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Abstract 

In the global effort to combat the COVID-19 pandemic, governments and public 

health agencies are striving to rapidly increase the volume and rate of diagnostic testing. 

The most common form of testing today employs Polymerase Chain Reaction in order to 

identify the presence of viral RNA in individual patient samples one by one. This process 

has become one of the most significant bottlenecks to increased testing, especially due to 

reported shortages in the chemical reagents needed in the PCR reaction. 

Recent technical advances have enabled High-Throughput PCR, in which multiple 

samples are pooled into one tube. Such methods can be highly efficient, saving large 

amounts of time and reagents. However, their efficiency is highly dependent on the 

frequency of positive samples, which varies significantly across regions and even within 

regions as testing criterion and conditions change. 

Here, we present two possible optimized pooling strategies for diagnostic SARS-

CoV-2 testing on large scales, both addressing dynamic conditions. In the first, we employ 

a simple information-theoretic heuristic to derive a highly efficient re-pooling protocol: an 

estimate of the target frequency determines the initial pool size, and any subsequent pools 

found positive are re-pooled at half-size and tested again. In the range of very rare target 

(<0.05), this approach can reduce the number of necessary tests dramatically, for 

example, achieving a reduction by a factor of 50 for a target frequency of 0.001. The 

second method is a simpler approach of optimized one-time pooling followed by individual 

tests on positive pools. We show that this approach is just as efficient for moderate target-

product frequencies (0.05<0.2), for example, achieving a two-fold in the number of when 

the frequency of positive samples is 0.07. 

These strategies require little investment, and they offer a significant reduction in 

the amount of materials, equipment and time needed to test large numbers of samples. 
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We show that both these pooling strategies are roughly comparable to the absolute upper-

bound efficiency given by Shannon's source coding theorem. We compare our strategies 

to the naïve way of testing and to alternative matrix-pooling methods. Most importantly, we 

offer straightforward, practical pooling instructions for laboratories that perform large scale 

PCR assays to diagnose SARS-CoV-2 viral particles. These two pooling strategies may 

offer ways to alleviate the bottleneck currently preventing massive expansion of SARS-

CoV-2 testing around the world. 
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Introduction 

In the global effort to fight the coronavirus pandemic, medical teams and 

laboratories presented with the task of diagnosis are currently encountering 

unprecedented numbers of samples, and simultaneously facing shortages of time, 

personnel, materials and laboratory equipment. 

The need to scale up diagnostic assays for many thousands of patient samples has 

been addressed with cutting edge molecular tools such as RNA-Seq with multiplex 

barcoding1 and serological test might soon be able to test for the immune status of 

patients. However, these tools may not be readily available to implement in many places, 

and they often require higher expertise or are less accurate than regular PCR tests 

commonly used. A simpler way to scale up diagnostic assays can be found in the method 

of High-Throughput PCR via sample pooling, used in genetic research as a practical way 

to reduce the cost of large-scale studies4.  

The most common current procedure for diagnosing the presence of SARS-CoV-2 

begins with collection of a viral sample by a nasopharyngeal swab and/or an 

oropharyngeal swab from the patient. After lysis, the disintegration of cells/viral membrane 

within the sample, the detection procedure involves two stages:  

1) RNA extraction which contains viral as well as Human RNA (later used for extraction 

control) are extracted using standard RNA extraction procedures5. 

2) Single-step Reverse Transcription – quantitative Polymerase Chain Reaction (Single 

Step RT-qPCR) is performed on viral RNA and human control5. Briefly, in RT-qPCR 

reaction, the extracted RNA is first reverse transcribed to a double stranded cDNA 

template. Next, a reaction is repeated in cycles, amplifying the target cDNA fragment 

exponentially, by doubling the amount of that fragment in each cycle. In a typical qPCR 

reaction this amplification is repeated for ~42 cycles. The cycle in which the fluorescent 

signal crosses a certain threshold is linked to the starting concentration of the target cDNA. 

In practice, if the presence of amplified viral cDNA is detected in a significant amount 

before a certain cycle number (e.g. 30), and given that the human cDNA (extraction 

control) was also detected in the sample, the patient is declared positive. If amplified viral 

cDNA is not detected or only detected in very late cycles (e.g. 40) then the patient is 

declared negative. 

This RT-qPCR reaction is the most consuming stage of the process both in terms 

of time and reagents. Recent reports from around the world identify the RT-qPCR reaction 

as one of the primary bottlenecks in the entire COVID-19 testing enterprise – each sample 
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tube tested requires chemical reagents that are increasingly in short supply as the number 

of PCR reactions performed globally grows tremendously11,12.  Laboratories have begun to 

demonstrate that SARS-CoV-2 can be detected in RT-qPCR performed on pooled 

samples, despite potential dilution2. The input to pooling methods is RNA extracted from 

samples individually, although they may be also used to combine "raw" patient samples, 

even before lysis and extraction. Their aim is to identify the presence of viral RNA without 

the need to perform the RT-qPCR reaction on every sample individually.  

To understand the advantages of a pooling approach, consider a laboratory 

receiving N = 1000 samples, with a frequency p = 1/1000 of positive cases. Using a naïve, 

one-by-one approach, 1000 tests will need to be performed. However, if the samples are 

pooled together, for example, into 10 different batches of b = 100 samples each, it is 

probable that 9 out of 10 batches will show a negative result. Each negative result, 

obtained by a single RT-qPCR reaction, determines that 100 individual samples are 

negative without the need for individual testing. Samples in batches that yielded a positive 

result may be either processed individually, or further divided to smaller batches. Both 

approaches will improve the testing efficiency significantly.  

However, what happens when the frequency of positive samples (p) rises? It is 

clear that a strategy of pooling 100 samples together will not be beneficial for higher p, say 

0.2. In this case, we can be certain that every batch will show positive, and therefore the 

chance that the pooling will yield any information at all is essentially zero. In practice the 

frequency of positive samples has varied greatly from country to country, depending on the 

criterion for testing and the stage of the pandemic at time of testing. For example, as of 

March 15th, there had been 167,009 tests performed in Germany, with 6540 positives, a rate 

of p=0.048. On the other hand, as of March 31st, there had been 956,481 tests performed in 

the US, with 162,399 positives, a rate of p=0.17, more than four times higher7. These rates 

additionally vary across cities and regions, and also change over time. Expanding testing 

to surveys in asymptomatic populations is expected to significantly reduce the typical 

values of p. Thus, the practical efficiency of sample pooling requires developing laboratory 

protocols that adjust batch sizes for dynamically changing conditions. 

Therefore, we set out to find a solution to the following problem: what is the optimal 

batch size for pooling samples, for any given p. We do this with two alternative 

approaches. The first approach calls for repeated pooling in several stages, and may be 

harder to implement in everyday lab work. However, it offers dramatic reductions in the 

number of tests required for very low values of p, and might be very useful for more 

advanced laboratories focusing on surveys of asymptomatic populations, where the 

appearance of positive examples is expected to be low. The second approach was in fact 
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proposed as early as 19433 and requires only one pooling step. Optimal initial batch size is 

calculated instantly, and then samples in all positive batches are to be further tested 

individually. This approach is very easy to implement, and as we will show, is very efficient 

for p values up to 0.2. 

The problem we set to solve involves only 3 parameters; N is the number of 

samples available for the whole diagnostic assay, p represents the expected frequency of 

positive samples out of all samples (in practice, it should be calculated and updated on a 

daily basis, for each lab or for a given region/country); and b, the number of samples 

combined at the outset to a single batch. Given these three parameters we can calculate 

the expected number of total tests, 𝑁𝑡𝑒𝑠𝑡𝑠, for both of our methods, and thereby find the 

optimal batch-size, b, given N and p.   

We show here that both approaches are roughly comparable to the absolute bound 

on test-efficiency, given by Shannon's source code theorem. Furthermore, we compare 

these two approaches to matrix methods that attempt to exploit positional information on a 

2D lattice in order to further increase efficiency. We find that without further optimization, 

matrix methods do not out-perform the simpler pooling methods presented here. 

 Finally, as a practical guideline for laboratories, we provide a table of 

optimal batch sizes for different ranges of p. In this practical solution, we round optimal 

batch sizes to multiples of 8, to fit the 8-raw based molecular tools common in most 

laboratories.  

 

Results 

Repeated Pooling 

In the first method we present, we allow for repeated re-pooling of samples after 

each round of tests. While such a procedure in principle introduces additional parameters 

for the batch-sizes at each round of testing, we developed a simple, partially heuristic 

method based on a straightforward information-theoretic principle. The principle is that the 

most efficient binary test (one that, on average, excludes a maximal amount of possible 

scenarios) is one that has a 50% chance of giving either result (in our case – positive or 

negative for SARS-CoV-2). This is essentially a restatement of Shannon's source coding 

theorem6, but it is also well-intuited by grade-school children through the games "Twenty 

Questions" and “Guess Who?”. 
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Our method is as follows: First, given the expected frequency of positive samples, 

p, calculate the initial batch-size, b, that yields as close to 50% positive rate. In all 

subsequent rounds of testing, simply divide any positive batches in half and repeat, 

essentially performing a binary tree search algorithm. The probability that an entire batch is 

negative is the product of the probabilities that each sample is negative. Thus, given p, the 

probability that an entire batch of size b is negative is (1 − 𝑝)𝑏, and we want to choose b 

so that this number equals 0.5. For example, suppose the frequency of positive samples is 

p=0.02, i.e. 1 in 50 samples is positive. It turns out that a batch of 34 samples has 

approximately a 50-50 chance of being entirely negative or having at least one positive, i.e. 

(1 − 𝑝)34 ≈ 0.5.  Therefore, we can write the desired initial batch-size b, as a function of p, 

as: 

𝑏 = −
log(2)

log(1 − 𝑝)
 

By fixing the batch size in this way it turns out that we also guarantee that with high 

probability there is only a single positive sample in each positive batch (Supplementary 

Figure). In the Appendix we derive the following estimate for the expected number of tests 

that need to be performed in this method, 𝑁𝑡𝑒𝑠𝑡𝑠 : 

𝑁𝑡𝑒𝑠𝑡𝑠 ≈
𝑁

𝑏
(1.3 log2 𝑏 + 0.4) 

In our numerical simulations, as well as in our recommended protocols, we round 

the batch size, b, down to the nearest power of 2. For example, for p=0.01, the optimal 

initial batch size given by the expression above is 69 so we round it down to 𝑏 = 26 = 64. 

We find for these values of p and b that the average number of tests required to check N 

samples is about 𝑁 8⁄ . Meanwhile for p=0.001, the optimal initial batch size is 692, which 

we round down to 𝑏 = 29 = 512 in practice, and find that the average number of tests 

required to check N samples is about  𝑁 50⁄  (Figure 1). Figure 1 shows that our 

simulations with batch sizes rounded down to the nearest power of 2, are predicted very 

well by the two analytical expressions above (i.e. without rounding b). 

Technical limitations will clearly limit the maximal batch size. However, as we 

discuss further below, our simulations reveal that even suboptimal batch sizes are 

extremely efficient, especially for small values of p. For example, if the largest batch size is 

limited to 64, the number of tests required to test N samples with p=0.001 is about 𝑁 35⁄ . 
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One-time Pooling 

Repeated pooling adds complexity to the protocol and may increase the likelihood 

of human error. We therefore propose a simpler method, proposed as early as 19433: one-

time pooling into batches, after which all samples in any positive batch are to be tested 

one-by-one. Under this method, very large batch sizes will no longer be as efficient, and 

we must calculate the optimal batch-size, b, specific to this method. 

Given b and p, the expression for the expected number of tests under the one-time 

pooling method can be calculated as follows: First 𝑁 𝑏⁄  tests must be performed. Next, 

how many of the total N samples will need to be tested individually? The expected fraction 

of total samples that must be tested individually is the same as the fraction of batches that 

is expected to be positive, because the batches are of equal size. The fraction of batches 

that is expected to be positive is simply the probability that any given batch will be positive: 

(1 − (1 − 𝑝)𝑏). Thus, the total expected number of tests is: 

𝑁𝑡𝑒𝑠𝑡𝑠 = 𝑁(
1

𝑏
+ 1 − (1 − 𝑝)𝑏) 

Consider the example in the introduction in which we have N=1000 samples, 

p=0.001, and the batch size is b=100. Then we initially perform 𝑁 𝑏 = 10⁄ tests, and the 

probability that any entire batch is negative is (1 − 𝑝)𝑏 ≈ 0.9, so that the fraction of batches 

expected to be positive is 1 10⁄ . We therefore perform an additional 𝑁 10⁄ = 100 tests, for 

a total of 𝑁(1 10⁄ 0 + 1 10⁄ ) = 11𝑁
100⁄ = 110. 

The above expression can be optimized numerically to find the optimal b given p. 

We find for example, that for p=0.01, the optimal initial batch size is b=10, and the average 

number of tests required to check N samples is about 𝑁 5⁄ . Meanwhile for p=0.001, the 

optimal initial batch size is b=32 and the average number of tests required to check N 

samples is about  𝑁 16⁄ . (Figure 1 and Table 1) 

 

Lower Bound on the Fractional Number of Tests 

Shannon's source coding theorem states that N independently and identically 

distributed random variables, each with entropy H, cannot be compressed into less than 

NH bits without loss of information6. The full series of binary diagnostic tests performed in 

our protocols can be thought of as an attempted compression of the N total samples. In 

our setting each sample is a Bernoulli(p) random variable and thus has entropy: 

𝐻 = −𝑝 log2 𝑝 − (1 − 𝑝) log2(1 − 𝑝) 
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This therefore serves as the absolute lower bound for the fractional number of tests 

necessary, as a function of p. As shown in Figure 1, both of our proposed pooling 

strategies are roughly comparable to this lower bound. 

 

Robustness to Uncertainty 

We have derived these two algorithms assuming perfect knowledge of the 

probability that any given sample is positive, p. It is important to check how robust our 

algorithms are to uncertainty. Therefore, we address two different kinds of uncertainty that 

need to be taken into account in everyday laboratory work. 

First of all, even if the underlying probability of positive samples is known, the 

actual number of positive samples in a total of N samples will have a standard deviation 

that scales as 1 √𝑁⁄ . This intrinsic uncertainty will be significant for small N. To check 

robustness to intrinsic uncertainty in the actual frequency of positive samples, we simulate 

both algorithms for N=128.  We find that this introduces a standard deviation of about 10 

tests, and that this variability is in practice roughly independent of p and comparable 

between both methods, though slightly lower in the method of one-time pooling (Fig 2). 

An additional source of uncertainty is imperfect knowledge of the true probability, p. 

We find misestimating p by a factor of 2 in either direction has only small impact on the 

average number of tests needed by both of our methods (Fig 2). Thus, both algorithms are 

robust to the kinds of uncertainty expected in real laboratory settings. 

Given this robustness, we propose simplified variations of the two methods, 

intended to overcome limited knowledge of p, and also minimize the complexity of the 

protocols. We propose that in practice, laboratories choose only a small number of 

possible initial batch sizes and identify the threshold value of p that separates between 

each initial batch size from the Tables below. For example, for the method of one-time 

pooling, a protocol that chooses between batch sizes of b=16, b=8 or b=4, with thresholds 

of p=0.008 and p=0.04, performs very well (Fig 3). 

 

Comparison to Matrix-based Methods 

As an extension to pooling approaches, a number of matrix-based methods have 

been proposed that aim to exploit positional information on a 2D lattice of samples in order 

to further improve testing efficiency. The simplest of such approaches is as follows: 

assume samples are arranged on an n-x-n square grid, first pool each row as a single 
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batch and perform n tests. If all n tests are negative stop, just as in the two methods 

proposed here. If any of the rows are positive, tests all n columns, and finally test all grid 

locations that are part of both positive row and positive column9. We find that fixed-size 

matrix methods do not out-perform the two methods presented here, even under realistic 

conditions of limited knowledge of p (Fig 3). 

 

Discussion 

Efficient and rapid detection of SARS-CoV-2 is a crucial part of the global effort 

against the coronavirus pandemic. The use of RT-qPCR on a sample by sample basis is 

reportedly pushing the limits of available laboratory resources, such as chemical reagents. 

Here we present two pooling strategies that offer to dramatically reduce the use of such 

resources, as well as time and labor. In regions and testing conditions in which positive 

tests are very rare (p<0.05), a strategy of repeated pooling can be extremely efficient by 

first selecting an initial batch size that yields probability 0.5 of being entirely negative, and 

then proceeding by positive batches in half at each stage.  As mentioned above, when 

positive samples are exceedingly rare this strategy in principle calls for very large batch 

sizes, well into the hundreds and even thousands. Such large batches are unfeasible with 

existing protocols. However, as we have shown, the strategy of repeated pooling is highly 

efficient in settings of exceedingly rare positives even when batch size is constrained to a 

pragmatic limit such as 64. Nevertheless, the process of repeatedly splitting pools into two 

may be challenging for many laboratories to implement in practice, and it loses marginal 

efficiency as the frequency of positive tests increases. We therefore show that a simpler 

protocol of one-time pooling, with optimized initial batch sizes is very efficient for all p up to 

about 0.2. One-time pooling is efficient even when the size of possible initial batch sizes is 

technically limited, for example to 16, either in order to simplify laboratory protocol or 

because knowledge of p is lacking. We show that both methods compare favorably to 

fixed-size matrix methods, that attempt to exploit 2D positional information from samples 

arranged on a grid. We note, however, that matrix methods can in principle also be 

optimized for given p, or by using complex pooling strategies10. Optimized matrix methods 

may prove more efficient than the two straight-forward methods presented here.  

It is important to note that technical limitations may limit the maximal batch size. 

This is because the process of pooling multiple patient samples into one tube inevitably 

causes dilution of the RNA of each individual sample. While it was shown empirically that 

64 samples could be pooled together to a combined sample that contains enough RNA 

copies for detection2, further empirical work should be conducted in order to determine the 
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maximal pool possible. For very large pools, improvement could be achieved with a minor 

change in the existing protocol (e.g. extracting higher concentrations of RNA content 

perhaps at the expense of some background reagents). Nevertheless, we chose here to 

show the theoretical optimal batch size, even if its feasibility is still somewhat questionable. 

To keep our methods implementable immediately, we calculate their performance also for 

a constrained batch size and present these in the practical tables and protocols. Note, as 

we write in our protocols, that even moderate batch sizes require an appropriate 

adjustment of the cycle-threshold for detection. 

 We hope this study will assist to increase the number of tests thus improving local 

governments' and agencies' ability to monitor and prevent the spread of COVID-19. 
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Protocols and Tables 

• First, the laboratory should select the pooling method. As mentioned, one-time pooling 

should be favored for its simplicity and smaller optimal batch sizes, except in cases 

where p is very low (p<0.05) and the laboratory expertise allows multiple pooling steps 

without substantial risk of errors. 

• Next, define the maximal batch size from the appropriate table below, based on the 

laboratory’s technical considerations.  

• At the start of each round of tests, estimate the value of p. This value should be 

estimated and updated on a regular (e.g. daily) basis, according to the empirical results 

received in a specific lab/region/population. It is simply calculated as follows: p = 

(number of positive samples)/ (number of all tested samples).    
• Next, identify the initial batch size from the tables below, by finding the appropriate 

range of p. Each laboratory should ignore ranges (i.e. rows) associated with batch 

sizes larger than the laboratory’s chosen maximum, and in cases where p is estimated 

in those ranges simply choose the maximal batch-size. For example, a protocol of one-

time pooling with maximal batch size of 16 would set an initial batch size of 4 for 

p>0.04, a batch size of 8 for p between 0.008 and 0.04, and a batch size of 16 for all 

p<0.008. 

• Finally, before performing RT-qPCR, increase the cycle-threshold by log2 𝑏 cycles. 

This is because pooling, if uncompensated, will dilute the presence of RNA/cDNA by a 

factor of b, which is expected to delay threshold-crossing. For example, if viral RNA is 

diluted by a factor of 8 from the original concentration in a sample then it will take 3 

cycles of doubling in order to reach the original concentration. This should be taken 

into consideration when selecting maximal batch size. 

 

 

One-Time Pooling 

According to the estimated value of p, use Table 1 to decide on the initial batch size. 

Process all batches/pools through PCR. All samples from batches that were shown to be 

negative could be all regarded as negatives, and all samples in batches that were shown 

to be positive should be further processed individually. Laboratories should restrict the 

number of possible initial batch sizes by simply ignoring ranges of smaller p, i.e. larger 

batch sizes. Table 1 summarizes also the expected fraction of tests needed relative to the 

naïve approach of testing all samples. This is important for the planning and evaluating the 

expected gain of the selected method beforehand.  
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Table 1. One-Time Pooling 

Range of Ratios Range of p 

Optimal Batch 

Size 

Fraction of Tests 

Needed 

<1:5 0.04 < p < 0.2 4 0.40 - 0.84 

<1:25 0.008 < p < 0.04 8 0.19 - 0.40 

<1:125 0.003 < p < 0.008 16 0.11 - 0.18 

<1:333 0.001 < p < 0.003 24 0.07 - 0.11 

<1:1000 0.0005 < p < 0.001 32 0.05 - 0.06 

<1:2000  p < 0.0005 64 < 0.05 

 

Repeated Pooling 

According to the estimated value of p, use Table 2 to decide on the optimal initial batch 

size. Process all batches/pools through PCR. All samples from batches that were shown to 

be negative could be all regarded as negatives.  Batches that were shown to be positive 

should be further divided into equal sizes (for odd numbers just chose arbitrary one batch 

to be bigger than the other by 1 sample), until all positive samples are isolated. In practice, 

positive batches of size 4 or smaller should not be divided, but simply tested individually. 

Use the expected fraction of tests needed relative to naïve approach for evaluation of the 

expected gain of the method beforehand. 

Table 2. Repeated Pooling 

Range of Ratios Range of p 

Optimal Batch 

Size 

Fraction of Tests 

Needed 

<1:20 0.03 < p < 0.05 8 ~0.4 

<1:33 0.02 < p < 0.03 16 ~0.3 

<1:50 0.01 < p < 0.02 32 ~0.2 

<1:100 0.005 < p < 0.01 64 ~0.13 

<1:200 0.0025 < p < 0.005 128 ~0.08 

<1:400 0.001 < p < 0.0025 256 ~0.04 

<1:1000 0.0005 < p < 0.001 512 ~0.02 

<1:2000  p < 0.0005 1024 ~0.01 
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Figure 1. Optimal Batch Sizes and Expected Reduction in Tests Needed. (A) Optimal batch-size vs 

frequency of positive samples, with y-axis in log2 scale. Note than for in practice, for one-time pooling we round 

batch-sizes to the nearest whole number, and for repeated pooling we round batches down to the nearest 

power of 2. (B) Expected number of tests needed relative to the naïve approach of testing all samples, 

computed by repeatedly simulating large numbers of samples., Black line shows absolute minimum number of 

tests needed, given by the base-2 Entropy. Blue: Method of one-time pooling. Red: Method of repeated 

pooling. Dashed red line shows analytical calculation of expected number of tests via repeated pooling. 
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Figure 2: Robustness to Uncertainty. (A) Fractional number of tests needed relative to naïve approach, for 

repeated pooling method. Shaded area displays standard deviation over repeated trials with known frequency 

p, where variability is due to small number of total samples, N=128. (B) Same as (A), for one-time pooling. (C) 

Fractional number of tests via repeated pooling, with imprecise estimate of p. Dashed line displays results for p 

underestimated by a factor of two, and dotted line displays results for p overestimated by a factor of two. (D) 

Same as (C), for one-time pooling 
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Figure 3. Comparison to Fixed-Size Matrix Method in Realistic Setting. We apply both methods presented here as they 

would be employed in a realistic setting with incomplete knowledge of p, and limited capacity for complex protocols. For 

one-time pooling we use three possible batch sizes: 4, 8 and 16. For repeated pooling we use four batch sizes: 8, 16, 32 

and 64, with ranges of p assigned according to Tables 1 and 2, respectively. We compare the results to the matrix 

method, which uses 2D positional information, as described in the main text. No single method dominates all others. 

Note, however, that repeated pooling and one-time pooling can be easily combined into a single protocol with a single 

threshold value for p. 
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Code and Data 

Code and simulation data is available at https://github.com/ilandau/sample-pooling-covid19.    
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