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Abstract On March 11, 2020, the World Health Orga-
nization declared the coronavirus disease 2019, COVID-

19, a global pandemic. In an unprecedented collective
effort, massive amounts of data are now being collected
worldwide to estimate the immediate and long-term im-

pact of this pandemic on the health system and the
global economy. However, the precise timeline of the
disease, its transmissibility, and the effect of mitiga-
tion strategies remain incompletely understood. Here

we integrate a global network model with a local epi-
demic SEIR model to quantify the outbreak dynam-
ics of COVID-19 in China and the United States. For

the outbreak in China, in n = 30 provinces, we found
a latent period of 2.56±0.72 days, a contact period of
1.47±0.32 days, and an infectious period of 17.82±2.95

days. We postulate that the latent and infectious pe-
riods are disease-specific, whereas the contact period
is behavior-specific and can vary between different
provinces, states, or countries. For the early stages of
the outbreak in the United States, in n = 50 states,
we adopted the disease-specific values from China, and
found a contact period of 3.38±0.69 days. Our network
model predicts that–without the massive political mit-
igation strategies that are in place today–the United
states would have faced a basic reproduction number
of 5.3±0.95 and a nationwide peak of the outbreak
on May 10, 2020 with 3 million infections. Our results
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demonstrate how mathematical modeling can help es-
timate outbreak dynamics and provide decision guide-

lines for successful outbreak control. We anticipate that
our model will become a valuable tool to estimate the
potential of vaccination and quantify the effect of relax-

ing political measures including total lock down, shelter
in place, and travel restrictions for low-risk subgroups
of the population or for the population as a whole.
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1 Motivation

In December 2019, a local outbreak of pneumonia of ini-
tially unknown cause was detected in Wuhan, a city of

11 million people in central China [24]. The cause of the
disease was identified as the novel severe acute respira-
tory syndrome coronavirus 2, SARS-CoV-2 [16]. Infec-
tion with the virus can be asymptomatic or can result

in a mild to severe symptomatic disease, coronavirus
disease 2019 or COVID-19. The majority of COVID-19
cases result in mild symptoms including fever, cough,
shortness of breath, and respiratory distress [20]. Se-
vere complications arise when the disease progresses to
viral pneumonia and multi-organ failure. The SARS-
CoV-2 virus can spread quickly, mainly during close
contact, but also through small droplets from cough-
ing or sneezing [32]. After the first four cases were re-
ported on December 29, the outbreak quickly spread
from Wuhan across all provinces of mainland China,
and, in the following two months, across the entire
world. On March 11, 2020, the World Health Organi-

zation acknowledged the alarming levels of spread and
severity, and characterized the COVID-19 situation as
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Fig. 1 Typical timeline of COVID-19. At day 0, a frac-
tion of the susceptible population is exposed to the virus. At
day 3, exposed individuals become infectious, and the infec-
tious period lasts for 10 days. At day 5, infectious individ-
uals become symptomatic; the majority of the symptomatic
population recovers after 9 days. At day 9, a fraction of the
symptomatic population is hospitalized; the majority of the
hospitalized population recovers after 14 days. At day 10,
a fraction of the hospitalized population experiences critical
conditions that last for 10 days and end in either recovery or
in death. On the population level, the outbreak of COVID-19
can be summarized in eight curves that illustrate the dynam-
ics of the individual subgroups.

a pandemic [31]. As of today, April 4, 2020, COVID-
19 has affected 203 countries with a total of 1,201,483
reported cases, 64,690 deaths, and 264,467 recovered
cases [9].

Figure 1 illustrates a typical timeline of COVID-19
in a single person and shows how this timeline maps
onto an entire population. For this example [17], at

day 0, a number of susceptible individuals are exposed
to the virus and transition from the susceptible to the
exposed state. Around at day 3, the exposed individu-
als become infectious. During this time, they can in-

fect others, while not showing any symptoms them-
selves. The infectious period lasts for approximately
10 days. Around day 5, infectious individuals become

symptomatic. This implies that they have potentially
spread the disease for two days without knowing it. In
the majority of (1 − νh) of the population, the symp-
tomatic period lasts for approximately 9 days. Around

day 9, a severely affected population of νh are hospital-
ized and their hospitalization lasts for approximately
14 days. Around day 10, νc of the hospitalized popula-

tion experiences critical conditions that last for approx-
imately 10 days and end in (1− νd) of recovery and νd

of death. For a hospitalization fraction of νh = 0.045,
a critical conditions fraction of νc = 0.25, and a death
fraction of νd = 0.50, 99.44% of the population recover
and 0.56% die [17].

The first mathematical models for infectious dis-
eases date back to a smallpox model by Daniel Bernoulli

in 1760 [4]. Since the 1920s, compartment models have
become the most common approach to model the epi-
demiology of infectious diseases [21]. One of the sim-

plest compartment models is the SEIR model that rep-
resents the timeline of a disease through four compart-
ments, the susceptible, exposed, infectious, and recov-
ered populations [2]. The temporal evolution of these

compartments is governed by a set of ordinary differen-
tial equations parameterized in terms of the transition
rates between them [18]. The transition rates α from the

exposed to the infectious state and γ from the infectious
to the recovered state are disease specific parameters. In
fact, they are the inverses of the latent period A = 1/α,

the time during which an individual is exposed but not
yet infectious, and the infectious period C = 1/γ, the
time during which an individual can infect others. This
suggests that these two parameters are relatively inde-

pendent of country, region, or city. In the example of
Figure 1, the latent and infectious periods are A = 3
days and C = 10 days [17]. The most critical feature of

the model is the transition from the susceptible to the
exposed state. This transition is typically assumed to
scale with the susceptible population S, the infectious

population I, and the contact rate β, the inverse of the
contact period B = 1/β, between them [23].

The product of the contact rate and the infec-
tious period defines the basic reproduction number,
R0 = β C = C/B, the number of individuals that are
infected by a single one individual in an otherwise un-

infected, susceptible population [11]. The basic repro-
duction number is a measure of the contagiousness or
transmissibility of an infectious agent and it can vary

considerably between different infectious diseases [10].
Typical basic reproduction numbers are on the order
of 18 for measles, 9 for chickenpox, 7 for mumps, 7 for
rubella, and 5 for poliomyelitis [1]. When the basic re-

production number is larger than one, R0 > 1.0, the
infectious period C is larger than the contact period B
[23]. This implies that at onset of an epidemic outbreak,

when the entire population is susceptible, an infected
individual will infect more than one other individual.
In agreement with Figure 1, the infectious population

first increases, then reaches a peak, and decreases to-
ward zero [21]. As more and more individuals transi-
tion from the susceptible through the exposed and in-
fectious states into the recovered state, the susceptible

populations decreases. Once a large enough fraction of
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become the most common approach to model the epi-
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resents the timeline of a disease through four compart-
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ered populations [2]. The temporal evolution of these
compartments is governed by a set of ordinary differen-
tial equations parameterized in terms of the transition
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exposed to the infectious state and γ from the infectious
to the recovered state are disease specific parameters. In
fact, they are the inverses of the latent period A = 1/α,

the time during which an individual is exposed but not
yet infectious, and the infectious period C = 1/γ, the
time during which an individual can infect others. This
suggests that these two parameters are relatively inde-

pendent of country, region, or city. In the example of
Figure 1, the latent and infectious periods are A = 3
days and C = 10 days [17]. The most critical feature of

the model is the transition from the susceptible to the
exposed state. This transition is typically assumed to
scale with the susceptible population S, the infectious

population I, and the contact rate β, the inverse of the
contact period B = 1/β, between them [23].

The product of the contact rate and the infec-
tious period defines the basic reproduction number,
R0 = β C = C/B, the number of individuals that are
infected by a single one individual in an otherwise un-

infected, susceptible population [11]. The basic repro-
duction number is a measure of the contagiousness or
transmissibility of an infectious agent and it can vary

considerably between different infectious diseases [10].
Typical basic reproduction numbers are on the order
of 18 for measles, 9 for chickenpox, 7 for mumps, 7 for
rubella, and 5 for poliomyelitis [1]. When the basic re-
production number is larger than one, R0 > 1.0, the
infectious period C is larger than the contact period B
[23]. This implies that at onset of an epidemic outbreak,
when the entire population is susceptible, an infected
individual will infect more than one other individual.
In agreement with Figure 1, the infectious population
first increases, then reaches a peak, and decreases to-
ward zero [21]. As more and more individuals transi-
tion from the susceptible through the exposed and in-
fectious states into the recovered state, the susceptible

populations decreases. Once a large enough fraction of
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a population has become immune–either through re-
covery from the infection or through vaccination–this
group provides a measure of protection for the suscep-
tible population and the epidemic dies out [11]. This
indirect protection is called herd immunity [14]. The
concept of herd immunity implies that the converged
susceptible population at endemic equilibrium is always
larger than zero, S∞ > 0, and its value depends on
the basic reproduction number R0. For a given basic
reproduction number R0, herd immunity occurs at an
immune fraction of (1 − 1/R0). Knowing the basic re-
production number is therefore critical to estimate the
immune fraction of the population that is required to
eradicate an infectious disease, for example, 94.4% for
measles and 80.0% for poliomyelitis [18].

Restrictive measures like medical isolation or quar-
antine reduce the effective infectious period C and mit-
igation strategies like contact tracing, physical distanc-
ing, or travel restrictions increase the contact period B.
Especially during the early stages of an outbreak, pas-
senger air travel can play a critical role in spreading
a disease [3], since traveling individuals naturally have

a disproportionally high contact rate [30]. Border con-
trol can play a pivotal role in mitigating epidemics and
prevent the spreading between cities, states, or coun-

tries [34]. In an attempt to mitigate the COVID-19
outbreak, many countries have implemented travel re-
strictions and mandatory quarantines, closed borders,

and prohibited non-citizens from entry. This has stimu-
lated an ongoing debate about how strong these restric-
tions should be and when it would be safe to lift them.
The basic reproduction number is R0 provides guide-

lines about the required strength of political counter
measures [18]. However, empirically finding the basic
reproduction number requires careful contact tracing
and is a lot of work, especially once the number of in-
fectious individuals has grown beyond an overseeable
size [24]. Network modeling of travel-induced spreading

can play an important role in estimating the value of
R0 [7] and interpreting the impact of travel restrictions
and border control [19].

2 Methods

2.1 Epidemiology modeling

We model the epidemiology of the COVID-19 outbreak
using an SEIR model with four compartments, the
susceptible, exposed, infectious, and recovered popula-
tions, governed by a set of ordinary differential equa-

Outbreak dynamics of COVID-19 in China and the United States 3

tion from the susceptible through the exposed and in-
fectious states into the recovered state, the susceptible
populations decreases. Once a large enough fraction of
a population has become immune–either through re-

covery from the infection or through vaccination–this
group provides a measure of protection for the suscep-
tible population and the epidemic dies out [11]. This

indirect protection is called herd immunity [14]. The
concept of herd immunity implies that the converged
susceptible population at endemic equilibrium is always

larger than zero, S∞ > 0, and its value depends on
the basic reproduction number R0. For a given basic
reproduction number R0, herd immunity occurs at an
immune fraction of (1 − 1/R0). Knowing the basic re-

production number is therefore critical to estimate the
immune fraction of the population that is required to
eradicate an infectious disease, for example, 94.4% for

measles and 80.0% for poliomyelitis [18].
Restrictive measures like medical isolation or quar-

antine reduce the effective infectious period C and mit-
igation strategies like contact tracing, physical distanc-

ing, or travel restrictions increase the contact period B.
Especially during the early stages of an outbreak, pas-
senger air travel can play a critical role in spreading

a disease [3], since traveling individuals naturally have
a disproportionally high contact rate [30]. Border con-
trol can play a pivotal role in mitigating epidemics and

prevent the spreading between cities, states, or coun-
tries [34]. In an attempt to mitigate the COVID-19
outbreak, many countries have implemented travel re-
strictions and mandatory quarantines, closed borders,

and prohibited non-citizens from entry. This has stimu-
lated an ongoing debate about how strong these restric-
tions should be and when it would be safe to lift them.

The basic reproduction number is R0 provides guide-
lines about the required strength of political counter
measures [18]. However, empirically finding the basic

reproduction number requires careful contact tracing
and is a lot of work, especially once the number of in-
fectious individuals has grown beyond an overseeable
size [24]. Network modeling of travel-induced spreading

can play an important role in estimating the value of
R0 [7] and interpreting the impact of travel restrictions
and border control [19].

2 Methods

2.1 Epidemiology modeling

We model the epidemiology of the COVID-19 outbreak
using an SEIR model with four compartments, the

susceptible, exposed, infectious, and recovered popula-
tions, governed by a set of ordinary differential equa-

degree DII/ air travel [million]
0 100

Fig. 2 Network model of COVID-19 spreading across
the United States. Discrete graph G of the United States
with N = 50 nodes and the 200 most travelled edges. Size and
color of the nodes represent the degree DII , thickness of the
edges represents the adjacency AIJ estimated from annual
incoming and outgoing passenger air travel.

tions [18],
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The transition rates between the four compartments,
β, α, and γ are inverses of the contact period B = 1/β,

the latent period A = 1/α, and the infectious period
C = 1/γ. We interpret the latent and infectious peri-
ods A and C as disease-specific, and the contact period
B as behavior specific. We discretize the SEIR model

in time using an implicit Euler backward scheme and
adopt a Newton Raphson method to solve for the daily
increments in each compartment.

2.2 Network modeling

We model the spreading of COVID-19 across a country

through a network of passenger air travel, which we rep-
resent as a weighted undirected graph G with N nodes
and E edges. The nodes represent the individual states,

the edges the connections between them. We weight the
edges by the estimated annual incoming and outgoing
passenger air travel as reported by the Bureau of Trans-
portation Statistics [6]. We summarize the connectivity

of the graph G in terms of the adjacency matrix AIJ ,
the frequency of travel between two states I and J , and
the degree matrix DII = diag

∑N
J=1,J 6=IAIJ , the num-

ber of incoming and outgoing connections of state I.
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adjacency matrix AIJ defines the weighted graph Lapla-
cian LIJ ,

LIJ = DIJ −AIJ .

Figure 2 illustrates the discrete graph G of the United
States with N = 50 nodes and the E = 200 most trav-
elled edges. The size and color of the nodes represent
the degree DII , the thickness of the edges represents
the adjacency AIJ . For our passenger travel-weighted
graph, the degree ranges from 100 million in California
to less than 1 million in Delaware, Vermont, West Vir-
ginia, and Wyoming, with a mean degree of D̄II = 16
million per node. We assume that the Laplacian LIJ ,
normalized to one and scaled by the travel coefficient
ϑ, characterizes the global spreading of COVID-19 and
discretize our SEIR model on our weighted graph G.
Specifically, we introduce the susceptible, exposed, in-
fectious, and recovered populations SI , EI , II , and RI

as global unknowns at the I = 1, ..., N nodes of the

graph G. This results in the spatial discretization of the
set of equations with 4N unknowns,

ṠI = − ∑N
J=1 ϑLIJ SJ − β S I

ĖI = −∑N
J=1 ϑLIJ EJ + β S I − αE

İI = − ∑N
J=1 ϑLIJ IJ + αE − γ I

ṘI = −∑N
J=1 ϑLIJ RJ + γ I .

We discretize our SEIR network model in time using an
implicit Euler backward scheme and adopt a Newton
Raphson method to solve for the daily increments in

each compartment in each state [15].

2.3 Parameter identification

2.3.1 COVID-19 outbreak dynamics in China

Unlike many other countries, China has already seen a
peak of the COVID-19 outbreak and is currently not
seeing a significant number of new cases. The COVID-
19 outbreak data of the Chinese provinces capture all
three phases, increase, peak, and decrease of the infec-
tious population and are currently the richest dataset
available to date. This dataset describes the tempo-
ral evolution of confirmed, recovered, active, and death
cases starting January 22, 2020 [9]. As of April 4, there
were 81,639 confirmed cases, 76,755 recovered, 1,558

active, and 3,326 deaths. From these data, we map
out the temporal evolution of the infectious group I as
the difference between the confirmed cases minus the
recovered and deaths, and the recovered group R as
the sum of the recovered and deaths in each Chinese

province. To simulate the province-specific epidemiol-
ogy of COVID19 with the SEIR model, we use these
data to identify the latent period A = 1/α, the infec-
tious period C = 1/γ, and the contact period B = 1/β
as a direct measure of the basic reproduction number
R0 = B/C. As our sensitivity analysis in Figure 3
shows, the dynamics of the SEIR model depend crit-
ically on the initial conditions, the number of suscep-
tible S0, exposed E0, infectious I0, and recovered R0

individuals on the day the very first infectious case is
reported, I0 ≥ 1. Naturally, on this day, the recovered
population is R0 = 0. Since the exposed population
is asymptomatic, its initial value E0 is unknown. To
quantify the initial exposed population E0, we intro-
duce a parameter ρ = E0/I0, the initial latent pop-
ulation [27]. It defines the fraction of exposed versus
infectious individuals at day 0 and is a measure of ini-
tial hidden community spreading. The fraction of the
initial susceptible population, S0 = 1−E0− I0−R0, en-
sures that the total population sums up to one. To map
the total population of one onto the absolute number

of cases for each province, we introduce the normal-
ization parameter η = N∗/N , the affected population.
It defines the fraction of the province-specific epidemic

subpopulation N∗ relative to the province population
N [29]. Altogether we identify five parameters for each
province, the exposed period A = 1/α, the infectious
period C = 1/γ, the contact period B = 1/β or the

basic reproduction number R = C/B, the initial la-
tent population ρ = E0/I0, and the affected population
η = N∗/N . We performed the parameter identifica-

tion using the Levenberg-Marquardt method of least
squares. In this identification process, we ignored data
from secondary outbreaks [9].

2.3.2 COVID-19 outbreak dynamics in the United
States

Unlike China, the United States are at the early stage
of the COVID-19 outbreak and all states are still see-
ing an increase of the number of new cases every day.
The available dataset describes the temporal evolution

of confirmed, recovered, active, and death cases start-
ing January 21, 2020, the first day of the outbreak in
the United States [9]. As of April 4, there were 311,357
confirmed cases, 14,825 recovered, 288,081 active, and
8,451 deaths. Similar to the Chinese data, we map out
the temporal evolution of the infectious group I as the
difference between the confirmed cases minus the re-
covered and deaths in each state state of the United
States. To simulate the state-specific epidemiology of
COVID19 with the SEIR model, we use these data to

identify the contact time B = 1/β, while fixing the
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Fig. 3 Sensitivity with respect to the initial exposed
population E0. Decreasing the initial exposed population
delays the onset of the outbreak while the shapes of all four
curves remain the same. The susceptible and recovered pop-
ulations converge to the same endemic equilibrium at S1 =
0.202 and R1 = 0.798. For an initial exposed population of
E0 = 0.01, the infectious population reaches its maximum at
Imax = 0.121 after 125 days. Decreasing the initial exposed
population by a factor 10 delays the maximum by 65 days. La-
tent period A = 5 days, infectious period C = 20 days, basic
reproduction number R0 = C/B = 2.0, and initial exposed
population E0 = 10�2, 10�3, 10�4, 10�5, 10�6, 10�7, 10�8.

identify the contact time B = 1/�, while fixing the

disease-specific latent and infections periods A = 1/↵
and C = 1/� at their mean values of the SEIR dynamics
fit for the Chinese provinces, and indirectly fitting the

basic reproduction number R0 = C/B. For each state,
we set the first day of reported infections I0 � 1 to day
zero, at which the recovered population is R0 = 0, the
unknown exposed population is E0 = ⇢ I0 [27], and the

susceptible population is S0 = N �E0� I0�R0, where
N is the state-specific population [33]. We identify two
parameters for each state, the contact period B = 1/�

and the initial latent population ⇢ = E0/I0, while we
use the exposed period A = 1/↵ and the infectious pe-
riod C = 1/� from the parameter identification for the

Chinese provinces and back-calculate the basic repro-
duction number R = C/B. We perform the parameter
identification using the Levenberg-Marquardt method
of least squares.

3 Results

3.1 Sensitivity analysis

The dynamics of the SEIR model are determined by
three parameters, the latent period A = 1/↵, and the

infectious period C = 1/�, and the contact period
B = 1/�, or, alternatively, the basic reproduction num-
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Fig. 4 Sensitivity with respect to the latent period A.
Increasing the latent period increases the exposed popula-
tion and decreases the infectious population. The suscep-
tible and recovered populations converge to the same en-
demic equilibrium at S1 = 0.202 and R1 = 0.798, how-
ever, slower. The steepest susceptible, infectious, and recov-
ery curves correspond to the SIR model without separate ex-
posed population with A = 0 days with the maximum in-
fectious population of Imax = 0.157 after 86 days. Latent
period A = 0, 5, 10, 15, 20, 25 days, infectious period C = 20
days, basic reproduction number R0 = C/B = 2.0, and initial
exposed fraction E0 = 0.010.

ber R0 = C/B. Before identifying these parameters for
the outbreaks in China and in the United States, we will

illustrate their e↵ects by systematically varying each
parameter while keeping the other values fixed. Specifi-
cally, unless stated otherwise, we choose a latent period
of A = 5 days, an infectious period of C = 20 days, a

basic reproduction number of R0 = C/B = 2.0, and an
initial exposed population E0 = 0.010.
Figure 3 illustrates the sensitivity of the SEIR model

with respect to the size of the initial exposed popula-
tion E0. Decreasing the initial exposed population from
E0 = 10�2, 10�3, 10�4, 10�5, 10�6, 10�7, 10�8 delays the
onset of the outbreak while the dynamics of the sus-

ceptible, exposed, infectious, and recovered populations
remain the same. For all seven cases, the susceptible
and recovered populations converge to the same en-

demic equilibrium with S1 = 0.202 and R1 = 0.798.
The infectious population increases gradually, reaches
its maximum at Imax = 0.121, and then decreases. For

the largest initial exposed population of E0 = 0.01 this
maximum occurs after 125 days. Decreasing the initial
exposed population by a factor 10 delays the maximum
by 65 days. This highlights the exponential nature of

the model, which causes a constant delay for a logarith-
mic decrease of the exponential population, while the
overall outbreak dynamics remain the same. In view

of the COVID-19 outbreak, this supports the general
notion that even a single individual can cause an out-

Fig. 3 Outbreak dynamics. Sensitivity with respect
to the initial exposed population E0. Decreasing the
initial exposed population delays the onset of the outbreak
while the shapes of all four curves remain the same. The
susceptible and recovered populations converge to the same
endemic equilibrium at S∞ = 0.202 and R∞ = 0.798. For
an initial exposed population of E0 = 0.01, the infectious
population reaches its maximum at Imax = 0.121 after 125
days. Decreasing the initial exposed population by a factor
10 delays the maximum by 65 days. Latent period A = 5
days, infectious period C = 20 days, basic reproduction
number R0 = C/B = 2.0, and initial exposed population
E0 = 10−2, 10−3, 10−4, 10−5, 10−6, 10−7, 10−8.

disease-specific latent and infections periods A = 1/α

and C = 1/γ at their mean values of the SEIR dynamics
fit for the Chinese provinces, and indirectly fitting the
basic reproduction number R0 = C/B. For each state,

we set the first day of reported infections I0 ≥ 1 to day
zero, at which the recovered population is R0 = 0, the
unknown exposed population is E0 = ρ I0 [27], and the

susceptible population is S0 = N −E0− I0−R0, where
N is the state-specific population [33]. We identify two
parameters for each state, the contact period B = 1/β
and the initial latent population ρ = E0/I0, while we
use the exposed period A = 1/α and the infectious pe-
riod C = 1/γ from the parameter identification for the
Chinese provinces and back-calculate the basic repro-
duction number R = C/B. We perform the parameter
identification using the Levenberg-Marquardt method
of least squares.

3 Results

3.1 Outbreak dynamics

The dynamics of the SEIR model are determined by
three parameters, the latent period A = 1/α, and the
infectious period C = 1/γ, and the contact period
B = 1/β, or, alternatively, the basic reproduction num-
ber R0 = C/B. Before identifying these parameters for
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while the shapes of all four curves remain the same. The
susceptible and recovered populations converge to the same
endemic equilibrium at S∞ = 0.202 and R∞ = 0.798. For
an initial exposed population of E0 = 0.01, the infectious
population reaches its maximum at Imax = 0.121 after 125
days. Decreasing the initial exposed population by a factor
10 delays the maximum by 65 days. Latent period A = 5
days, infectious period C = 20 days, basic reproduction
number R0 = C/B = 2.0, and initial exposed population
E0 = 10−2, 10−3, 10−4, 10−5, 10−6, 10−7, 10−8.
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Fig. 4 Outbreak dynamics. Sensitivity with respect
to the latent period A. Increasing the latent period in-
creases the exposed population and decreases the infectious
population. The susceptible and recovered populations con-
verge to the same endemic equilibrium at S∞ = 0.202 and
R∞ = 0.798, however, slower. The steepest susceptible, in-
fectious, and recovery curves correspond to the SIR model
without separate exposed population E with A = 0 days
with a maximum infectious population of Imax = 0.157 af-
ter 86 days. Latent period A = 0, 5, 10, 15, 20, 25 days, in-
fectious period C = 20 days, basic reproduction number
R0 = C/B = 2.0, and initial exposed fraction E0 = 0.010.

ber R0 = C/B. Before identifying these parameters for
the outbreaks in China and in the United States, we will

illustrate their effects by systematically varying each
parameter while keeping the other values fixed. Specifi-
cally, unless stated otherwise, we choose a latent period
of A = 5 days, an infectious period of C = 20 days, a

basic reproduction number of R0 = C/B = 2.0, and an
initial exposed population E0 = 0.010.
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remain the same. For all seven cases, the susceptible
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maximum occurs after 125 days. Decreasing the initial
exposed population by a factor 10 delays the maximum
by 65 days. This highlights the exponential nature of
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overall outbreak dynamics remain the same. In view
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Fig. 4 Outbreak dynamics. Sensitivity with respect
to the latent period A. Increasing the latent period in-
creases the exposed population and decreases the infectious
population. The susceptible and recovered populations con-
verge to the same endemic equilibrium at S∞ = 0.202 and
R∞ = 0.798, however, slower. The steepest susceptible, in-
fectious, and recovery curves correspond to the SIR model
without separate exposed population E with A = 0 days
with a maximum infectious population of Imax = 0.157 af-
ter 86 days. Latent period A = 0, 5, 10, 15, 20, 25 days, in-
fectious period C = 20 days, basic reproduction number
R0 = C/B = 2.0, and initial exposed fraction E0 = 0.010.

the outbreaks in China and in the United States, we will
illustrate their effects by systematically varying each

parameter while keeping the other values fixed. Specifi-
cally, unless stated otherwise, we choose a latent period
of A = 5 days, an infectious period of C = 20 days, a
basic reproduction number of R0 = C/B = 2.0, and an

initial exposed population E0 = 0.010.
Figure 3 illustrates the sensitivity of the SEIR model
with respect to the size of the initial exposed popula-
tion E0. Decreasing the initial exposed population from
E0 = 10−2, 10−3, 10−4, 10−5, 10−6, 10−7, 10−8 delays the
onset of the outbreak while the dynamics of the sus-
ceptible, exposed, infectious, and recovered populations
remain the same. For all seven cases, the susceptible
and recovered populations converge to the same en-
demic equilibrium with S∞ = 0.202 and R∞ = 0.798.

The infectious population increases gradually, reaches
its maximum at Imax = 0.121, and then decreases. For
the largest initial exposed population of E0 = 0.01 this
maximum occurs after 125 days. Decreasing the initial
exposed population by a factor 10 delays the maximum
by 65 days. This highlights the exponential nature of
the model, which causes a constant delay for a logarith-
mic decrease of the exponential population, while the
overall outbreak dynamics remain the same. In view
of the COVID-19 outbreak, this supports the general

notion that even a single individual can cause an out-
break. If multiple individuals trigger the outbreak in a
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Fig. 5 Outbreak dynamics. Sensitivity with respect
to the infectious period C. Increasing the infectious pe-
riod at a constant basic reproduction number flattens the ex-
posed population and increases the infectious population. The
susceptible and recovered populations converge to the same
endemic equilibrium at S∞ = 0.202 and R∞ = 0.798, how-
ever, slower. The flattest susceptible, infectious, and recovery
curves correspond to longest infectious period of C = 30 days
with the maximum infectious population of Imax = 0.135
after 169 days. Latent period A = 5 days, infectious pe-
riod C = 5, 10, 15, 20, 25, 30 days, basic reproduction number
R0 = C/B = 2.0, and initial exposed fraction E0 = 0.010.

break. If multiple individuals trigger the outbreak in a

province, state, or country, the overall outbreak dynam-
ics will remain the same, but the peak of the outbreak
will happen earlier.
Figure 4 illustrates the sensitivity of the SEIR model

with respect to the latent period A. Increasing the la-
tent period from A = 0, 5, 10, 15, 20, 25 days increases
the exposed population and decreases the infectious

population. The susceptible and recovered populations
converge to the same endemic equilibrium at S∞ =
0.202 and R∞ = 0.798. Convergence is slower for in-
creased latent periods A. The steepest susceptible, in-

fectious, and recovery curves correspond to the special
case of the SIR model without a separate exposed pop-
ulation E, for which A = 0 days. This model does not

have a separate exposed population. It reaches its peak
infectious population of Imax = 0.157 after 86 days.
In view of the COVID-19 outbreak this implies that

knowledge of the latent period is important to correctly
estimate the timing and peak of the infectious popula-
tion, which ultimately determines the absolute number
of hospital beds and ventilator units required to insure

appropriate medical care.
Figure 5 illustrates the sensitivity of the SEIR model
with respect to the infectious period C. Increasing the

infectious period at a constant basic reproduction num-
ber flattens the exposed population and increases the
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Fig. 6 Outbreak dynamics. Sensitivity with respect
to the basic reproduction number R0. Decreasing the
basic reproduction number decreases the exposed and in-
fectious populations. The susceptible and recovered popu-
lations converge to larger and smaller endemic equilibrium
values, and converges is slower. The steepest susceptible,
exposed, infectious, and recovery curves correspond to the
largest basic reproduction number of R0 = 10.0 with the
maximum infectious population of Imax = 0.488 after 35
days and converge to an endemic equilibrium at S∞ =
0.0001 and R∞ = 0.9999. Latent period A = 5 days, in-
fectious period C = 20 days, basic reproduction number
R0 = C/B = 1.5, 1.7, 2.0, 2.4, 3.0, 5.0, 10.0, and initial ex-
posed fraction E0 = 0.010.

infectious population. The susceptible and recovered
populations converge to the same endemic equilibrium
at S∞ = 0.202 and R∞ = 0.798, however, slower. The
flattest susceptible, infectious, and recovery curves cor-

respond to longest infectious period of C = 30 days
and a contact period of B = 15 days with the maxi-
mum infectious population of Imax = 0.135 after 169

days. In view of the COVID-19 outbreak, knowing the
infectious time is important to correctly estimate the
timing and peak of the infectious population, and with

it the number of required hospital beds and ventilator
units.
Figure 6 illustrates the sensitivity of the SEIR model
with respect to the basic reproduction number R0.

Decreasing the basic reproduction number decreases
the exposed and infectious populations. The suscepti-
ble and recovered populations converge to larger and

smaller endemic equilibrium values, and converges is
slower. The steepest susceptible, exposed, infectious,
and recovery curves correspond to the largest basic re-
production number of R0 = 10.0 with the maximum

infectious population of Imax = 0.488 after 35 days and
converge to an endemic equilibrium at S∞ = 0.0001
and R∞ = 0.9999. In view of the COVID-19 outbreak,

the basic reproduction number is the parameter that
we can influence by political counter measures. Reduc-

Fig. 5 Outbreak dynamics. Sensitivity with respect
to the infectious period C. Increasing the infectious pe-
riod at a constant basic reproduction number flattens the ex-
posed population and increases the infectious population. The
susceptible and recovered populations converge to the same
endemic equilibrium at S∞ = 0.202 and R∞ = 0.798, how-
ever, slower. The flattest susceptible, infectious, and recovery
curves correspond to longest infectious period of C = 30 days
with the maximum infectious population of Imax = 0.135
after 169 days. Latent period A = 5 days, infectious pe-
riod C = 5, 10, 15, 20, 25, 30 days, basic reproduction number
R0 = C/B = 2.0, and initial exposed fraction E0 = 0.010.

province, state, or country, the overall outbreak dynam-
ics will remain the same, but the peak of the outbreak

will happen earlier.
Figure 4 illustrates the sensitivity of the SEIR model
with respect to the latent period A. Increasing the la-
tent period from A = 0, 5, 10, 15, 20, 25 days increases

the exposed population and decreases the infectious
population. The susceptible and recovered populations
converge to the same endemic equilibrium at S∞ =
0.202 and R∞ = 0.798. Convergence is slower for in-
creased latent periods A. The steepest susceptible, in-
fectious, and recovery curves correspond to the special
case of the SIR model without a separate exposed pop-
ulation E, for which A = 0 days. This model does not
have a separate exposed population. It reaches its peak
infectious population of Imax = 0.157 after 86 days.

In view of the COVID-19 outbreak this implies that
knowledge of the latent period is important to correctly
estimate the timing and peak of the infectious popula-
tion, which ultimately determines the absolute number
of hospital beds and ventilator units required to insure
appropriate medical care.
Figure 5 illustrates the sensitivity of the SEIR model
with respect to the infectious period C. Increasing the
infectious period at a constant basic reproduction num-
ber flattens the exposed population and increases the

infectious population. The susceptible and recovered
populations converge to the same endemic equilibrium
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to the infectious period C. Increasing the infectious pe-
riod at a constant basic reproduction number flattens the ex-
posed population and increases the infectious population. The
susceptible and recovered populations converge to the same
endemic equilibrium at S∞ = 0.202 and R∞ = 0.798, how-
ever, slower. The flattest susceptible, infectious, and recovery
curves correspond to longest infectious period of C = 30 days
with the maximum infectious population of Imax = 0.135
after 169 days. Latent period A = 5 days, infectious pe-
riod C = 5, 10, 15, 20, 25, 30 days, basic reproduction number
R0 = C/B = 2.0, and initial exposed fraction E0 = 0.010.

break. If multiple individuals trigger the outbreak in a

province, state, or country, the overall outbreak dynam-
ics will remain the same, but the peak of the outbreak
will happen earlier.
Figure 4 illustrates the sensitivity of the SEIR model

with respect to the latent period A. Increasing the la-
tent period from A = 0, 5, 10, 15, 20, 25 days increases
the exposed population and decreases the infectious

population. The susceptible and recovered populations
converge to the same endemic equilibrium at S∞ =
0.202 and R∞ = 0.798. Convergence is slower for in-
creased latent periods A. The steepest susceptible, in-

fectious, and recovery curves correspond to the special
case of the SIR model without a separate exposed pop-
ulation E, for which A = 0 days. This model does not

have a separate exposed population. It reaches its peak
infectious population of Imax = 0.157 after 86 days.
In view of the COVID-19 outbreak this implies that

knowledge of the latent period is important to correctly
estimate the timing and peak of the infectious popula-
tion, which ultimately determines the absolute number
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appropriate medical care.
Figure 5 illustrates the sensitivity of the SEIR model
with respect to the infectious period C. Increasing the
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Fig. 6 Outbreak dynamics. Sensitivity with respect
to the basic reproduction number R0. Decreasing the
basic reproduction number decreases the exposed and in-
fectious populations. The susceptible and recovered popu-
lations converge to larger and smaller endemic equilibrium
values, and converges is slower. The steepest susceptible,
exposed, infectious, and recovery curves correspond to the
largest basic reproduction number of R0 = 10.0 with the
maximum infectious population of Imax = 0.488 after 35
days and converge to an endemic equilibrium at S∞ =
0.0001 and R∞ = 0.9999. Latent period A = 5 days, in-
fectious period C = 20 days, basic reproduction number
R0 = C/B = 1.5, 1.7, 2.0, 2.4, 3.0, 5.0, 10.0, and initial ex-
posed fraction E0 = 0.010.

infectious population. The susceptible and recovered
populations converge to the same endemic equilibrium
at S∞ = 0.202 and R∞ = 0.798, however, slower. The
flattest susceptible, infectious, and recovery curves cor-

respond to longest infectious period of C = 30 days
and a contact period of B = 15 days with the maxi-
mum infectious population of Imax = 0.135 after 169

days. In view of the COVID-19 outbreak, knowing the
infectious time is important to correctly estimate the
timing and peak of the infectious population, and with

it the number of required hospital beds and ventilator
units.
Figure 6 illustrates the sensitivity of the SEIR model
with respect to the basic reproduction number R0.

Decreasing the basic reproduction number decreases
the exposed and infectious populations. The suscepti-
ble and recovered populations converge to larger and

smaller endemic equilibrium values, and converges is
slower. The steepest susceptible, exposed, infectious,
and recovery curves correspond to the largest basic re-
production number of R0 = 10.0 with the maximum

infectious population of Imax = 0.488 after 35 days and
converge to an endemic equilibrium at S∞ = 0.0001
and R∞ = 0.9999. In view of the COVID-19 outbreak,

the basic reproduction number is the parameter that
we can influence by political counter measures. Reduc-

Fig. 6 Outbreak dynamics. Sensitivity with respect
to the basic reproduction number R0. Decreasing the
basic reproduction number decreases the exposed and in-
fectious populations. The susceptible and recovered popu-
lations converge to larger and smaller endemic equilibrium
values, and converges is slower. The steepest susceptible,
exposed, infectious, and recovery curves correspond to the
largest basic reproduction number of R0 = 10.0 with the
maximum infectious population of Imax = 0.488 after 35
days and converge to an endemic equilibrium at S∞ =
0.0001 and R∞ = 0.9999. Latent period A = 5 days, in-
fectious period C = 20 days, basic reproduction number
R0 = C/B = 1.5, 1.7, 2.0, 2.4, 3.0, 5.0, 10.0, and initial ex-
posed fraction E0 = 0.010.

at S∞ = 0.202 and R∞ = 0.798, however, slower. The

flattest susceptible, infectious, and recovery curves cor-
respond to longest infectious period of C = 30 days
and a contact period of B = 15 days with the maxi-
mum infectious population of Imax = 0.135 after 169

days. In view of the COVID-19 outbreak, knowing the
infectious time is important to correctly estimate the
timing and peak of the infectious population, and with
it the number of required hospital beds and ventilator
units.
Figure 6 illustrates the sensitivity of the SEIR model
with respect to the basic reproduction number R0.
Decreasing the basic reproduction number decreases
the exposed and infectious populations. The suscepti-
ble and recovered populations converge to larger and

smaller endemic equilibrium values, and converges is
slower. The steepest susceptible, exposed, infectious,
and recovery curves correspond to the largest basic re-
production number of R0 = 10.0 with the maximum
infectious population of Imax = 0.488 after 35 days and
converge to an endemic equilibrium at S∞ = 0.0001
and R∞ = 0.9999. In view of the COVID-19 outbreak,
the basic reproduction number is the parameter that
we can influence by political counter measures. Reduc-
ing the basic reproduction number beyond its natural

value by decreasing the contact time B through phys-
ical distancing or total lock down allows us to reduce
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Fig. 7 Outbreak control. Effect of basic reproduc-
tion number R0. Increasing the basic reproduction number
beyond one increases the maximum exposed and infectious
populations Emax and Imax. The converged susceptible and
recovered populations S∞ and R∞ at endemic equilibrium
converge towards zero and one. The time to reach the maxi-
mum infectious population reaches its maximum of 213 days
at a basic reproduction number R0 = 1.22 and decreases for
increasing basic reproduction numbers. Latent period A = 5
days, infectious period C = 20 days, basic reproduction num-
ber, and initial exposed fraction E0 = 0.010.

ing the basic reproduction number beyond its natural
value by decreasing the contact time B through phys-

ical distancing or total lock down allows us to reduce
the maximum infectious population and delay the out-
break, a measure that is commonly referred to in the

public media as “flatting the curve”.

3.2 Outbreak control

The sensitivity study suggests that an epidemic out-
break is most sensitive to the basic reproduction num-
ber R0. While the latent period A and the infectious pe-
riod C are disease specific, community mitigation and

political action can modulate the basic reproduction
number R0 through a variety of measures including ac-
tive contact tracing, isolation of infectious individuals,

quarantine of close contacts, travel restrictions, physi-
cal distancing, or total lock down.
Figure 7 illustrates the effect of the basic reproduc-

tion number R0 on the maximum exposed and infec-
tious populations Emax and Imax and on the converged
susceptible and recovered populations S∞ and R∞ at
endemic equilibrium. Increasing the basic reproduction

number beyond one increases the maximum exposed
and infectious populations. The converged susceptible
and recovered populations decrease towards zero and

increase towards one. For the chosen latent and infec-
tious periods of A = 5 days and C = 20 days, the time
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Fig. 8 Outbreak control. Sensitivity with respect to
tolerated infectious population Itol. Decreasing the tol-
erated infectious population increases the required level of
containment R0(t)/R0. This decreases the exposed and in-
fectious populations. The susceptible and recovered popu-
lations converge to larger and smaller endemic equilibrium
values, but their converges is slower. tolerated infected pop-
ulation Itol = 0.02, 0.03, 0.04, 0.05, 0.06, 0.08, 0.10, 0.15, ba-
sic reproduction number R0(t), and initial exposed fraction
E0 = 0.010.

to reach the maximum infectious population reaches its
maximum of 213 days at a basic reproduction number
R0 = 1.22 and decreases for increasing basic reproduc-

tion numbers. In view of the COVID-19 outbreak, Fig-
ure 7 suggests strategies to modulate the timeline of
the epidemic by reducing the basic reproduction num-
ber R0. For example, if we we have access to a certain

number of intensive care unit beds and ventilators, and
we know rates of the infectious population that have to
be hospitalized and require intensive care, we need to

limit the maximum size of the population that becomes
infectious. To limit the infectious fraction to 20% of the
total population, i.e., Imax = 0.200, we would have to
reduce the basic reproduction number to R0 = 2.69.

The gray line indicates that this maximum would oc-
cur after 0.25 years or 93 days.
Figure 8 illustrates the effect of constraining the out-

break by increasing the basic reproduction number R(t)
such that the infectious population always remains be-
low a tolerated infectious population, I < Itol. Decreas-

ing the tolerated infectious population, Itol = 0.15,
0.10., 0.08, 0.06, 0.05, 0.04, 0.03, 0.02 0.02, increases
the required level of containment and decreases the rel-
ative basic reproduction number, R0(t)/R0 = 1.000,

0.742, 0.661, 0.603, 0.580, 0.541, 0.535, 0.524. This has
the desired effect of decreasing the exposed and in-
fectious populations. The susceptible population con-

verges to progressively larger endemic equilibrium val-
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Fig. 7 Outbreak control. Effect of basic reproduc-
tion number R0. Increasing the basic reproduction number
beyond one increases the maximum exposed and infectious
populations Emax and Imax. The converged susceptible and
recovered populations S∞ and R∞ at endemic equilibrium
converge towards zero and one. The time to reach the maxi-
mum infectious population reaches its maximum of 213 days
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days, infectious period C = 20 days, basic reproduction num-
ber, and initial exposed fraction E0 = 0.010.
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break, a measure that is commonly referred to in the
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3.2 Outbreak control

The sensitivity study suggests that an epidemic out-

break is most sensitive to the basic reproduction num-
ber R0. While the latent period A and the infectious pe-
riod C are disease specific, community mitigation and

political action can modulate the basic reproduction
number R0 through a variety of measures including ac-
tive contact tracing, isolation of infectious individuals,
quarantine of close contacts, travel restrictions, physi-

cal distancing, or total lock down.
Figure 7 illustrates the effect of the basic reproduc-
tion number R0 on the maximum exposed and infec-
tious populations Emax and Imax and on the converged
susceptible and recovered populations S∞ and R∞ at
endemic equilibrium. Increasing the basic reproduction
number beyond one increases the maximum exposed
and infectious populations. The converged susceptible
and recovered populations decrease towards zero and
increase towards one. For the chosen latent and infec-
tious periods of A = 5 days and C = 20 days, the time
to reach the maximum infectious population reaches its
maximum of 213 days at a basic reproduction number

R0 = 1.22 and decreases for increasing basic reproduc-
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political action can modulate the basic reproduction
number R0 through a variety of measures including ac-
tive contact tracing, isolation of infectious individuals,

quarantine of close contacts, travel restrictions, physi-
cal distancing, or total lock down.
Figure 7 illustrates the effect of the basic reproduc-

tion number R0 on the maximum exposed and infec-
tious populations Emax and Imax and on the converged
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Fig. 8 Outbreak control. Sensitivity with respect to
tolerated infectious population Itol. Decreasing the tol-
erated infectious population increases the required level of
containment R0(t)/R0. This decreases the exposed and in-
fectious populations. The susceptible and recovered popu-
lations converge to larger and smaller endemic equilibrium
values, but their converges is slower. tolerated infected pop-
ulation Itol = 0.02, 0.03, 0.04, 0.05, 0.06, 0.08, 0.10, 0.15, ba-
sic reproduction number R0(t), and initial exposed fraction
E0 = 0.010.
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R0 = 1.22 and decreases for increasing basic reproduc-

tion numbers. In view of the COVID-19 outbreak, Fig-
ure 7 suggests strategies to modulate the timeline of
the epidemic by reducing the basic reproduction num-
ber R0. For example, if we we have access to a certain

number of intensive care unit beds and ventilators, and
we know rates of the infectious population that have to
be hospitalized and require intensive care, we need to

limit the maximum size of the population that becomes
infectious. To limit the infectious fraction to 20% of the
total population, i.e., Imax = 0.200, we would have to
reduce the basic reproduction number to R0 = 2.69.

The gray line indicates that this maximum would oc-
cur after 0.25 years or 93 days.
Figure 8 illustrates the effect of constraining the out-

break by increasing the basic reproduction number R(t)
such that the infectious population always remains be-
low a tolerated infectious population, I < Itol. Decreas-

ing the tolerated infectious population, Itol = 0.15,
0.10., 0.08, 0.06, 0.05, 0.04, 0.03, 0.02 0.02, increases
the required level of containment and decreases the rel-
ative basic reproduction number, R0(t)/R0 = 1.000,

0.742, 0.661, 0.603, 0.580, 0.541, 0.535, 0.524. This has
the desired effect of decreasing the exposed and in-
fectious populations. The susceptible population con-

verges to progressively larger endemic equilibrium val-
ues S∞ =0.202, 0.225, 0.248, 0.274, 0.290, 0.309, 0.331,

Fig. 8 Outbreak control. Sensitivity with respect to
tolerated infectious population Itol. Decreasing the tol-
erated infectious population increases the required level of
containment R0(t)/R0. This decreases the exposed and in-
fectious populations. The susceptible and recovered popu-
lations converge to larger and smaller endemic equilibrium
values, but their converges is slower. tolerated infected pop-
ulation Itol = 0.02, 0.03, 0.04, 0.05, 0.06, 0.08, 0.10, 0.15, ba-
sic reproduction number R0(t), and initial exposed fraction
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ure 7 suggests strategies to modulate the timeline of

the epidemic by reducing the basic reproduction num-
ber R0. For example, if we we have access to a certain
number of intensive care unit beds and ventilators, and

we know rates of the infectious population that have to
be hospitalized and require intensive care, we need to
limit the maximum size of the population that becomes
infectious. To limit the infectious fraction to 20% of the

total population, i.e., Imax = 0.200, we would have to
reduce the basic reproduction number to R0 = 2.69.
The gray line indicates that this maximum would oc-
cur after 0.25 years or 93 days.
Figure 8 illustrates the effect of constraining the out-
break by increasing the basic reproduction number R(t)
such that the infectious population always remains be-
low a tolerated infectious population, I < Itol. Decreas-
ing the tolerated infectious population, Itol = 0.15,
0.10., 0.08, 0.06, 0.05, 0.04, 0.03, 0.02 0.02, increases

the required level of containment and decreases the rel-
ative basic reproduction number, R0(t)/R0 = 1.000,
0.742, 0.661, 0.603, 0.580, 0.541, 0.535, 0.524. This has
the desired effect of decreasing the exposed and in-
fectious populations. The susceptible population con-
verges to progressively larger endemic equilibrium val-
ues S∞ =0.202, 0.225, 0.248, 0.274, 0.290, 0.309, 0.331,
0.358. The recovered population converges to progres-
sively smaller endemic equilibrium values R∞ =0.798,
0.775, 0.752, 0.726, 0.710, 0,691, 0.669, 0.642. Conver-

gens is slower under constrained outbreak. The lowest
exposed and infectious curves and the flattest suscep-
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tible and recovery curves correspond to the most con-
strained infectious population of Itol = 0.02 with a re-
quired level of containment of R0(t)/R0 = 0.524. The
highest exposed and infectious curves and the steep-
est susceptible and recovery curves correspond to an
unconstrained infectious population Itol = 0.150 >
Imax = 0.121 with peak infection after 125 days. In
view of the COVID-19 outbreak, the gray line tells us
how drastic political counter measures need to be. A
required level of containment of R0(t)/R0 = 0.524 im-
plies that we need to reduce the number of infections
of a single individual by about one half. However, re-
ducing the maximum infectious population comes at
a socioeconomic price: The graphs teach us that it is
possible to reach an endemic equilibrium at a smaller
total number of individuals that have had the disease;
yet, this endemic equilibrium would occur much later
in time, for this example, after two or three years.

3.3 COVID-19 outbreak dynamics in China

Figure 9 summarizes the dynamics of the COVID-19
outbreak in 30 Chinese provinces. The dots indicate
the reported infectious and recovered populations, the

lines highlight the simulated susceptible, exposed, in-
fectious, and recovered populations. The simulations
are based on a province-specific parameter identifica-
tion of the latent period A, the contact period B, the

infectious period C, and from both, the basic repro-
duction number R0 = C/B, the fraction of the ini-
tial latent population ρ = E0/I0, and the fraction of

the affected population η = N∗/N for each province.
These five province-specific values are reported in each
graph. Notably, the province of Hubei, where the out-
break started, has seen the most significant impact with
more than 60,000 cases. Naturally, in Hubei, where the
first cases were reported, the fraction of the initial la-
tent population ρ is zero. Small values of ρ indicate a
close monitoring of the COVID-19 outbreak, with very
few undetected cases at the reporting of the first infec-
tious case. The largest value of ρ = 26.4 suggests that,

at the onset of the outbreak, a relatively large number
of cases in the province of Shandong was undetected.
The fraction of the affected population η = N∗/N
is a province-specific measure for the containment of
the outbreak. Naturally, this number is largest in the
province of Hubei, with η = 1.3 · 10−3, and, because of
strict containment, much smaller in all other provinces.

Table 1 summarizes the parameters for the COVID-19
outbreak in China. Averaged over all Chinese provinces,
we found a latent period of A = 2.56±0.72 days, a con-

tact period of B = 1.47±0.32 days, an infectious period

Table 1 COVID-19 outbreak dynamics in China. La-
tent period A, contact period B, infectious period C, basic
reproduction number R0 = C/B, fraction of initial latent
population ρ = E0/I0 and fraction of affected population
η = N∗/N .

parameter mean ± std interpretation

A [days] 2.56 ± 0.72 latent period
B [days] 1.47 ± 0.32 contact period
C [days] 17.82 ± 2.95 infectious period

R0 [-] 12.58 ± 3.17 basic reproduction no
ρ [-] 3.19 ± 5.44 initl latent population
η [-] 5.19·10−5±2.23·10−4 affected population

of C = 17.82± 2.95 days, a basic reproduction number
of R0 = C/B = 12.58±3.17, a fraction of the initial la-
tent population of ρ = E0/I0 = 3.19±5.44, and fraction
of the affected population of η = N∗/N = 5.19·10−5±
2.23·10−4.

3.4 COVID-19 outbreak dynamics in the United States

Figure 10 shows the dynamics of the early stages of
the COVID-19 outbreak in the 50 states of the United
States, the District of Columbia, and the territories of

Guam, Puerto Rico, and the Virgin Islands. The dots
indicate the reported cases and death, the lines high-
light the simulated susceptible, exposed, infectious, and
recovered populations. The simulations are based on

a state-specific parameter identification of the contact
period B that defines the basic reproduction number
R0 = C/B and of the fraction of the initial latent pop-

ulation ρ = E0/I0 at a given outbreak delay d0 for each
state. These three state-specific values are reported in
each graph. Since the outbreak is currently still in its
early stages, we do not attempt to identify the latent
and infectious periods, but rather adopt the mean la-
tent and infectious periods A = 2.56 and C = 17.82
from the Chinese outbreak in Table 1. Notably, the

state of New York is currently seeing the most signif-
icant impact with more than 100,000 cases. Naturally,
in Washington, Illinois, California, and Arizona where
the first cases were reported, the fraction of the initial
latent population ρ is small. Largest ρ values occur in
New York, New Jersey, Michigan, and Louisiana. The
largest basic reproduction numbers R0 are identified in

Idaho, Puerto Rico, Pennsylvania, and Indiana.
Table 2 summarizes the parameters for the early stages
of the COVID-19 outbreak in the United States. Av-
eraged over all states, we found a contact period of
B = 3.38± 0.69 days resulting in a basic reproduction
number of R0 = C/B = 5.30 ± 0.95, a fraction of the
initial latent population of ρ = E0/I0 = 43.75± 126.34
and an outbreak delay of d0 = 41.28± 13.78 days.
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Fig. 9 COVID-19 outbreak dynamics in China. Reported infectious and recovered populations and simulated susceptible,
exposed, infectious, and recovered populations. Simulations are based on a province-specific parameter identification of the
latent period A, contact period B, and infectious period C, defining the basic reproduction number R0 = C/B, the fraction
of the initial latent population ρ = E0/I0, and the fraction of the affected population η = N∗/N for each province.

Table 2 COVID-19 outbreak dynamics in the United
States. Contact period B, basic reproduction number R0 =
C/B, fraction of initial latent population ρ = E0/I0, and the
outbreak delay d0 using latent period A and infectious period
C from the outbreak in China.

parameter mean ± std interpretation

A [days] 2.56 ± 0.72 latent period (China)
B [days] 3.38 ± 0.69 contact period
C [days] 17.82 ± 2.95 infectious period (China)

R0 [-] 5.30 ± 0.95 basic reproduction no
ρ [-] 43.75 ± 126.34 initl latent population

d0 [days] 41.28 ± 13.78 outbreak delay

Figure 11 illustrates the exposed, infectious, and recov-
ered fractions of the affected population for each state.
Using the parameter values from Table 2, these curves
predict the later stages of the outbreak based on the
early states of the outbreak in Figure 10 under the as-
sumption that no additional counter measures are im-
plemented. The simulation uses latent, contact, and in-

fectious periods of A = 2.56 days, B = 3.38±0.69 days,
and C = 17.82 days from Table 1 and a fraction of the
initial latent population of ρ = E0/I0 = 43.75 from Ta-
ble 2. The orange curve suggests, that the individual
states will see a peak of the infectious population at a
mean of 39 days after the first infectious case has been
reported. The 95% confidence interval suggests that this
peak will occur between 4 and 6 weeks after the first
reported case provided no additional counter measures
are implemented.

Figure 12 illustrates the outbreak delay d0 across the
United States. The first reported case was in the state
of Washington on January 21, 2020, followed by cases in
Illinois with a delay of d0 = 3, California with d0 = 4,
and Arizona with d0 = 5, shown in blue. The final states
to see an outbreak were Alabama, Idaho, Montana with
d0 = 52 and West Virginia with d0 = 56, shown in red.
This illustrates that there was a significant time delay
in the outbreak with many of the earlier affected states
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Fig. 10 COVID-19 outbreak dynamics in the United States. Reported infectious populations and simulated exposed,
infectious, and recovered populations. Simulations are based on a state-specific parameter identification of the contact period
B defining the basic reproduction number R0 = C/B, and the fraction of the initial latent population ρ = E0/I0 for each
state, for a given outbreak delay d0 and disease specific latent and infectious periods A = 2.56 and C = 17.82 identified for
the Chinese outbreak.

located on the west coast.
Figure 13 illustrates the undetected population at the
onset of the outbreak across the United States. The

ρ = E0/I0 value is small in the first states where the
outbreak was reported, Washington, Illinois, California,
and Arizona, suggesting that the reported cases were
truly the first cases in those states. In states where the
first cases occurred later, the ρ value increases. Notably,

Louisiana, Michigan, New Jersey, and New York have
the highest ρ values of 122.8, 136.1, 197.1, and 1,000
suggesting that both had an exceptionally high number
of exposed individuals or individuals that were infected
but unreported.
Figure 14 illustrates the basic reproduction number
for the early stages of the outbreak across the United
States. The basic reproduction number R0 = C/B, the
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Fig. 11 COVID-19 outbreak dynamics in the United
States predicted with the SEIR model. Exposed, infec-
tious, and recovered fractions of the affected populations for
each state predicted using data from the early states of the
outbreak and assuming no additional counter measures. Solid
lines represent the mean and shaded regions highlight the 95%
confidence interval. Latent period A = 2.56 days, contact pe-
riod B = 3.38 days, infectious period C = 17.82 days, and
fraction of initial latent population ρ = E0/I0 = 43.75.
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Fig. 12 Regional variation of the outbreak delay d0.
The outbreak varies from 0 days in Washington, the first state
affected by the outbreak, to 56 days in West Virginia, the last
state affected by the outbreak.

the highest ρ values of 122.8, 136.1, 197.1, and 1,000

suggesting that both had an exceptionally high number
of exposed individuals or individuals that were infected
but unreported.

Figure 14 illustrates the basic reproduction number
for the early stages of the outbreak across the United
States. The basic reproduction number R0 = C/B, the
number of individuals infected by a single infectious in-

dividual, varies from minimum values of 2.5 and 3.6 in
Nebraska and Arizona to maximum values of 7.2 and
7.9 in Puerto Rico and Idaho.

Figure 15 shows the nation-wide exposed, infectious,
and recovered cases for the United States. The circles
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Fig. 13 Regional variation of the initial undetected
population ρ. The fraction of the initial undetected pop-
ulation is smallest in Washington, Illinois, California, and
Arizona and largest in Louisiana with 122.8, Michigan with
136.1, New Jersey with 197.1, and New York with 1,000.

3 3.5 4 4.5 5 5.5 6 6.5 7 7.5

basic reproduction number [-]
3 7

Fig. 14 Regional variation of the basic reproduction
number R0. During the early stages of the outbreak, the
basic reproduction number varies from minimum values of
2.5 and 3.6 in Nebraska and Arizona to maximum values of
7.2 and 7.9 in Puerto Rico and Idaho.

highlight the reported cases, the lines the predictions
of the SEIR network model using data from the early
stages of the outbreak with parameters from Tables 1

and 2 and a travel coefficient of ϑ = 0.43. The graphs
starts on d0, the day at which the last state reported its
first case d0 = March 17, 2020. Compared to the out-

break characteristics for the individual states in Figure
11 with a peak of the infectious population at 39 days
after the first infectious case has been reported, the
nation-wide outbreak peaks 54 days after the last state

has seen an outbreak, on May 10, 2020. This difference
is a manifestation of both the state-specific outbreak
delay d0 and the travel of individuals between the dif-

ferent states represented through the network model.
Figure 16 illustrates the spatio-temporal evolution of
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lines represent the mean and shaded regions highlight the 95%
confidence interval. Latent period A = 2.56 days, contact pe-
riod B = 3.38 days, infectious period C = 17.82 days, and
fraction of initial latent population ρ = E0/I0 = 43.75.
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Fig. 14 Regional variation of the basic reproduction
number R0. During the early stages of the outbreak, the
basic reproduction number varies from minimum values of
2.5 and 3.6 in Nebraska and Arizona to maximum values of
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Fig. 14 Regional variation of the basic reproduction
number R0. During the early stages of the outbreak, the
basic reproduction number varies from minimum values of
2.5 and 3.6 in Nebraska and Arizona to maximum values of
7.2 and 7.9 in Puerto Rico and Idaho.
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break characteristics for the individual states in Figure
11 with a peak of the infectious population at 39 days
after the first infectious case has been reported, the
nation-wide outbreak peaks 54 days after the last state
has seen an outbreak, on May 10, 2020. This difference
is a manifestation of both the state-specific outbreak
delay d0 and the travel of individuals between the dif-
ferent states represented through the network model.
Figure 16 illustrates the spatio-temporal evolution of

the infectious population across the United States as
predicted by the SEIR network model. The simulation
uses data from the early stages of the outbreak in Fig-
ure 10 summarized in Table 2. As such, the simulation
is based on data from the early stages of the outbreak
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Fig. 15 COVID-19 outbreak dynamics across the
United States predicted with the SEIR network
model. Exposed, infectious, and recovered cases for the
United States reported and predicted by the SEIR network
model using data from the early stages of the outbreak. With
no additional counter measures, the SEIR network model
predicts a nation-wide peak of the outbreak on day 54, on
May 10, 2020. Latent period A = 2.56 days, contact period
B = 3.38 days, infectious period C = 17.82 days, fraction of
initial latent population ρ = E0/I0 = 43.75, day at which
the last state reported its first case d0 = March 17, 2020, and
travel coefficient ϑ = 0.43.

the infectious population across the United States as
predicted by the SEIR network model. The simulation
uses data from the early stages of the outbreak in Fig-
ure 10 summarized in Table 2. As such, the simulation

is based on data from the early stages of the outbreak
and assumes that no additional counter measures have
been implemented. Days 10 and 20 illustrate the slow

growth of the infectious population during the early
states of the outbreak. The state of New York sees the
outbreak first, followed by New Jersey and Louisiana.

Days 30 and 40 illustrate how the outbreak spreads
across the country. With no additional counter mea-
sures, the SEIR network model predicts a nation-wide
peak of the outbreak on day 54, on May 10, 2020. Day

50 illustrates that the earlier affected states, New York,
New Jersey, and Louisiana already see a decrease of the
infected population. Nebraska, West Virginia, and Wis-

consin are still far from reaching the peak. Compared
to Figures 12 to 14 these maps account for both, the
outbreak delay and the travel of individuals between
the different states represented through the network

model. This model would allow us to probe the effect of
travel restrictions to and from a specific state by locally
reducing its travel coefficients or by globally reducing

the nation-wide transport coefficient across the United
States.

4 Discussion

We have established a simulation tool that can estimate
the dynamics of the COVID-19 outbreak, both locally

for individual provinces or states and globally for an
entire country. Our simulations suggest that–despite
the social, regional, demographical, geographical, and
socio-economical heterogeneities in different regions–

the outbreak of COVID-19 follows a universal model
with a few relatively robust parameters. Specifically,
our simulation integrates a global network model with

a local epidemic SEIR model at each network node. It
uses six epidemiologically meaningful parameters, the
latent and infectious periods A and C to characterize
COVID-19 itself, the contact period B to characterize

the behavior of the population, the initial latent popu-
lation ρ = E0/I0 to characterize undetected community
spreading at the onset of the outbreak, the affected pop-

ulation η = N∗/N to characterize containment, and the
travel coefficient ϑ to characterize spreading through
passenger air travel.

4.1 The latent and infectious periods A and C
characterize the timeline of the disease.

Our sensitivity analysis in Figures 4 and 5 shows the
impact of the latent and infectious periods A and C.
Both affect the peak of the infectious population both in

time and magnitude. The robust data for the infectious
and recovered populations of all 30 Chinese provinces
in Figure 9 suggest that the latent period lasts for 2.5
days, followed by the infectious period of 17.8 days.

A study of 391 confirmed COVID-19 cases with 1,268
close contacts in Shenzhen found a median incubation
period of 4.8 days until the onset of symptoms, a mean

time to isolation after the onset of symptoms of 2.7 days
or 4.6 days with or without active contact tracing, and
a median time to recovery of 20.8 days after the onset

of symptoms [5]. These values agree with the reported
incubation period of 5.1 days found in 181 confirmed
COVID-19 cases outside Wuhan [22] and 5.2 days for
the first 425 cases in Wuhan [24]. The total duration

from exposure to recovery, (A+C) of our SEIR model,
is 20.3 days, 5.3 days shorted than the reported value of
25.6 for the 391 Shenzhen cases [5]. In our model, the re-

ported 4.8 to 5.2 day incubation periods maps onto the
latent period A of 2.5 days plus 2.3 to 2.7 days within
the infectious period C during which the individuals are

infectious but still asymptomatic. This period is critical
since individuals can spread the disease without know-
ing it. The contact tracing study postulates that the
infectious period C begins on day 4.8 with the onset of

symptoms, 2.3 days later than in our model, and ends

Fig. 15 COVID-19 outbreak dynamics across the
United States predicted with the SEIR network
model. Exposed, infectious, and recovered cases for the
United States reported and predicted by the SEIR network
model using data from the early stages of the outbreak. With
no additional counter measures, the SEIR network model
predicts a nation-wide peak of the outbreak on day 54, on
May 10, 2020. Latent period A = 2.56 days, contact period
B = 3.38 days, infectious period C = 17.82 days, fraction of
initial latent population ρ = E0/I0 = 43.75, day at which
the last state reported its first case d0 = March 17, 2020, and
travel coefficient ϑ = 0.43.

and assumes that no additional counter measures have

been implemented. Days 10 and 20 illustrate the slow
growth of the infectious population during the early
states of the outbreak. The state of New York sees the

outbreak first, followed by New Jersey and Louisiana.
Days 30 and 40 illustrate how the outbreak spreads
across the country. With no additional counter mea-
sures, the SEIR network model predicts a nation-wide

peak of the outbreak on day 54, on May 10, 2020. Day
50 illustrates that the earlier affected states, New York,
New Jersey, and Louisiana already see a decrease of the

infected population. Nebraska, West Virginia, and Wis-
consin are still far from reaching the peak. Compared
to Figures 12 to 14 these maps account for both, the
outbreak delay and the travel of individuals between
the different states represented through the network
model. This model would allow us to probe the effect of
travel restrictions to and from a specific state by locally
reducing its travel coefficients or by globally reducing
the nation-wide transport coefficient across the United
States.

4 Discussion

We have established a simulation tool that can estimate
the dynamics of the COVID-19 outbreak, both locally

for individual provinces or states and globally for an
entire country. Our simulations suggest that–despite

the social, regional, demographical, geographical, and
socio-economical heterogeneities in different regions–
the outbreak of COVID-19 follows a universal model
with a few relatively robust parameters. Specifically,
our simulation integrates a global network model with
a local epidemic SEIR model at each network node. It
uses six epidemiologically meaningful parameters, the
latent and infectious periods A and C to characterize
COVID-19 itself, the contact period B to characterize
the behavior of the population, the initial latent popu-
lation ρ = E0/I0 to characterize undetected community
spreading at the onset of the outbreak, the affected pop-
ulation η = N∗/N to characterize containment, and the
travel coefficient ϑ to characterize spreading through
passenger air travel.

4.1 The latent and infectious periods A and C
characterize the timeline of the disease.

Our sensitivity analysis in Figures 4 and 5 shows the

impact of the latent and infectious periods A and C.
Both affect the peak of the infectious population both in
time and magnitude. The robust data for the infectious
and recovered populations of all 30 Chinese provinces

in Figure 9 suggest that the latent period lasts for 2.5
days, followed by the infectious period of 17.8 days.
A study of 391 confirmed COVID-19 cases with 1,268

close contacts in Shenzhen found a median incubation
period of 4.8 days until the onset of symptoms, a mean
time to isolation after the onset of symptoms of 2.7 days

or 4.6 days with or without active contact tracing, and
a median time to recovery of 20.8 days after the onset
of symptoms [5]. These values agree with the reported
incubation period of 5.1 days found in 181 confirmed

COVID-19 cases outside Wuhan [22] and 5.2 days for
the first 425 cases in Wuhan [24]. The total duration
from exposure to recovery, (A+C) of our SEIR model,
is 20.3 days, 5.3 days shorted than the reported value of
25.6 for the 391 Shenzhen cases [5]. In our model, the re-
ported 4.8 to 5.2 day incubation periods maps onto the
latent period A of 2.5 days plus 2.3 to 2.7 days within
the infectious period C during which the individuals are
infectious but still asymptomatic. This period is critical
since individuals can spread the disease without know-
ing it. The contact tracing study postulates that the
infectious period C begins on day 4.8 with the onset of
symptoms, 2.3 days later than in our model, and ends

on day 7.3 or 9.4 with or without active contract tracing
with the beginning of isolation, 13.0 or 10.9 days ear-
lier than in our model. This implies that the infectious
period C of our SEIR model is 6.6 and 3.9 times larger
than the infectious period of the traced and untraced
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Fig. 16 COVID-19 outbreak dynamics across the United States predicted with the SEIR network model.
Regional evolution of the infectious population I predicted by the SEIR network model using data from the early stages of the
outbreak. Days 10 and 20 illustrate the slow growth of the infectious population during the early stages of the outbreak. The
state of New York sees the outbreak first, followed by New Jersey, Louisiana, and California. Days 30 and 40 illustrate how the
outbreak spreads across the country. With no additional counter measures, the SEIR network model predicts a nation-wide
peak of the outbreak on day 54, on May 10,2020. Day 50 illustrates that the earlier affected states, New York, New Jersey, and
Louisiana already see a decrease of the infected population, while other states like Nebraska, West Virginia, and Wisconsin
are still far from reaching the peak. Latent period A = 2.56 days, contact period B = 3.38 days, infectious period C = 17.83
days, fraction of initial latent population ρ = E0/I0 = 43.75, day at which the last state recorded an outbreak d0 = March
17, 2020, and travel coefficient ϑ = 0.43.

on day 7.3 or 9.4 with or without active contract tracing

with the beginning of isolation, 13.0 or 10.9 days ear-
lier than in our model. This implies that the infectious
period C of our SEIR model is 6.6 and 3.9 times larger

than the infectious period of the traced and untraced
early isolated population in Shenzhen [5]. This compar-
ison suggests that it is critical to understand how the
infectious period is reported, either as a disease-specific

parameter or as a medically-modulated exposure time.

4.2 The contact period B and basic reproduction
number R0 characterize social behavior.

Our sensitivity analysis in Figures 6, 7, and 8 shows

the impact of the contact period B or, more intuitively,
the basic reproduction number R0. The basic repro-
duction number significantly affects the peak of the in-
fectious population both in time and magnitude. The

early outbreak data for the infectious populations of all
50 United States in Figure 10 suggest that the contact
period is for 3.4 days, resulting in a basic reproduction

number of 5.3. For the first 425 cases in Wuhan, the
basic reproduction number was estimated to 2.2 [24]

and for the 391 cases in Shenzhen, it was 2.6 [5]. A

review of the reported basic reproduction numbers for
COVID-19 found ranges from 1.40 to 6.49 with a mean
of 3.28, values that are larger than those reported for

the SARS coronavirus [25]. Huge variations of R0 val-
ues are not uncommon [11]; even for simple diseases
like the measles, reported R0 values vary between 3.7
and 203.3 [10]. Community mitigation and political ac-

tion can modulate the basic reproduction number R0 by
a variety of measures including active contact tracing,
isolation of infectious individuals, quarantine of close

contacts, travel restrictions, physical distancing, or to-
tal lock down [13]. Importantly, many of the reported
values already include the effect of isolation [24] and
active contact tracing and quarantine [5]. If we correct

our identified basic reproduction number for China in
Figure 9 and Table 1 by reducing our identified infec-
tious period of 17.8 days to the time prior to isolation

using the correction factors of 6.6 and 3.9 with and
without contact tracing, our R0 values for China would
be 1.91 and 3.23 and fall well within the reported range

[25]. Our R0 value for the United States of 5.30 agrees
well with the range of values reported for mathematical
model ranging from 1.50 to 6.49 with a mean of 4.20

Fig. 16 COVID-19 outbreak dynamics across the United States predicted with the SEIR network model.
Regional evolution of the infectious population I predicted by the SEIR network model using data from the early stages of the
outbreak. Days 10 and 20 illustrate the slow growth of the infectious population during the early stages of the outbreak. The
state of New York sees the outbreak first, followed by New Jersey, Louisiana, and California. Days 30 and 40 illustrate how the
outbreak spreads across the country. With no additional counter measures, the SEIR network model predicts a nation-wide
peak of the outbreak on day 54, on May 10,2020. Day 50 illustrates that the earlier affected states, New York, New Jersey, and
Louisiana already see a decrease of the infected population, while other states like Nebraska, West Virginia, and Wisconsin
are still far from reaching the peak. Latent period A = 2.56 days, contact period B = 3.38 days, infectious period C = 17.83
days, fraction of initial latent population ρ = E0/I0 = 43.75, day at which the last state recorded an outbreak d0 = March
17, 2020, and travel coefficient ϑ = 0.43.

early isolated population in Shenzhen [5]. This compar-

ison suggests that it is critical to understand how the
infectious period is reported, either as a disease-specific
parameter or as a medically-modulated exposure time.

4.2 The contact period B and basic reproduction
number R0 characterize social and political behavior.

Our sensitivity analysis in Figures 6, 7, and 8 shows
the impact of the contact period B or, more intuitively,
the basic reproduction number R0. The basic repro-
duction number significantly affects the peak of the in-
fectious population both in time and magnitude. The
early outbreak data for the infectious populations of all
50 United States in Figure 10 suggest that the contact
period is for 3.4 days, resulting in a basic reproduction
number of 5.3. For the first 425 cases in Wuhan, the
basic reproduction number was estimated to 2.2 [24]
and for the 391 cases in Shenzhen, it was 2.6 [5]. A

review of the reported basic reproduction numbers for
COVID-19 found ranges from 1.40 to 6.49 with a mean
of 3.28, values that are larger than those reported for
the SARS coronavirus [25]. Huge variations of R0 val-
ues are not uncommon [11]; even for simple diseases

like the measles, reported R0 values vary between 3.7

and 203.3 [10]. Community mitigation and political ac-
tion can modulate the basic reproduction number R0 by
a variety of measures including active contact tracing,
isolation of infectious individuals, quarantine of close
contacts, travel restrictions, physical distancing, or to-
tal lock down [13]. Importantly, many of the reported
values already include the effect of isolation [24] and

active contact tracing and quarantine [5]. If we correct
our identified basic reproduction number for China in
Figure 9 and Table 1 by reducing our identified infec-
tious period of 17.8 days to the time prior to isolation
using the correction factors of 6.6 and 3.9 with and
without contact tracing, our R0 values for China would
be 1.91 and 3.23 and fall well within the reported range

[25]. Our R0 value for the United States of 5.30 agrees
well with the range of values reported for mathematical
model ranging from 1.50 to 6.49 with a mean of 4.20
[25]. Understanding the natural value of R0–without
any mitigation strategy–is critical to predict the en-
demic equilibrium, interpret herd immunity, and the
estimate the fraction of the population that requires
vaccination [18].
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4.3 What’s next?

Current mitigation strategies have the goal to “flatten
the curve”, which translates into reducing the number
of new infections. As we can see in Figures 6, 7, and 8,
we can achieve this goal by reducing the basic reproduc-
tion number R0 = C/B, which is a direct signature of
effective containment measures and drastic behavioral
changes that affect a substantial fraction of the suscep-
tible population [13]. By isolating infectious individuals,
active contact tracing, and quarantining close contacts,
we can reduce the effective infectious period C; and
by implementing travel restrictions, mandating physi-
cal distancing, or enforcing total lock down, we can in-
crease the contact period B [27]. Figure 9 demonstrates
that combinations of these measures have successfully
flattened the curves in the 30 provinces of China [24].
But the million-dollar questions remains: What’s next?
In the very near future, our model has the potential
to predict the timeline of the outbreak, specifically, the
timing and peak of the infectious population in indi-

vidual states and countries. This will help us optimize
planning and distribute medical resources where needed
[17]. In the short term, we could enhance our model to
study the effect of different subgroups of the population

[5]. This could provide scientific guidelines to gradually
relax political measures, for example by releasing dif-
ferent subgroups of the population before others. In the

long term, we will need accurate values of the basic re-
production number to estimate the effect of vaccination.
This will be critical to design rigorous vaccination pro-

grams and prioritize which subgroups of the population
to vaccinate first [18]. Naturally, as more data become
available, we can train our models more reliably and
make more accurate predictions.

4.4 Limitations

This study proposes a new strategy to characterize the
timeline of COVID-19. While this allows us to estimate
the peaks of the outbreak in space and time, we need to

be aware that this study uses a simple model to charac-
terize a complex infectious disease about which we still
know very little to this day. Importantly, we have to be
cautious not to overstate the results. Specifically, our
study has several limitations: First, our mathematical
model does not account for asymptomatic cases. Little
is known about the fraction of asymptomatic or mildly
symptomatic individuals but early studies suggest that
up to 25% of individuals have gone from susceptible to
recovered without having ever been reported as infec-
tious. Second, the classical SEIR model does not distin-

guish between asymptomatic infectious in the first days

of the disease and symptomatic infectious in the later
days. Knowing more about this group and modeling
appropriately is critical to accurately estimate the im-
pact of community spreading and mitigation strategies
to reduce it. Third, while the initial infectious group I0
can be reasonably well approximated from the reported
active cases and the initial recovered group R0 is likely
zero, the initial exposed group E0 is really unknown and
can hugely effect the outbreak dynamics as the sensi-
tivity study in Figure 3 and the data for China and the
United States in Figures 9 and 10 show. We decided to
include this effect through the initial latent population
ρ to highlight this effect, but more data are needed to
better estimate the size of this group. Fourth and prob-
ably most importantly, the major variable we can influ-
ence through social and political measures is the basic
reproduction number R0, or rather the interplay of the
contact period B and infectious period C. Obviously,
we do not know the true R0, nor can we measure it at
this stage of the outbreak, where every state, province,
or country has implemented different measures to mod-

ulate the local outbreak dynamics. Nonetheless, our
study shows that estimating R0 is important to quan-
tify if and how different political counter measures work
and to predict the timeline of the infectious population

under no, moderate, and massive political action. Fi-
nally, our network model only provides rough mobility
estimates from air travel statistics. To more accurately

simulate the spreading of COVID-19, we could gradu-
ally refine our network and include more granular mo-
bility patterns, for example from cell phone data.

5 Conclusion

The precise timeline of COVID-19, its basic repro-
duction number, and the effect of different mitigation
strategies remain incompletely understood. Here we
combined data from the outbreak in China with data

from the early stages of the outbreak in the United
States to identify the latent, contact, and infectious pe-
riods and the basic reproduction number of COVID-
19. To quantify the outbreak dynamics, we integrated
a global network model with a local epidemic SEIR
model and solved the resulting set of coupled nonlin-
ear equations using a Newton-Raphson scheme. For the
outbreak in China, in n = 30 provinces, we found a la-
tent period of 2.6 days, a contact period of 1.5 days, and
an infectious period of 17.8 days. For the early stages of

the outbreak in the United States, in n = 50 states, we
found a contact period of 3.4 days and a travel coeffi-
cient of 0.42. Our network model predicts that–without
the massive political mitigation strategies that are in
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place today–the United states would have faced a ba-
sic reproduction number of 5.3±0.95 and a nationwide
peak of the outbreak on May 10, 2020 with 3 million
infections. Our results suggest that mathematical mod-
eling can help estimate outbreak dynamics and provide
decision guidelines for successful outbreak control. Our
model has the potential to quantify the impact of com-
munity measures and predict the effect of relaxing total
lock down, shelter in place, and travel restrictions for
low-risk subgroups of the population or for the popula-
tion as a whole.
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