHR-derived quantitative traits in 

Biobank Japan enrolled patients with at least 1 of 47 diagnoses and controlled for all 47 diagnoses while 

testing each lab 
13

. On the opposite end of the spectrum, an analysis of labs within the Geisinger EHR did 

not control for underlying disease states 
14

. The variety of methods to summarize lab values and models 

to test for genetic association indicates that the question of how best to handle these data remains 

unsettled.  

In this paper we explore strategies for analyzing quantitative lab values extracted from EHRs and 

describe the first large-scale meta-analysis of EHR-derived lab traits across independent health systems. 

We used lab measurements and genetic data from two academic health systems: the BioVU cohort from 

Vanderbilt University
15

  and the Michigan Genomics Initiative (MGI) from Michigan Medicine
16

. Meta-

analysis offers a mechanism to increase sample size and power for detecting genetic risk variants but 
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comes with distinct challenges for EHR lab traits including matching labs between health systems and 

determining specific analysis plan for the complicated lab data. The cohorts differ dramatically in their 

recruitment mechanisms, patient composition and recording format for lab measurements: MGI was 

predominantly recruited through inpatient surgical encounters at Michigan Medicine whereas BioVU 

recruitment required outpatient appointments at Vanderbilt University Medical Center. As a result, MGI 

is enriched for diseases treated surgically such as extreme obesity and solid tumors. This heterogeneity 

reflects the reality of EHR-based phenotyping, and strategies must be developed for future collaborative 

work on the growing number of EHR-linked biobanks.  

Our initial challenge was identifying which labs to meta-analyze between the health systems. Accurately 

matching labs is complicated by the fact that no standardized coding scheme exists for lab 

measurements. Dichotomous disease traits are easily matched between health systems using the 

ubiquitous ICD coding system for disease diagnoses
17

. Although the Logical Observation Identifiers 

Names and Codes (LOINC) system offers the promise of interoperability for lab traits, it is cumbersome 

and maps poorly onto other ontologies
18

. For example, there are 21 distinct codes for blood glucose 

which might not be used consistently between institutions. Health systems may instead adopt their own 

idiosyncratic internal terminology for electronic recording of labs. Based on a methodical manual review 

of EHR text descriptions and lab values, we identified 70 lab traits between BioVU and MGI that could be 

matched with high confidence. We extracted previously identified variants for these lab traits from the 

GWAS catalog to serve as true positive variants for assessing subsequent analyses. Our meta-analysis 

replicated nearly 75% true positive GWAS catalog variants, validating both the accuracy of lab matches 

across health systems and the overall quality of the EHR lab data. Further, we discovered 31 novel lab-

associated variants across 22 labs, including the first reported associations for the saliva and pancreatic 

enzyme amylase and bicarbonate CO2, a gaseous waste product from metabolism carried in the blood. 

We immediately replicated 22 (71%) of these novel associations using an independent second set of 

BioVU samples.  

The meta-analysis of the complicated lab data required several strategic choices regarding data 

preparation and statistical analysis. Using a series of mirrored analyses performed in MGI and BioVU, we 

explored the consistency of various analytic choices between the biobank cohorts. Specifically, we 

considered the statistic used to summarize individual-level lab values for the GWAS (mean, median, 

maximum or first available value) and the inclusion of disease covariates in the GWAS regression. We 

determined that although there is no single best strategy for analyzing labs, using the mean lab value 

not controlling for potentially relevant diseases proved reasonably robust strategy between MGI and 

BioVU across lab traits.   

Our study represents a proof-of-principle for accurate matching and meta-analysis of quantitative lab 

measurements extracted from diverse EHRs. Just as the first wave of GWAS studies was followed by a 

wave of meta-analyses, we predict that meta-analysis of EHR-derived data is imminent. Our results 

indicate that, despite the heterogeneous demographics of health systems and recording of clinical data, 

meta-analysis between EHRs stands to be a powerful strategy for genetic discovery.  

Methods 

Datasets 
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We analyzed data from two university hospital biobanks that link electronic health records with genetic 

data: BioVU from Vanderbilt University and the Michigan Genomics Initiative (MGI) from Michigan 

Medicine. We restricted our analysis to unrelated patients of European ancestry because of insufficient 

patient sample sizes from non-European populations.  

The BioVU cohort has been described previously
15

. Briefly, DNA was extracted from surplus blood 

samples and genotyping data was linked to de-idenified EHR data. For this study, we used a cohort of 

20,515 individuals genotyped on the Multi-Ethnic Genotyping Array (MEGA) from Illumina and 

estimated to be of European ancestry by admixture
19

. We included 843,242 SNPs that passed standard 

marker QC filters and had a minor allele frequency >1%. We retrieved all available lab measurements in 

this cohort that occurred when the subject was at least 18 years of age.  

The MGI cohort has also been described previously
16

. Briefly, MGI samples were recruited primarily 

through surgical encounters at Michigan Medicine and provided consent for linking of their EHRs and 

genetic data for research purposes. MGI samples were genotyped on customized Illumina 

HumanCoreExome v12.1 bead arrays. European samples were identified using Principal Component 

Analysis. We used a data freeze consisting of 40K unrelated European individuals for this analysis. MGI 

samples were imputed to the Haplotype Reference Consortium using the Michigan Imputation Server
20

, 

providing ~14 million SNPs with a minimac imputation quality R2>0.3 and an allele frequency greater 

than 1e-6. We analyzed the set of ~800K overlapping SNPs between the MGI imputed genotypes and the 

BioVU MEGA array for this study. 

Harmonization of Labs Between Health Systems and the GWAS Catalog 

We extracted all available clinical lab measurements and metadata from the electronic health records of 

MGI samples and BioVU samples.  The MGI lab data consisted of >31 million distinct lab measurements 

for 5098 unique lab names. We collapsed distinct labs when obvious duplications were present (e.g., 

“Eosinophils” and “EOSINOPHILS”).  Available metadata differed slightly between the health systems but 

included brief text descriptions, unit of measurements, and range for normal values. We excluded 

individual lab measurements labelled as “External” and taken outside the health system. In cases where 

multiple tests examined the same analyte, e.g. blood glucose, we removed point of care (POC) tests 

which are more susceptible to technical artifacts and tend to be deployed in intensive care or 

emergency settings where acute disease or treatment effects supervene determinants of the underlying 

baseline 
21,22

. 

We matched lab tests recorded at Vanderbilt and Michigan health systems based on manual curation of 

the metadata including recorded lab names, clinical descriptions, measurement units, range of 

measurements, and patient count. We selected a set of 70 labs matched with high confidence between 

the health systems and having at least 1,000 individuals with the lab measured in each cohort for further 

analysis. 

 

Disease phenotypes 

In order to study the effect of underlying health conditions we extracted ICD9 and ICD10 diagnosis codes 

from the EHR of the BioVU and MGI cohorts. We searched for diagnosis for 42 diseases with the 

potential to alter a clinical lab measurement (Supplementary Table). We started with the disease list 

used in the BioBank Japan lab analysis
10

 and removed diseases which do not occur in our population 

(e.g. febrile seizures of infancy) and those expected to have minimal effect on labs (e.g. cataracts). We 
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supplemented their list with chronic diseases expected to have a large impact on labs due to their 

prevalence (e.g. hypertension). We created an indicator variable for each disease (1 if the sample had at 

least one qualifying ICD code for the specific disease and a 0 otherwise) to include as covariates in GWAS 

regression analyses.  

Statistical Analysis 

Intra-cohort Genome-wide Association Studies We first performed GWAS analysis of each lab trait 

separately in the MGI and BioVU cohorts. To determine the impact of study design choices, we 

performed multiple GWAS for each lab. We varied the statistic used to summarize the longitudinal lab 

measurements available for each sample (mean, median, first available measurement and maximum 

available measurement), and whether indicators for disease diagnosis were included as covariates in the 

GWAS regression (yes/no). 

For each GWAS, the distribution of lab summary statistics was inverse normalized separately within the 

MGI and BioVU cohorts prior to regression analysis. In a separate analysis of the BioVU cohort, we 

determined that inverse normalization of lab values performed better than applying no transformation, 

or a log or square root transformation for controlling GWAS type I error (data not shown). Genome-wide 

association tests were performed on the inverse normalized traits using additive linear regression 

models. We included age, sex and four principal components as covariates in each regression. The 

model controlling for disease status included an additional 42 covariates for the binary disease 

phenotypes.  The regression analyses were performed in the BioVU cohort using PLINK
23

 and in the MGI 

cohort using epacts 3.3.0 
24

. 

We treated the GWAS of mean trait value with no disease covariates as the default analysis and 

compared each alternate analysis to this default. We quantified the impact of each analysis strategy 

relative to the default analysis by computing the log fold change in p-value between the alternative and 

default analysis for each analyzed SNP. That is, for each SNP we compute the quantity 

Δ� � � log����‐
��
� ��� ���������
� �������� / �‐
��
� ��� ����
�� �������� � 

for the MGI analysis and the BioVU analysis separately. A positive value for Δ� indicates a SNP that 

increases in significance (smaller p-value) when the alternate summary statistic is used and vice versa. 

We used scatterplots to display the simultaneous change in p-value for both cohorts, performing LD-

pruning on non-catalog SNPs to simplify the pictures (See Figure 4). Since most SNPs are not associated 

with the lab trait of interest, alternative summarizations simply result in independent noise between the 

two cohorts, resulting in a diamond shaped pattern centered at the origin.   

We implemented a heuristic to formally distinguish the SNPs with largest changes in p-value between 

the alternative and default analysis methods from those with movement due simply to random noise. 

The heuristic generates a bounding polygon around the diamond cluster of points. The polygon is 

generated by fitting a diamond to the set of Δ� values, the joint distribution of the log fold changes in 

the two cohorts, using simulated annealing to estimate the shape of the diamond such that 99.9% of all 

SNPs are included within the boundaries. We defined SNPs outside the boundaries of the polygon as 

those with largest simultaneous changes in p-values in both cohorts.  Catalog SNPS located outside the 

bounding polygon were classified as having either a concordant increased effect if p-value significance 

increased in both MGI and BioVU, a concordant decrease effect if p-value significance decreased in both 
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MGI and BioVU or a discordant effect if the p-value increased in significance in one cohort but decreased 

in the other. 

Meta-analysis We meta-analyzed the GWAS results from the MGI and BioVU default analysis (mean trait 

value, all available measures, no disease covariates). The meta-analysis was performed using metal by 

combining study-specific GWAS effect size estimates and standard errors 
25

. We computed genomic 

control inflation factors (λGC) on a set of LD-pruned SNPs for each meta-analyzed lab.      

GWAS Catalog Variants We created a list of previously identified genetic associations for our analyzed 

lab traits using the GWAS catalog
26

 (downloaded 9/27/2017). We searched the catalog for quantitative 

phenotypes matching our analyzed labs using pattern matching in the DISEASE_TRAIT, MAPPED_TRAIT, 

and P_VALUE_TEXT columns. We searched for each lab using multiple potential string patterns, for 

example “AST”, “aspartate aminotransferase”, “SGOT”, and “serum glutamine oxaloacetic 

aminotransferase”. For purposes of replication, we limited our catalog search to studies of European 

cohorts performed on adults of both sexes without disease-based sampling (e.g. glucose measurements 

in type 2 diabetes samples) and required a reported p-value of at least 5e-8. We considered a catalog 

association replicated if the meta-analysis p-value for our corresponding lab was < 0.05 and the BioVU 

and MGI studies had the same direction of effect.   

Definition of novelty We report several novel lab-SNP associations reaching genome-wide significance 

that have not been previously reported and are not reasonably expected based on existing SNP-lab 

associations in similar labs and/or non-European populations. We used the following criteria to declare a 

lab-SNP association as a novel finding: genome-wide significance (meta-analysis p-value to be <5e-8), 

consistent direction of effect between MGI and BioVU and at least 1 megabase from any previously 

reported SNP for the given lab or a related lab in any population. Here, we define related labs as those 

which are commonly ordered as part of a panel of correlated tests, for example AST and ALT for liver 

function, and therefore likely indicate the same biological association. We report the “peak” or most 

significant SNP when a group of novel SNPs are in linkage disequilibrium.  

Replication of Novel Associations We performed a replication analysis of all novel SNP-lab associations 

identified in the meta-analysis using an independent cohort of BioVU samples that were made available 

after the original meta-analysis was performed. This replication cohort consisted of 29,043 European 

ancestry adult individuals with extant lab data recruited using the same procedure as the initial BioVU 

cohort, genotyped on the same MEGA genotyping array, and subjected to the same data QC procedure. 

We declared a novel SNP-lab association to be replicated if the replication p-value was <0.05 and the 

direction of effect was consistent with that from the meta-analysis. 

Results 

We extracted all available clinical lab measurements from the electronic health records (EHRs) for 

genotyped samples in two academic biobank cohorts: the Michigan Genomics Initiative
16

 (MGI) at 

Michigan Medicine and the BioVU
15

 at Vanderbilt University. We focused on samples of European 

ancestry in both cohorts due to insufficient sample sizes in other ancestry groups. In total, our data 

consisted of 35,785,074 individual labs measurements across 5,187 distinct lab types measured in 

50,743 consented MGI. The EHR-based lab measurements required extensive curation prior to genetic 

analysis due to the complexity of the data and the non-uniform recording between health systems. We 

first identified labs recorded in both health systems that could be meta-analyzed by manual matching of 
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database names and clinical descriptors. We required at least 1,000 samples to have the lab measured 

in each health system and arrived at a set of 70 labs matched with high confidence (Table 1).      

Genetic analyses were performed on the set of ~800K overlapping SNPs between the MGI imputed 

genotypes and the BioVU MEGA array genotypes. We identified a set of known genetic associations for 

our seventy matched labs based on a review of the GWAS Catalog. These catalog SNPs served as “true 

positive” variants to validate the data and assess various analysis strategies. We identified 1313 distinct 

SNP-lab associations across 48 labs that could be tested in our cohort and had previously been reported 

at genome-wide significance in European populations (Table 1). Many lab traits have been well studied 
27,28

 and provided many testable catalog SNPs. LDL, for example, had 84 catalog SNPs that could be 

directly tested in our meta-analysis. Alternatively, several labs had relatively few or no catalog SNPs, 

including labs for which either no variant was reported in the catalog or the catalog variants were not 

typed in one or more of our cohorts.   

Meta-Analysis of Labs in MGI and BioVU 

The 70 EHR-derived clinical lab traits were first analyzed separately in the cohorts using the same 

analysis strategy: GWAS performed on inverse-normalized distribution of mean lab values across all 

available measures age, sex and 4 PCs included as covariates in the regression model. The combined 

sample size for the meta-analysis differed between labs, ranging from 7,429 for uric acid to 46,382 for 

hematocrit (Figure 1), reflecting the frequency with which different labs are administered in health 

systems.  Several labs have previously been studied in much larger cohorts, including the differential 

panel of 10 white blood cell measures, analyzed in >170K samples in the UK BioBank
28

. However, this 

meta-analysis provides the largest sample size for 34 labs, including 14 clinical lab traits with no 

previously reported study in the GWAS catalog at the time of our analysis. Genomic control lambda 

values (λGC) confirmed the meta-analyses were well-controlled
29

. The mean λGC across all labs was 1.035, 

ranging between 0.995 and 1.103. Consistent with polygenicity
30

, traits with a larger numbers of catalog 

variants had, on average, larger λGC values. The mean λGC for labs with zero testable catalog SNPs was 

1.020.  Labs with one to twenty testable Catalog SNPs had mean λGC of 1.028 and labs with greater than 

20 testable Catalog SNPs had mean λGC of 1.066.  

The complete set of meta-analysis summary statistics are viewable through an interactive PheWeb web 

browser, available at http://pheweb.sph.umich.edu/mgi-biovu-labs . This tool makes our results broadly 

available to the research community, allowing users to replicate their own findings or perform 

hypothesis-driven lookups on specific SNPs or labs of interest. 

Replication of GWAS Catalog SNPs We first performed a replication analysis of the 1313 GWAS catalog 

SNPs to validate the EHR-derived lab phenotypes. We defined a Catalog SNP as replicated if the meta-

analysis p-value for the appropriate lab was <0.05 and the directions of effect were consistent between 

the MGI and BioVU cohorts. Overall, we replicated 982 of the GWAS catalog SNPs, giving an overall 

replication rate of 74.8%. Replication rates varied across the individual labs; however we did replicate at 

least one catalog SNP for each of the 48 traits with a testable catalog SNP (Table 1). Replication rates 

were high for several previously well-studied traits, including red blood cell indices (MCHC, MCH, MCV) 

and metabolic measures (glucose and HgbA1C) and creatinine. The lowest replication rates occurred for 

the differential panel of white blood cell traits (neutrophils, lymphocytes) which included catalog SNPs 

discovered in the much larger UKBB cohort. Interestingly, replication rates differed among the well-
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studied lipid panel traits. We replicated a lower percentage of catalog SNPs for LDL cholesterol and total 

cholesterol compared to triglycerides and HDL cholesterol. 

Several factors influenced our ability to replicate individual catalog SNPs (Figure 2), each consistent with 

statistical power rather than adequate matching of labs as the primary limiting factor for replication. 

Replication increased sharply with PMID count, the number of publications reporting the association 

(Figure 2A). Associations reported only once in the GWAS Catalog are a mix of true yet to be replicated 

associations and false positives, whereas associations reported more than once have already been 

replicated and are likely real. We replicated 70% (699 of 1000) of associations reported only a single 

time. That rate increased to 77% (196 of 256) for associations reported twice, 91% for associations 

reported three times and nearly 100% (56 of 57) for associations reported four or more times. 

Importantly, this analysis provides the first replication for 699 previously reported SNP-lab associations, 

increasing the likelihood that these are true genotype-phenotype associations (Supplementary Table).  

Replication rate was also dependent on both the best previously reported p-value for the association 

and the sample size of the study reporting the association (Figure 2B & 2C). Our replication rate was 

lowest, between 55%-65%, for associations whose best reported p-value was just above genome-wide 

significance of 5e-8 but increased sharply thereafter.  We replicated ~85% of catalog SNPs with best 

reported p-value <1e-15 and over 90% of catalog SNPs with best p-value <1e-20. Replication rate 

increased with the relative size of our meta-analysis compared to the largest reported study. We 

replicated approximately 90% of catalog SNPs for which our meta-analysis was at least as large as prior 

studies reporting the association.   

Novel SNP-Lab Associations We next searched for novel associations across the 70 meta-analyzed lab 

traits. We defined an association to be novel if it attained genome-wide significance (meta-analysis p < 

5e-8), had consistent directions of effect in MGI and BioVU, was >1 megabase away from a GWAS 

catalog SNP for the lab, and had not been reported in any population or in a related lab (e.g. LDL 

cholesterol for total cholesterol). In total, we identified 264 SNP-lab pairs satisfying our definition of 

novelty. Based on visual inspection, the novel SNPs corresponded to 31 distinct peaks for which we 

report the lead SNP having the strongest association signal at each peak (Table 2).  

We performed a replication analysis of the 31 novel lead SNPs using an independent cohort of 29,043 

BioVU patients that became available after the initiation of our primary analysis. We considered the 

novel association to be replicated if the lead SNP had p-value < 0.05 in the replication cohort and the 

direction of effect was consistent with our initial meta-analysis (Table 2). One SNP that was potentially 

novel for both immature granulocytes measures failed QC filtering in the replication cohort and could 

not be tested for replication. In total, we replicated 22 of the 31 (71%) novel associations. Among the 24 

replicated novel SNPs are the first associations for amylase (Amyl) and bicarbonate (CO2).  We identified 

and replicated additional associations for alanine aminotransferase (ALT), alkaline phosphate (AlkP), 

Relative count of basophils (BasoR), total bilirubin (Bili), calcium (Ca), creatinine phosphokinase (CPK), 

glucose (gluc), mean corpuscular hemoglobin concentration (MCHC), lipase, and thyroid stimulating 

hormone (TSH).  

Several of our novel findings have biological or existing evidence that support the association. Three of 

the associations have recently been identified for the same lab in non-European cohorts. rs855791, a 

missense variant in TMPRSS6 (transmembrane serine protease 6), and rs8022180, an intronic variant in 

TRAF3, were shown to be associated with bilirubin and serum total protein level, respectively, in a 
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Japanese population
10

. rs112574791 is in the glutamic--pyruvic transaminase gene GPT, a gene 

associated with alanine aminotransferase levels in the Korea Biobank
31

. Our results confirm these prior 

findings and suggest a cross-ethnic effect in European populations.  

The intronic variant rs8051363 in CTRB1 was associated with both amylase and lipase, clinical assays of 

pancreas function used to diagnose pancreatitis. While the SNP itself has previously been linked to 

blood protein measurements
32

, the CTRB1 gene encodes chymotrypsin, a component of digestive 

enzyme secreted by the pancreas, and was previously shown to be associated with alcoholic chronic 

pancreatitis
33

. A second novel SNP for lipase, rs9377343 is an intronic variant in FUT9, a gene that 

showed association with diabetic neuropathy in a trans-ethnic meta-analysis
34

. 

The amylase-associated SNP rs1930212 resides near three amylase genes (AMY2B, AMY2A and AMY1) 

on chromosome 1, each of which encodes enzymes that digest starch into sugar
35

. Copy number 

variation for amylase genes is hypothesized to have been subject to selective sweeps corresponding to 

starch content in human diets
36

. The rs1930212 SNP tags a known deletion of AMY2A, a pancreatic 

amylase enzyme, most common in populations historically lacking starch rich diets
36

.  

One of our novel results for calcium, rs2839899, is an intronic variant in GNAQ (G protein subunit alpha 

q), a signaling protein involved in response to various hormones. Variation in GNAQ is associated with 

Sturge-Weber syndrome
37

, a hereditary vascular malformation syndrome which can lead to deposits of 

calcium (calcification) in the brain. 

 

Three SNPs showed associations with glucose. rs7607980 is a missense variant in COBLL1 previously 

linked to fasting blood insulin and Type 2 diabetes
38–40

. rs9273364 is located near HLA-DQB1-AS1, a gene 

associated with T2D
41

. And, although it did not replicate in our analysis, rs896854, a variant mapping to 

both NDUFAF6 and TP53INP1, has recent associations with T2D
42

 and eosinophil count
43

 among UK 

biobank participants. 

We note that several associations occurred within the HLA region on chromosome 6, notably for 

glucose, hemoglobin A1C, and TSH. These variants are likely segregating with HLA types, which are 

strongly associated with various autoimmune diseases including diabetes and autoimmune thyroiditis, 

which have strong effects in these particular labs. 

Genetic Correlation of Clinical Labs We computed the genetic correlation between pairs of labs to learn 

about shared genetic basis of these traits. We computed the correlations using LD score regression, 

restricting analysis to the 50 lab traits with heritability of at least 7%. The heatmap in Figure 3 shows the 

correlation structure of the labs, noting only correlations with p<0.05. We observe several clusters with 

strong positive correlations among lab traits of similar function. The liver enzymes alanine 

aminotransferase (ALT) and aspartate aminotransferase (AST) were strongly correlated, as were the 

measures of renal function Blood Urea Nitrogen (BUN) and creatinine (Creat). Prothrombin time (PT), a 

measure of clot formation time and a derivative measure International Normalized Ratio (INR) were, not 

surprisingly, positively correlated. Interestingly, INR was also positively correlated with vitamin D. While 

vitamin K is known to be required for the formation of prothrombin, this represents a novel association. 

Their correlation suggests covariance in nutrition or nutrient absorption. 

A prominent cluster of labs (top right corner of the heatmap) contains primarily white blood cell traits 

including measures of immature granulocytes, lymphocytes, monocytes and neutrophils. The immature 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 11, 2020. ; https://doi.org/10.1101/2020.04.08.19011478doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.08.19011478


granulocytes also showed a strong correlation with ferritin (ferrit). Ferritin is an iron storage protein as 

well as an acute phase protein. In severe acute inflammation, ferritin and immature granulocytes could 

both be elevated.  

HgbA1C and glucose were, not surprisingly, strongly correlated. More interestingly, they also clustered 

with Red cell Distribution Width (RDW) and Erythrocyte Sedimentation Rate (SedRat).  This cluster of 

labs showed negative associations with high density lipoprotein (HDL), mean cell hemoglobin 

concentration (MCHC), and mean cell hemoglobin (MCH). This supports a pathophysiology where the 

metabolic syndrome (obesity, elevated glucose, low HDL) is linked by complex mechanisms to persistent 

low-level inflammation (elevated SedRat), and anemia of chronic disease (elevated RDW, low MCH, low 

MCHC). 

We identified a cluster of the red cell indices – mean cell hemoglobin concentration (MCHC), mean cell 

hemoglobin (MCH), and mean cell volume (MCV) – with total bilirubin (Bili) and transferrin saturation 

(%SAT). This reflects the biology of hemoglobin – iron is carried to red cell precursors by transferrin and 

incorporated into heme and thence hemoglobin, red cells are filled with hemoglobin, and at the end of a 

red cell lifecycle, heme is broken down into bilirubin. 

Additional clusters include (1) calcium (Ca), albumin (Alb) and total protein in blood (TProt), (2) thyroid 

stimulating hormone (TSH) and lactate dehydrogenase (LDH), and (3) hematocrit (HCT), red blood cell 

count (RBC) and hemoglobin (Hgb) with free tetraiodothyronine (FT4). These causes for these are 

correlations are not immediately clear and may suggest new biology for future study. 

Analytic strategies for EHR-derived lab traits 

To understand the effect of various analytic choices on downstream analysis, we performed parallel 

GWAS analyses in the MGI and BioVU cohorts in which we perturbed one of the analytic steps from our 

original analysis: the per-sample statistic used to summarize longitudinal lab measurements and the 

inclusion of covariates for underlying comorbid health conditions. We performed these analyses on the 

22 lab traits for which there were least 20 testable GWAS catalog SNPs, using the catalog SNPs to 

interpret the effect of each analytic strategy on true risk variants. For a fixed lab and cohort, we 

quantified the change in p-value for each SNP using Δ�, the -log10 fold change in p-value for an 

alternative analysis versus the default analysis (see Methods). A positive value of Δ� indicates a SNP that 

increases in significance (smaller p-value) when the alternate summary statistic. A negative value of Δ� 

indicates a decrease in significance for the alternate analysis. Scatterplots of Δ� computed in MGI and 

BioVU summarize the magnitude and consistency of change in p-value significance between the cohorts 

(Figure 4 for an example, Supplementary Material).  

Summary statistic Patients in EHRs often have multiple measurements for the same lab test taken over 

many years of treatment. These measurements are typically summarized into a single numeric value 

that is used as the phenotype in a GWAS, with the mean being a common choice for the summary 

statistic. We hypothesized that alternate summary statistics could result in more powerful genetic 

analyses. For example, the median is less sensitive to individual outlier lab measurements making it 

more robust against data recording errors or extreme true measurements. Alternatively, the maximum 

or first available lab measurement for an individual patient could mitigate the effects of prescription 

drugs for modifiable lab traits.  
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Overall, 13.3% of testable catalog SNPs showed a major change in significance when using the median as 

opposed to mean value for the summary statistic (Table 3). The median rarely resulted in a consistent 

improvement for both MGI and BioVU. Only 0.4% of catalog SNPs had concordant increased effect 

compared to 7.6% with concordant decreasing effect and 5.2% with a discordant effect. Creatinine was 

the sole lab for which using median lab value had a greater number of catalog SNPs with concordant 

increased significance than catalog SNPs with concordant decreased significance. Even here the effect 

was small, only two of the 36 catalog SNPs had a concordant increase in significance.  

In comparison, the first available measurement and the maximum measurement had a greater impact 

on association p-values for catalog SNPs. In both cases, the alternate summary statistic was most likely 

to cause a concordant decrease in significance. Using the first available measurement resulted in 

concordant increase for only 3.1% of catalog SNPs, whereas 16.9% of catalog SNPs had a concordant 

decrease and 4.5% had discordant changes in significance. Using the maximum available measure had 

similar performance (5.6% concordant increase, 18.3% concordant decrease, 5.5% discordant). 

Despite an overall trend of reducing significance of known risk variants, several related labs for blood 

oxygen carrying capacity did benefit from using the first available or maximum measurements. Red 

blood cell count (RBC), hematocrit (HCT) and hemoglobin (Hgb) each showed concordant increase in 

significance for several of their respective catalog SNPs without negatively impacting remaining catalog 

SNPs. This likely reflects red cell biology.  Conditions that decrease oxygen carrying capacity, such as 

blood loss or iron deficiency are far more common than those that increase it, polycythemia vera or 

severe obstructive sleep apnea, for example. Thus, maximum measurement of an individual’s oxygen 

carrying capacity more likely represents the genetically determined set point. 

Controlling for disease: The real-world health system cohorts feature a heterogeneous collection of 

disease comorbidities that can impact lab measurements in complex ways. One strategy of accounting 

for individual-level patient health is the inclusion of lab-mediating diseases as covariates in a regression 

model, a strategy employed by a prior GWAS of lab values in the JapanBiobank
10

. To test the 

efficaciousness of simultaneously controlling for the whole “kitchen sink” of diseases, we performed a 

GWAS using a comorbidity model which included binary covariates for 42 diseases with the potential to 

alter lab values.  

The comorbidity model produced the largest proportion of catalog SNPs (6.2%) with concordant 

increased significance in MGI and BioVU among the alternate analysis strategies considered. Despite 

this, a roughly equal number of catalog SNPs had discordant effects (6.8%) between the two cohorts.  

The clearest example of a substantial and consistent effect on catalog SNPs between MGI and BioVU 

was for HDL and Mean platelet volume (MPV). In contrast to the improvement for many catalog SNPs 

for HDL, LDL had interestingly no catalog SNPs with concordant increase in significance and seven 

catalog SNPs with concordant decrease.  

Discussion 

This study represents the first cross-health system study of EHR-derived lab traits at large scale. We 

performed whole genome analysis of 70 lab traits and have made these association results easily 

accessible to the research community. Thoroughly dissecting each lab-SNP combination is a daunting 

task. Here, we focused on replication of GWAS catalog variants to validate our data and highlighted 
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novel genetic associations. We anticipate that our full results, including those which do not reach 

genome-wide significance will be useful in replicating future novel results, in studies which synthesize 

findings across multiple SNPs, or in hypothesis-driven studies which require less stringent thresholds. 

Our study serves as a proof-of-principle for performing cross-health-system genetic analysis of EHR-

derived lab values. The high replication rate for known GWAS variants proves that EHR lab values can be 

well-matched between discordant health systems. Moreover, the replication analysis showed that EHR 

measurements, taken during real-life medical interactions, accurately reflect those taken under more 

idealized experimental conditions of previous GWAS. This also implies that mechanisms underlying 

variation in labs in healthy populations also act in a mixed population of patients with disease, 

strengthening their clinical relevance. By comparing various analytic strategies, we show that there is no 

optimal strategy that holds across all labs. In fact, we observed many instances in which the alternate 

analysis simultaneously increased significance for some risk variants and decreased significance for 

others. Thus, even within a given lab an optimal strategy might not exist. A potential area of future 

research would be determining if multiple versions of a lab trait can be combined into an omnibus test 

that simultaneously increases power across all risk variants. We encourage researchers to use our 

results across the various analysis strategies to guide decisions about how best to analyze their traits of 

interest. 

The primary strength of our study was the access to two independent biobank cohorts. Using two 

cohorts provides an obvious increase in sample size and power over analyzing and reporting on each 

cohort separately. In addition, the two-cohort design adds a built-in internal consistency check to our 

results by requiring effect sizes to be in the same direction in both cohorts. This additional requirement 

reduced the potential for unknown biases in the health system cohorts to create spurious results when 

replicating GWAS catalog SNPs or novel association discovery. Further, the independent cohorts 

provided the means to rigorously examine analytic strategies for biobank cohorts. The heterogeneous 

nature of EHRs and ascertainment schemes magnify the need to replicate findings. Our mirrored 

analyses revealed provided the means to confirm consistent effects for analytic strategies in 

independent cohorts. A single cohort methodologic study could produce recommendations that are 

over fitted to one specific context. Use of multiple sites increases the generalizability of our 

recommendations. This study was further strengthened by the fortuitous availability of an independent 

tranche of BioVU samples that provided a replication cohort for the novel findings of our primary meta-

analysis. 

Our study has implications for the design and analysis of similar studies in the future. Matching and 

analyzing labs between health systems is difficult and requires substantial content knowledge. This 

study benefited from a multi-disciplinary team consisting of clinical experts to lead the categorization of 

the raw lab data extracts and statistical geneticists to guide analytic strategies. We leaned heavily on 

GWAS catalog SNPs to serve as positive controls. When possible, researchers should incorporate an 

explicit replication step to validate lab data quality prior to testing novel hypotheses. Summarizing the 

longitudinal individual-level lab measurements using the simple definition of mean value taken on all 

available measures proved relatively robust across labs but was by no means optimal in all scenarios. 

Future studies can benefit from considering the specific lab trait being evaluated. The consistency of 

analytic strategies is important for using EHR-based GWAS as replication datasets. Attention must be 

paid to the differences in preparation of EHR phenotypes, particularly for longitudinal lab 
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measurements. Failure to replicate a finding can be due to actual lack of a true effect but also a variety 

of differences between biobank cohorts and analytic procedures.  

We were motivated to examine the effect of controlling for disease status because of its use in the 

analysis of lab traits in BioBank Japan
10

. Controlling for diseases or risk factors such as tobacco use is a 

common practice
28

. We considered testing the effect of each disease individually but discarded it as 

overly cumbersome. Our strategy reflects a broad-spectrum approach in which diagnoses that are rare 

or have no significant effect on a lab can be rationalized as not causing harm by remaining in the model. 

The effect of controlling for disease status can be unpredictable. For example, within the components of 

a lipid panel, controlling for disease status led to a net improvement for HDL catalog SNPs, a net 

worsening for LDL catalog SNPs, and had cohort-specific impact on triglycerides. From a methodological 

standpoint, this argues for performing association analyses with and without disease status. From a 

practical standpoint, the absence of diagnostic data should not be seen as precluding use of a data set. 

A drawback of studying clinical labs in real-life cohorts is that some measurements will be artificially 

modified by prescription medication. We were unable to formally address the effect of medication on 

genetic analysis because of unreliable measurements of medication. However, it remains an important 

consideration for future EHR-based lab studies and requires further study. There was indication that in 

situations where a disease diagnosis is likely to be accompanied by medication, for example a diagnosis 

of dyslipidemia with lipid labs, controlling for disease status diagnosis serves as a reasonable proxy to 

treatment status. As research interest in EHR phenotypes increases, we anticipate improved capture of 

prescription data to facilitate the effects of medications. 

A further limitation of this study is the number of analyzed genetic variants. The study was restricted to 

~800K SNPs because BioVU imputed genotypes were unavailable at time of analysis. Although this 

certainly limited our ability to discover novel variation, the number of SNPs was more than sufficient to 

perform the primary purpose of the paper, a proof-of-principle replication analysis across a broad range 

of clinical labs, and the investigation of analytic strategies. However, there are likely many loci remaining 

to be discovered for these labs, particularly the understudied traits. 

In conclusion, we report the first lab-wide genome-wide association study linking data between two 

independent EHR-based cohorts. We achieved a high degree of replication of prior associations and 

report a modest number of new associations. In melding these data sets, we addressed key questions in 

design and analysis of ‘real world’ data that are increasingly relevant. 
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Table 1: Summary of Clinical Lab measurements tested, including meta-analysis samples size, number 

of testable GWAS catalog SNPs, Number of replicated Catalog SNPs, Replication Rate 

 

Lab Name Category Description 

Meta-

Analysis 

Sample Size 

Number of 

Testable 

GWAS 

Catalog SNPs 

Number of 

Catalog SNPs 

Replicated in 

Meta-Analysis 

Replication Rate 

(%) 

Alb Liver 

function 

Albumin, most 

abundant blood 

protein 

39,513 5 4 80 

AlkP Liver 

function 

Alkaline 

phosphatase, bile 

duct and bone 

enzyme released 

by damage 

39,809 3 1 33 

ALT Liver 

function 

ALanine 

aminoTransferase, 

liver enzyme 

released by 

damage 

40,116 0 0 N/A 

Amyl Pancreas Amylase, digestive 

pancreas enzyme 

released by 

damage 

10,368 0 0 N/A 

AST Liver 

function 

ASpartate 

aminoTransferase, 

liver enzyme 

released by 

damage 

40,176 0 0 N/A 

BasoAB Differential Basophils, white 

blood cell type 

(absolute number) 

29,653 19 12 63 

BasoRE Differential Basophils, white 

blood cell type 

(relative 

proportion) 

32,578 11 7 64 

BEAR Blood gas Base Excess 

ARterial, Acid-base 

measure of 

metabolic acidosis 

or alkalosis 

8,895 0 0 N/A 

Bili Liver 

function 

Total Bilirubin, 

heme byproduct 

excreted by liver 

38,416 4 4 100 

BNP Heart failure Brain Natriuretic 

Protein, Signaling 

protein from heart 

under stress 

9,369 1 1 100 
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BUN Renal 

function 

Blood Urea 

Nitrogen Protein 

byproduct excreted 

by kidneys 

45,922 0 0 N/A 

Ca Electrolytes Calcium, blood 

electrolyte 

46,100 9 7 78 

Chol Lipid panel Total cholesterol 23,642 91 60 66 

CKMBRe Cardiac 

markers 

Creatine Kinase 

Muscle Brain 

isoform, relative, 

Enzyme in heart 

released by 

damage 

10,964 0 0 N/A 

Cl Electrolytes Chloride, blood 

electrolye 

45,920 0 0 N/A 

CPK Cardiac 

markers 

Creatine 

PhosphoKinase, 

enzyme in skeletal 

and cardiac muscle 

released by 

damage 

15,150 0 0 N/A 

Creat Renal 

function 

Creatinine, 

creatine byproduct 

excreted by 

kidneys 

46,027 36 29 81 

CRP Inflammatory C-reactive protein, 

marker of 

inflammation 

12,447 16 7 44 

EoAB Differential Eosinophils, white 

blood cell type 

(absolute count) 

29,912 31 25 81 

EoRE Differential Eosinophils, white 

blood cell type 

(relative 

proportion) 

26,980 28 18 64 

Ferrit Iron Ferritin, iron 

storage protein 

11,744 6 1 17 

FT4 Thyroid 

function 

Free 

tetraiodothyronin, 

active thyroid 

hormone 

15,868 0 0 N/A 

Gluc Metabolic Blood glucose 46,027 18 16 89 

HCO3 

(CO2) 

Blood gas Bicarbonate, main 

blood pH buffer 

45,932 0 0 N/A 
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HCT Complete 

blood count 

Hematocrit, 

measure of blood 

oxygen carrying 

capacity 

46382 36 20 56 

HDL Lipid panel High density 

lipoprotein 

cholesterol 

23,318 101 84 83 

Hgb Complete 

blood count 

Hemoglobin, 

oxygen carrying 

protein 

46,159 34 18 53 

HgbA1C Metabolic Hemoglobin A1C, 

measure of blood 

glucose over 

previous 90 days 

17,407 11 10 91 

IGranAB Differential Immature 

granulocytes, 

immature white 

blood cell type 

(absolute count) 

30,744 0 0 N/A 

IGranRE Differential Immature 

granulocytes, 

immature white 

blood cell type 

(relative 

proportion) 

30,683 0 0 N/A 

INR Coagulation International 

Normalized Ratio, 

derivative of PT 

used to dose 

anticoagulants 

33,695 0 0 N/A 

Iron Iron Iron 11,317 4 3 75 

K Electrolytes Potassium, blood 

electrolyte 

45,941 0 0 N/A 

LAC Blood gas Lactic acid, marker 

of tissue hypoxia 

8,792 0 0 N/A 

LDH Tumor 

markers 

Lactate 

dehydrogenase, 

enzyme found in 

many cell types 

released by 

damage 

9,734 0 0 N/A 

LDL Lipid panel Low density 

lipoprotein 

cholesterol 

22,896 84 58 69 

Lipase Pancreas Lipase, digestive 12,649 2 2 100 
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pancreas enzyme 

released by 

damage 

LymphAB Differential Lymphocytes, 

white blood cell 

type (absolute 

count) 

32,548 35 22 63 

LymphRE Differential Lymphocytes, 

white blood cell 

type (relative 

proportion) 

32,553 20 10 50 

MCH Red cell 

indices 

Mean corpuscular 

hemoglobin, used 

to differentiate 

causes of anemia 

46,159 64 57 89 

MCHC Red cell 

indices 

Mean corpuscular 

hemoglobin 

concentration, 

used to 

differentiate 

causes of anemia 

46,157 20 19 95 

MCV Red cell 

indices 

Mean corupuscular 

volume, used to 

differentiate 

causes of anemia 

46,153 77 68 88 

Mg Electrolytes Magnesium, blood 

electrolyte 

22,773 4 4 100 

MonoAB Differential 

 

Monocytes, white 

blood cell type 

(absolute count) 

32,587 43 32 74 

MonoRE Differential Monocytes, white 

blood cell type 

(relative 

proportion) 

32,594 15 12 80 

MPV Coagulation Mean platelet 

volume 

40,058 84 73 87 

Na Electrolytes Sodium, blood 

electrolyte 

45,933 0 0 N/A 

pCO2 Blood gas Arterial partial 

pressure of CO2, 

measure of 

ventilation  

9,516 0 0 N/A 

pH Blood gas Arterial pH 10,279 0 0 N/A 

Phos Electrolyte Phosphorus, blood 

electrolyte 

21,618 5 4 80 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 11, 2020. ; https://doi.org/10.1101/2020.04.08.19011478doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.08.19011478


PLT Complete 

blood count 

Platelet count, clot 

forming measure 

46,145 102 84 82 

PMNAB Differential Neutrophils, white 

blood cell type 

(absolute count) 

32,595 35 15 43 

PMNRE Differential Neutrophils, white 

blood cell type 

(relative 

proportion) 

29,435 21 7 33 

pO2 Blood gas Arterial partial 

pressure of oxygen, 

measure of 

oxygenation  

9,557 0 0 N/A 

PT Coagulation 

panel 

Prothrombin time, 

clot forming 

measure 

33,671 1 1 100 

PTT Coagulation 

panel 

Partial 

Thromboplastin 

Time, clot forming 

measure 

30,972 9 6 67 

RBC Complete 

blood count 

Red Blood Cell 

count, measure of 

blood oxygen 

carrying capacity 

46,158 50 31 62 

RDW Red cell 

indices 

Red cell 

Distribution Width, 

measure of 

variability in MCV, 

used to 

differentiate 

causes of anemia 

44,281 29 21 72 

%SAT Iron Transferrin 

saturation, 

measure of 

available iron 

transport capacity 

10,180 4 3 75 

SedRat Inflammatory 

markers 

Erythrocyte 

Sedimentation 

Rate (ESR), non-

specific marker of 

inflammation 

13,945 5 5 100 

TIBC Iron Total Iron Binding 

Capacity, measure 

of iron transport 

capacity, used to 

calculate 

transferrin 

saturation 

10,397 1 1 100 
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TProt Liver 

function 

Total Protein in 

blood 

38,352 2 2 100 

Trigs Lipid panel Triglycerides, 

tested as part of 

cholesterol panels 

23,963 73 63 86 

Troponin Cardiac 

markers 

Troponin I, heart 

protein released by 

damage 

10,106 0 0 N/A 

TSH Thyroid 

function 

Thyroid Stimulating 

Hormone, test of 

thyroid function 

and feedback 

27,441 1 1 100 

UCrea Renal 

function 

Urine creatinine, 

measure of kidney 

function 

10,522 0 0 N/A 

UricA Gout Uric acid, 

nucleotide 

breakdown 

product elevated in 

gout 

7,429 17 14 82 

Vi-B12 Nutrition Vitamin B12, used 

in DNA synthesis 

12,506 7 7 100 

Vit-D Nutrition Vitamin D storage 

form, regulates 

calcium and 

phosphorus 

12,250 6 6 100 

WBC Complete 

blood count 

White Blood Cell 

count 

46,100 33 27 82 

TOTAL    1313 982 74.8 

Table 1: Summary, labs tested, replication rate, novel findings 
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Table 2: Summary of Novel findings 

     MGI-BioVU Meta-Analysis BioVU Replication Cohort  

Lab SNP Chr:Pos Allele 1 Allele 2 N Beta P-Value N Beta P-Value Replicated 

AlkP rs3843738 17:43739194 A G 39,809 0.04 2.51E-08 22,920 0.01 3.58E-01 No 

AlkP rs73004933 19:19675696 T C 39,809 0.08 4.47E-09 22,730 0.05 7.14E-03 Yes 

ALT rs112574791 8:145730221 A G 40,116 0.18 3.02E-08 23,007 0.15 5.80E-04 Yes 

Amyl rs1930212 1:104324819 A G 10,368 -0.25 1.48E-45 3,573 -0.18 4.69E-09 Yes 

Amyl rs8051363 16:75255217 A G 10,368 0.10 1.07E-10 3,564 0.09 4.51E-04 Yes 

BasoRE rs386785158 15:70744437 T C 29,653 0.06 7.94E-13 16,191 0.04 2.10E-04 Yes 

Bili rs855791 22:37462936 A G 39,890 0.04 2.34E-08 22,918 0.04 1.00E-05 Yes 

BUN rs10516957 4:95949206 T C 45,922 -0.06 1.35E-08 25,245 0.01 6.11E-01 No 

Ca rs6727384 2:97400324 A G 46,100 -0.04 5.13E-10 25,200 -0.05 2.06E-07 Yes 

Ca rs2839899 9:80350999 A G 46,100 0.04 6.76E-09 25,194 0.03 9.47E-03 Yes 

Cl rs1030025 2:103105611 A T 45,920 0.05 4.68E-10 25,204 0.02 9.16E-02 No 

FT4 rs10122824 9:139109861 T G 15,868 0.07 1.00E-09 9,721 0.07 7.28E-07 Yes 

Glucose rs7607980 2:165551201 T C 46,027 -0.05 4.27E-09 25,312 -0.04 2.09E-03 Yes 

Glucose rs896854 8:95960511 T C 46,027 -0.04 1.55E-09 25,311 0.01 3.64E-01 No 

Glucose rs9273364 6:32626302 T G 46,027 0.05 2.63E-11 24,801 0.05 3.10E-06 Yes 

HgbA1C rs3130628 6:31609272 T C 17,407 -0.08 1.23E-08 7,340 0.03 3.79E-02 No 

HCO3 

(CO2) 

rs1799913 11:18047255 T G 45,932 -0.04 5.89E-09 25,219 -0.04 7.82E-07 Yes 

HCO3 

(CO2) 

rs77375846 2:103155075 T C 45,932 -0.10 9.33E-25 25,217 -0.06 2.78E-05 Yes 

IGranRE rs13284665 9:131513370 A G 30,683 0.22 6.61E-74 QC Fail N/A N/A No 

IGranAB rs13284665 9:131513370 A G 30,744 0.13 6.76E-35 QC Fail N/A N/A No 

K rs10039139 5:137164863 T G 45,941 0.07 8.32E-16 25,211 0.06 1.83E-06 Yes 

Lipase rs9377343 6:96512220 A G 12,649 -0.10 4.79E-14 5,564 -0.08 3.60E-05 Yes 

Lipase rs8051363 16:75255217 A G 12,649 0.13 2.00E-20 5,549 0.07 8.39E-04 Yes 

MCHC rs12352830 9:80041132 C G 46,157 -0.04 4.37E-08 26,243 -0.04 5.77E-05 Yes 

MonoRE rs117358683 12:44145965 A G 32,594 -0.23 2.69E-08 16,185 0.04 4.07E-01 No 

MPV rs11212635 11:108310702 A T 40,058 0.04 9.55E-09 17,333 -0.01 3.68E-01 No 

TProt rs8022180 14:103263020 A G 38,352 0.04 7.24E-10 19,665 0.03 2.63E-03 Yes 

Trigs rs6847598 4:76750356 T C 23,963 -0.05 1.58E-08 12,526 -0.03 1.48E-02 Yes 

TSH rs12590163 14:105223525 T C 27,441 -0.05 4.68E-08 17,042 -0.04 6.76E-04 Yes 

TSH rs310766 3:12233482 A G 27,441 -0.06 1.66E-08 17,079 -0.05 1.42E-05 Yes 

TSH rs9275141 6:32651117 T G 27,441 0.05 3.47E-09 17,054 0.04 8.64E-04 Yes 
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Table 3: Classification of catalog SNPs for alternate summary statistics  

  Median Measurement First Available Measurement Maximum Measurement 

 

 

Lab 

 

Testable Catalog 

SNPs 

Concordant 

Increased 

Significance 

Concordant 

Decreased 

Significance 

 

Discordant 

Effect 

Concordant 

Increased 

Significance 

Concordant 

Decreased 

Significance 

 

Discordant 

Effect 

Concordant 

Increased 

Significance 

Concordant 

Decreased 

Significance 

 

Discordant 

Effect 

Chol 91 0 12 0 1 11 1 2 4 6 

Create 36 2 0 0 2 2 1 0 8 1 

EoAB 31 0 6 0 0 9 0 0 2 1 

EoRE 28 0 1 0 0 4 0 0 1 1 

HCT 36 0 0 0 4 0 1 15 0 1 

HDL 101 0 6 3 0 15 1 0 27 5 

Hgb 34 0 0 0 5 0 0 12 0 0 

LDL 84 0 9 1 0 9 4 2 2 6 

LymphAB 35 0 0 0 0 3 1 5 1 2 

LymphRE 20 0 0 0 0 0 0 0 0 0 

MCHC 20 0 1 0 2 5 3 2 5 1 

MCH 64 0 16 27 0 33 8 0 33 7 

MCV 77 1 5 7 0 19 13 0 30 6 

MonoAB 43 2 3 0 0 9 0 0 13 1 

MPV 84 0 11 9 0 39 9 5 20 17 

PLT 102 0 0 1 7 7 1 0 19 5 

PMNAB 35 0 0 0 0 2 1 0 3 1 

PMNRE 21 0 0 0 0 0 0 0 0 1 

RBC 50 0 4 4 13 0 1 21 0 0 

RDW 29 0 1 2 0 1 4 0 7 0 

Trigs 73 0 7 0 1 15 1 0 22 0 

WBC 33 0 4 5 0 7 1 0 9 0 

Total 
1127 

5 

(0.4%) 

86 

(7.6%) 

59 

(5.2%) 

35 

(3.1%) 

190 

(16.9%) 

51 

 (4.5%) 

64 

(5.6%) 

206 

(18.3%) 

62 

(5.5%) 
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Table 4: Classification of catalog SNPs for the comorbidity model, which includes covariates for various lab-altering diseases.  

  Comorbidity Model 

 

 

Lab 

 

Testable 

Catalog SNPs 

Concordant 

Increased 

Significance 

Concordant 

Decreased 

Significance 

 

Discordant 

Effect 

Chol 91 2 5 2 

Creat 36 1 3 2 

EoAB 31 0 0 0 

EoRE 28 0 0 1 

HCT 36 2 0 2 

HDL 101 15 2 2 

Hgb 34 1 0 0 

LDL 84 0 7 2 

LymphAB 35 2 0 4 

LymphRE 20 0 0 0 

MCHC 20 2 0 2 

MCH 64 1 7 26 

MCV 77 9 1 4 

MonoAB 43 5 0 1 

MPV 84 18 0 5 

PLT 102 5 1 4 

PMNAB 35 0 2 1 

PMNRE 21 0 0 2 

RBC 50 2 0 5 

RDW 29 0 1 3 

Trigs 73 3 3 7 

WBC 33 2 2 2 

Total 
1127 

70  

(6.2%) 

34  

(3.0%) 

77  

(6.8%) 
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Figures 

 

Figure 1: Sample sizes for 70 clinical lab traits from the meta-analysis of BioVU and MGI EHRs (red 

triangles) and the previous largest reported GWAS in a European cohort (black circles). Our meta-

analysis provides the largest GWAS for 34 lab traits, including the first for 14. Asterisks along the bottom 

row indicate labs for which we identified a novel genetic association.  
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Figure 2: Replication rates for GWAS catalog SNPs of clinical labs increased with (A) the number of times 

an association was reported in the GWAS catalog, (B) the most significant p-value previously reported 

for the association, and (C) the ratio of sample size in our meta-analysis to that of the previous largest 

study.  
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Figure 3: Pairwise genetic correlation of clinical lab traits. We restricted to labs with heritability of at 

least 7%. Squares are colored only for correlations having a p-value <0.05 for the null hypothesis of 

correlation equal to zero.  
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Figure 4: Scatterplot of Δ� in MGI and BioVU when using the first available measure rather than the 

mean measurement in a GWAS of Cholesterol level. Δ� is the -log fold change in p-value at a SNP for 

using an alternate analysis, in this case the first available lab measurement. Each dot is a SNP, with red 

dots indicating GWAS catalog SNPs for the specific lab trait. The white diamond contains 99.9% of SNPs 

and is used to identify SNPs with the largest changes in p-value due to the alternate analysis. SNPs 

outside the bounding diamond in the top right (green) quadrant show a concordant increase in 

significance in both MGI and BioVU, that is, SNPs for which the alternative strategy increases 

significance in both cohorts. Conversely, SNPs in the bottom left (blue) quadrant show a concordant 

decrease in significance in both MGI and BioVU. SNPs in either the top left or bottom right (yellow) 

quadrants have a discordant effect, indicating a large increase in p-value in one cohort but a large 

decrease in p-value in the second cohort. In this example, one catalog SNP showed a concordant 

increase in significance when using the first available lab measure, 11 catalog SNPs had a concordant 

decrease in significance and one SNP had discordant effects. The complete set of scatterplots for each 

analyzed lab and alternative analysis strategy (summary statistic and comorbidity model) are included in 

the Supplementary Material. Tables 3 and 4 summarize the movement of catalog SNPs for each lab and 

analysis strategy.   
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