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Abstract

This paper presents a stochastic optimization model for allocating and sharing a critical resource
in the case of a pandemic. The demand for different entities peaks at different times, and an initial
inventory from a central agency is to be allocated. The entities (states) may share the critical resource
with a different state under a risk-averse condition. The model is applied to study the allocation
of ventilator inventory in the COVID-19 pandemic by the U.S. Department of Homeland Security,
Federal Emergency Management Agency (FEMA) to different states in the US. Findings suggest
that if less than 60% of the ventilator inventory is available for non-COVID-19 patients, FEMA’s
stockpile of 20,000 ventilators (as of 03/23/2020) would be nearly adequate to meet the projected
needs. However, when more than 75% of the available ventilator inventory must be reserved for
non-COVID-19 patients, various degrees of shortfall are expected. In an extreme case, where the
demand is assumed to be concentrated in the top-most quartile of the forecast confidence interval, the
total shortfall over the planning horizon (till 05/31/20) is about 28,500 ventilator days, with a peak
shortfall of 2,700 ventilators on 04/12/20. The results also suggest that in the worse-than-average to
severe demand scenario cases, NY requires between 7,600-9,200 additional ventilators for COVID-19
patients during its peak demand. However, between 400 to 2,000 of these ventilators can be given to
a different state after the peak demand is subsided.

1 Introduction

COVID-19 was first identified in Wuhan, China in December 2019 [22]. It has since become a global
pandemic. As of March 31, 2020 the United States has overtaken China in the number of deaths due
to the disease, with more than 3,900 deaths. Italy, which has 12,428 deaths, and Spain, which has
8,464, are the only two countries with higher death tolls. However, United States tops both of these
countries in the current number of confirmed COVID-19 cases (189,035) [1]. Confirmed cases in the
United States have more than doubled every three days in the time period since the first 100 cases were
detected. This is even faster than the increases observed in Spain and Italy at the same point in the
course of their epidemics [2]. In Northern Italy, one of the global epicenters of the pandemic, COVID-
19 has completely overwhelmed the healthcare system, forcing doctors into impossible decisions about
which patients to save. Physicians on the front lines have shared accounts of how they must now
weigh factors like age, comorbidities and probability of surviving prolonged intubation when deciding
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which patients with respiratory failure will receive mechanical ventilation [25]. This experience is a
warning of what awaits the United States.

1.1 A Resource Constrained Environment

While approximately 80% of COVID-19 cases are mild, the most severe cases of COVID-19 can result
in respiratory failure, with approximately 5% of patients requiring treatment in an intensive care unit
(ICU) with mechanical ventilation [29]. Mechanical ventilation is used to save the lives of patients
whose lungs are so damaged that they can no longer pump enough oxygen into the blood to sustain
organ function. It provides more oxygen than can be delivered through a nasal cannula or face mask,
allowing the patient’s lungs time to recover and fight off the infection. Physicians in Italy have
indicated that critical COVID-19 patients often need to be intubated for a prolonged period of time
(15-20 days) [25], further exacerbating ventilator scarcity.

Limiting the death toll within the US depends on the ability to allocate sufficient numbers of
ventilators to hard hit areas of the country before infections peak and ensuring that the inventory
does not run out. Harder hit states (such as New York, Michigan and Louisiana) are now desperately
trying to acquire additional ventilators in anticipation of significant shortages in the near future. Yet
in the absence of a coordinated federal response, reports have emerged of states finding themselves
forced to compete with each other in order to obtain ventilators from manufacturers [9]. According to
New York’s Governer Cuomo, the state has ordered 17,000 ventilators at the cost of $25,000/ventilator,
but in the current situation the state is expected to receive only 2,500 over the next two weeks [3]. As
of 03/31/2020, according to the US presidential news briefing, more than 8,100 ventilators have been
allocated by the U.S. Department of Homeland Security, Federal Emergency Management Agency
(FEMA) around the nation. Of these, 400 ventilators have been allocated to Michigan, 300 to New
Jersey, 150 to Louisiana, 50 to Connecticut, and 450 to Illinois, in addition to the 4,400 given to New
York [8].

Going forward, the federal response to the COVID-19 pandemic will require centralized decision-
making around how to equitably allocate, and reallocate, limited supplies of ventilators to states in
need. Projections from the Institute for Health Metrics and Evaluation at the University of Washing-
ton, which assume that all states will institute strict social distancing practices and maintain them
until after infections peak, show states will hit their peak demand at different time points through-
out the months of April and May. Many states are predicted to experience a significant gap in ICU
capacity, and similar, if not greater, gaps in ventilator capacity, with the time point at which needs
will begin to exceed current capacity varying by state [20].

1.2 Our Contributions

In response to the above problem, this paper presents a model for allocation and possible reallocation
of ventilators that are available in the national stockpile. Importantly, computational results from
the model also provide estimates of ventilators’ shortfall in each state under different future demand
scenarios.

The modeling framework can be used to develop master plans that will allocate part of the venti-
lator inventory here-and-now, while allocating and reallocating the available ventilators in the future.
The modeling framework incorporates conditions under which part of the historically available ven-
tilator inventory is used for non-COVID-19 patients, who also present themselves for treatment with
the COVID-19 patients. Thus, only a fraction of the historical ventilator inventory is available to
treat COVID-19 patients. The remaining demand needs are met by allocation and re-allocation of
available ventilators from FEMA (a central agency) and availability of additional ventilators through
planned productions. The availability of inventory from a state for re-allocation incorporates a certain
risk-aversion parameter. We present results, while performing a what-if analysis, under realistically
generated demand scenarios using available ventilator demand data and ventilator availability data
for different US states. An online planning tool is also developed, and made available for use.
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1.3 Organization

This paper is organized as follows. A review of the related literature is provided in Section 2. We
present our resource allocation planning model, and its re-formulation in Section 3. Section 4 presents
our computational results under different mechanical ventilator demand scenarios for the COVID-19
pandemic situation in the US. Some concluding remarks are made at the end.

2 Literature Review

A review on the role of operations research in global health that ensures equity is provided in [14].
The paper points out that poor availability of representative and high quality data, and a lack of
collaboration between operations research scientists, healthcare practitioners, and stakeholders are
found to be common challenges for effective operation research modeling in global health. A medical
resource allocation problem in a situation caused by a disaster is considered in [30], where victims’
deteriorating health conditions are modeled as a Markov chain, and the resources are allocated to
optimize the total expected health recovery rate and to reduce the total waiting time. Certain illus-
trative examples in a queuing network setting are also given in [30]. The problem of scarce medical
resource allocation after a natural disaster using a discrete event simulation approach is investigated
in [15]. Specifically, the authors in [15] investigate four resource-rationing principles: first come-first
served, random, most serious first, and least serious first. It is found that without ethical concern, the
least serious first principle exhibits the highest efficiency. However, a random selection provides a rel-
atively fair allocation of services and provides a better trade-off with ethical considerations. Resource
allocation in an emergency department in a multi-objective and simulation-optimization framewok is
studied in [17]. Simulation and queueing models for bed allocation are studied in [28, 19].

The problem of determining the levels of contact tracing to control spread of infectious disease
using a simulation approach to a social network model is considered in [11]. A linear programming
model is used in investigating the allocation of HIV prevention funds across states [16]. This paper
suggest that in the optimal allocation, the funds is not distributed in an equitable manner. A linear
programming model to derive an optimal allocation of healthcare resources in developing countries
is studied in [18]. Differential equation-based systems modeling approach is used in [10] to find a
geographic and demographic dependent way of distributing pandemic influenza vaccines based on a
case study of A/H1N1 pandemic.

In a more recent COVID-19-related study, [23] propose a probability model to estimate the ef-
fectiveness of quarantine and isolation on controlling the spread of COVID-19. In the context of
ventilator allocation, a conceptual framework for allocating ventilators in a public emergency is pro-
posed in [31]. The problem of estimating mechanical ventilator demand in the United States during
an influenza pandemic was considered in [24]. In a high severity pandemic scenario, a need of 35,000
to 60,500 additional ventilators to avert 178,000 to 308,000 deaths was estimated. Robust models
for emergency staff deployment in the event of a flu pandemic were studied in [12]. Specifically, the
authors focused on managing critical staff levels during such an event, with the goal of minimizing the
impact of the pandemic. Effectiveness of the approach was demonstrated through experiments using
realistic data.

A method for optimizing stockpiles of mechanical ventilators, which are critical for treating hospi-
talized influenza patients in respiratory failure is introduced in [21]. In a case-study, mild, moderate,
and severe pandemic conditions are considered for the state of Texas. Optimal allocations prioritize
local over central storage, even though the latter can be deployed adaptively, on the basis of real-time
needs. Similar to this paper, the model in [21] uses an expected shortfall of ventilators in the objective
function, while also considering a second criteria of total cost of ventilator stockpiling. However, the
model in [21] does not consider distribution of ventilators over time. In the case of COVID-19, the
ventilator demand is expected to peak at different times in different states, as the demand for each
state has different trajectories. Only forecasts are available on how the demand might evolve in the
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future.
In this paper, we assume that the planning horizon is finite, and for simplicity we assume that

reallocation decisions will be made at discrete times (days) t0, t1, t2, . . . . Under certain demand
conditions, the ventilators might be in short supply to be able to meet the demand. Our model is
formulated as a stochastic program, and for the purpose of this paper, we reformulate and solve the
developed model in its extensive form. We refer the reader to [13, 27] for a general description of this
topic.

3 A Model for Ventilator Allocation

In this section, we present a multi-period planning model to allocate ventilators to different regions
based on their needs to treat the patients at the critical level. We assume that the demand for
ventilators at each planning period is stochastic. We further assume that there is a central agency
that coordinates the ventilator (re)location decisions. The ventilators’ (re)location is executed at the
beginning of a time period. Once these decision are made and executed, the states can use their
inventory to treat the patients. Both the federal agency and the states have to decide whether to
reserve their inventory in anticipation of future demand or they should share it with other entities.

Before presenting the formulation, we list the sets, parameters, and decision variables that are
used in the model.

• Sets and indices

– N : states (regions), indexed by n ∈ N ,

– T : Planning periods, indexed by t ∈ T ,

• Deterministic parameters

– T : the total number of time periods, i.e, T := [T ], where [T ] := {1, . . . , T},
– Yn: the initial inventory of ventilators in region n ∈ N at time period t = 0,

– I: the initial inventory of ventilators in the central at the beginning of time period t = 1,

– Qt: the number of ventilators produced during the time period t − 1 that can be used at
the beginning of time period t, for t ≥ 1,

– γn: the percentage of the initial inventory of ventilators in region n ∈ N that cannot be
used to meet the demand for patients at the critical level,

– τn: the percentage of the initial inventory of ventilators in region n ∈ N that the region is
willing to share with other regions, among those that can be used to care for patients at
the critical level,

– ρn: the risk-aversion of region n ∈ N to send their idle ventilators to the central agency to
be shared with other regions,

• Stochastic parameter

– d̃n,t: the number of patients in regions n ∈ N in the critical level that need a ventilator at
the beginning of time period t ∈ T ,

• Decision variables

– xn,t: the number of ventilators relocated to region n ∈ N from the central agency at the
beginning of time period t ∈ T ,

– zn,t: the number of ventilators relocated to the central agency from region n ∈ T at the
beginning of time period t ∈ T ,
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– yn,t: the number of ventilators at region n ∈ T that can be used towards treating the
patients at the critical level at the end of time period t ∈ {0} ∪ T ,

– st: the number of ventilators at the central agency at the end of time period t ∈ {0} ∪ T .

The planning model to minimize the expected shortage of ventilators in order to treat the patients
at the critical level is formulated as follows:

min E

[∑
t∈T

∑
n∈N

(d̃n,t − yn,t)+

]
(1a)

s.t. yn,t−1 + xn,t − zn,t = yn,t, ∀n ∈ N , ∀t ∈ [T ], (1b)

st−1 +Qt +
∑
n∈N

zn,t −
∑
n∈N

xn,t = st, ∀t ∈ [T ], (1c)

zn,t ≤
(
yn,t − (1− τn)yn,0 − ρnd̃n,t

)+

, ∀n ∈ N , ∀t ∈ [T ], (1d)∑
n∈N

xn,t ≤ st−1 +Qt +
∑
n∈N

zn,t, ∀t ∈ [T ], (1e)

yn,0 = (1− γn)Yn, ∀n ∈ N , (1f)

s0 = I, (1g)

xn,t, zn,t ≥ 0, ∀n ∈ N , ∀t ∈ [T ], (1h)

yn,t ≥ 0, ∀n ∈ N , ∀t ∈ {0} ∪ [T ], (1i)

st ≥ 0, ∀t ∈ {0} ∪ [T ]. (1j)

Let us now explain the model in details. The objective function (1a) denotes the expected total
shortage of ventilators over all time periods t ∈ T and all regions n ∈ N . Constraints (1b) and (1c)
ensure the conservation of ventilators for the regions and the central agency, respectively. Constraint
(1d) enforces that a region is not vending out any ventilator to the central agency if its in-hand
inventory is lower than its safety stock, where the safety stock is determined as ρnd̃n,t, for t ∈ [T ] and
n ∈ N . Constraint (1e) ensures that the total number of outgoing ventilators from the central agency
to the regions cannot be larger than the available inventory, after incorporating the newly produced
ventilators and the incoming ones from the regions. Constraints (1f) and (1g) set the initial inventory
at the regions and central agency, respectively. The remaining constraints ensure the nonnegativity
of decision variables.

Note that the objective function and constraints (1d) are not linear. By introducing an additional
variable, the term (d̃n,t − yn,t)+ in the objective function, for n ∈ N and t ∈ T , can be linearized as

en,t ≥ d̃n,t − yn,t,
en,t ≥ 0.

Furthermore, for each region n ∈ N and time period t ∈ T , constraint (1d) can be linearized as

yn,t − (1− τn)yn,0 − ρnd̃n,t ≥M(gn,t − 1),

zn,t ≤ yn,t − (1− τn)yn,0 − ρndn,t +M(1− gn,t),
zn,t ≤Mgn,t,

gn,t ∈ {0, 1},

where M is a big number.
As mentioned before, we assume that d̃n,t, for n ∈ N and t ∈ T , in model (1) is a stochastic

parameter. Let us suppose that d̃n,t has a finite support. This, in turns, implies that for each t ∈ T ,

the vectors d̃t := [d̃n,t]n∈N and D̃ := [d̃t]t∈T have finite supports as well. We let Ω represent the
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finite support of D̃, and use ω to denote an element of this set (i.e., a scenario). Furthermore, suppose
that pω represents the probability of scenario ω ∈ Ω, where pω ≥ 0, and

∑
ω∈Ω p

ω = 1.

By incorporating the finiteness of the support of D̃, a linearized reformulation of model (1) can
be written as a mixed-binary program in the following extensive form:

min
∑
ω∈Ω

pω

[∑
t∈T

∑
n∈N

eωn,t

]
(2a)

s.t. yωn,t−1 + xωn,t − zωn,t = yωn,t, ∀ω ∈ Ω, ∀n ∈ N , ∀t ∈ [T ], (2b)

sωt−1 +Qt +
∑
n∈N

zωn,t −
∑
n∈N

xωn,t = sωt , ∀ω ∈ Ω, ∀t ∈ [T ], (2c)

yωn,t − (1− τn)yωn,0 − ρnd̃ωn,t ≥M(gωn,t − 1), ∀ω ∈ Ω, ∀n ∈ N , ∀t ∈ [T ], (2d)

zωn,t ≤ yωn,t − (1− τ)yωn,0 − ρdωn,t +M(1− gωn,t), ∀ω ∈ Ω, ∀n ∈ N , ∀t ∈ [T ], (2e)

zωn,t ≤Mgωn,t, ∀ω ∈ Ω, ∀n ∈ N , ∀t ∈ [T ], (2f)∑
n∈N

xωn,t ≤ sωt−1 +Qt +
∑
n∈N

zωn,t, ∀ω ∈ Ω, ∀t ∈ [T ], (2g)

yωn,0 = (1− γn)Yn, ∀ω ∈ Ω, ∀n ∈ N , (2h)

sω0 = I, ∀ω ∈ Ω, (2i)

eωn,t ≥ dωn,t − yωn,t, ∀ω ∈ Ω, ∀n ∈ N , ∀t ∈ [T ], (2j)

xωn,t, z
ω
n,t, e

ω
n,t ≥ 0, ∀ω ∈ Ω, ∀n ∈ N , ∀t ∈ [T ], (2k)

yωn,t ≥ 0, ∀ω ∈ Ω, ∀n ∈ N , ∀t ∈ {0} ∪ [T ], (2l)

sωt ≥ 0, ∀ω ∈ Ω, ∀t ∈ {0} ∪ [T ], (2m)

gωn,t ∈ {0, 1}, ∀ω ∈ Ω, ∀n ∈ N , ∀t ∈ [T ], (2n)

where dωn,t denotes the number of patients at the critical level in regions n ∈ N that need ventilator
at the beginning of time period t ∈ T under scenario ω ∈ Ω. Note that all variables in model (2) have
superscript ω to indicate their dependence to scenario ω ∈ Ω.

In our computational experiments in Section 4, we used a commercial mixed-integer programming
solver to obtain the results. Furthermore, we used I + τnyn,0 +

∑
t′ ≤ tQt as a big-M for n ∈ N and

t ∈ T . It is worth noting that (1) (and (2) as well) considers multi-period decisions. In the model
a decision maker will make decisions for the entire planning horizon using the information that is
available at the beginning of planning.

4 Ventilator Allocation Case Study: The US

The ventilator allocation model (2), described in Section 3, was implemented in Python 3.7. All
computations were performed using GUROBI 9.1, on a Linux Ubuntu environment, using 14 cores of
a PC with 3.4 GHz processor and 128 GB of RAM. An hour time limit was given for all the runs.

4.1 Ventilator Demand Data

Since projected ventilator needs is a key input for the model, it is important to use accurate esti-
mates of the demand forecasts. The forecasts of ventilator needs generated by [20] were used in our
computational study. These forecasts were made available on 03/26/2020, and used the most recent
epidemiological data and advanced modeling techniques. The available information closely tracks the
real-time data [4]. This COVID-19 needs forecast data was recently used for in a recent presidential
news brief [8]. Although it is difficult to validate the ventilator need forecasts against actual hospital
and state level operational data, as this information is not readily available, we find that this model’s
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forecasts for deaths are quite accurate. For example, the model forecasted 217.9 deaths (CI: [176.95,
271.0]) on 03/29/20 for NY state. The number of reported deaths in the state on 03/29/30 were 237.
Similarly, the model forecasted 262.2 deaths (CI: [206.9, 340]) on 03/30/20 against the actual deaths
of 253 on that day.

4.2 Demand Scenario Generation

We considered a seventy-day planning period, starting from March 23, 2020 and ending on May 31,
2020. We generated the random demands in ways that correspond to projected future demands under
different mitigation effects. More precisely, we considered four different cases to generate random
samples for the number of ventilators that is needed to care for COVID-19 patients. These cases are
listed below:

Case I. Average-I: Each of the demand scenarios have equal probability and the distribution is
uniform over the range of the CI provided in [20],

Case II. Average-II: The demand scenarios in the top 25% of CI have 0.25 probability (equally
distributed); and scenarios in the bottom 75% have 0.75 probability,

Case III. Worse than Average: The demand scenarios in the top 25% of CI have 0.50 probability;
and the scenarios in the bottom 75% have 0.50 probability.

Case IV. Severe: The demand scenarios in the top 25% of CI have 0.75 probability; and the demand
scenarios in the bottom 75% have 0.25 probability,

We further discuss the demand generation procedure. A demand scenario contains the demand
data for all days and states. In all Cases I–IV, we assumed that the forecast CI provided in [20], for
each day and for each state, represents the support of the demand distribution.

Case I and II are generated to develop average demand scenario representations that use the
information provided in the CI given in [20] in two different ways. In Case I, it is assumed that the
mean is the median of the demand distribution (i.e., the right- and left-tail of the demand distribution
have 0.5 probability). We randomly generated a number to indicate which tail to sample from, where
both tails have the same 0.5 probability to be chosen. Once the tail is determined, we divided the
tail into 50 equally-distanced partitions, and chose a random partition to uniformly sample from. We
repeated this process for all days and states. We sampled from the same tail and partition for all days
and states, although the range from which we sample depends on the CI. In this case, all scenarios
are equally likely.

In Case II, we randomly generated a number to indicate which tail to sample from, where the top
25% of the CI (i.e., the right tail) has a 0.25 probability and the bottom 75% (i.e., the left tail) has a
0.75 probability to be chosen. If the right tail is chosen, we set the weight of the scenario to 0.25, and
to 0.75 otherwise. The rest of the procedure is similar to Case I. In order to determine the probability
of scenarios, we normalized the weights. Demand scenarios in Cases III-V are generated in the same
fashion as in Case II, where the only difference is on the probability of which tail to choose from,
which is determined by the sampling scheme described in the definition of the case.

For each of the four cases above, we generated 24 scenarios. Note that in each case, different
quantities for the random demand d̃ωn,t, t ∈ T , n ∈ N , and ω ∈ Ω, might be generated. An illustration
of the trajectory of demand scenarios over time is given in Figure ?? for the US and the States of
New York and California.

4.3 Ventilator Inventory, Stockpile and Production

Another key input to the planning model is the initial ventilator inventory. As of March 23, 2020,
before the rapid rise of COVID-19 cases in NY, FEMA had about 20,000 ventilators in reserve,
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(a) The US

(b) State of New York

(c) State of California

Figure 1: Summary of generated scenarios (Cases I-IV) for the US and the States of New York and
California, adapted from the data provided in [20]
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i.e., I = 20, 000. We used this for our model which suggests ventilator allocation decisions from
03/23/2020.

Estimates for the initial inventory of ventilators at different states were obtained from [6]. These
estimates are based on a hospital survey [26, 5]. The estimates for new ventilator productions were
obtained based on information provided at the US presidential briefings on 03/27/20 [7]. These esti-
mates suggest that the normal yearly ventilator production capacity is about 30,000 ventilator/year.
However, under the US Defense Production Act, with the participation of additional companies, pro-
duction of approximately 10,000 ventilators/month could be possible [7]. Using this information, for
the baseline case we assumed that the current daily ventilator production rate is 100 ventilators/day;
and it will be increased up to 300 ventilators/day starting April 15th.

4.4 Inventory Sharing Parameters

Recall that in the model, parameter γ is used to indicate the fraction of ventilators used to care
for non-COVID-19 patients. Additionally, a parameter τ is used in the model to estimate a state’s
willingness to share the fraction of their initial COVID-19-use ventilators. Similarly, the parameter
ρ is used to control the risk-aversion of a state to send their idle ventilators to FEMA for use in a
different state. We suppose that for all states n, n ∈ N , we have γn = γ, ρn = ρ, and τn = τ . In
order to systematically study the ventilator allocations and shortfalls, we fixed the value of ρ to 1.5,
and we used the following parameters: γ ∈ {50%, 60%, 75%} and τ ∈ {0%, 10%, 25%}.

4.5 Numerical Results

For each setting (γ, τ), we solved model (2) under Cases I–IV. A summary of results is reported in
Tables 1 and 2. We briefly describe the columns in these tables. Column “Total” in Table 1 denotes
the total shortage, and is calculated as

Total :=
∑
ω∈Ω

pω

[∑
t∈T

∑
n∈N

eωn,t

]
.

Quantity “Worst day” in column “Worst day (t)” denotes the shortage in the worst day, and is
calculated as

Worst day := max
t∈T

∑
ω∈Ω

pω

[∑
n∈N

eωn,t

]
,

where t denotes a day that the worst shortage happens, i.e., t ∈ arg maxt∈T
∑

ω∈Ω p
ω
[∑

n∈N e
ω
n,t

]
.

Moreover, quantity “Worst day-state” in column “Worst day-state (t)” denotes the shortage in the
worst day and state, and is calculated as

Worst day-state := max
t∈T

max
n∈N

∑
ω∈Ω

pωeωn,t,

where (t, n) ∈ arg maxt∈T arg maxn∈N
∑

ω∈Ω p
ωeωn,t.

We also analyzed the ventilators reallocation to/from different states for the setting (γ, τ) =
(0.75, 0), which is the most dramatic case we considered from the inventory and stockpile perspectives.
We report a summary of results in Table 2 under the two worst situations, Cases III (Mildy Worse than
Average) and IV (Severe). Column “Total inflow” in this table denotes the total incoming ventilators
to a state n ∈ N from FEMA, and is calculated as

Total inflow :=
∑
t∈T

∑
ω∈Ω

pωxωn,t.
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Similarly, column “Total outflow” denotes the total outgoing ventilators from a state n ∈ N to FEMA,
and is calculated as

Total outflow :=
∑
t∈T

∑
ω∈Ω

pωzωn,t.

Also, column “Net flow” represents the difference between “Total inflow” and “Total outflow”.

4.6 Discussion

The results in Table 1 suggest that when only up to 50% of a state’s ventilator inventory is used
for non-COVID-19 patients, FEMA’s current stockpile of 20,000 ventilators is sufficient for meeting
the demand imposed by COVID-19 patients. This ventilator use threshold increases to 60% of non-
COVID-19 patients, if states are willing to share up to 50% of their excess inventory with other states.

Table 1: Ventilators’ shortage summary under Cases I–IV.

(γ, τ) Case Total Worst day (t) Worst day-state (t, n)

(50%, 0%) I 112.21 22.12 (04/08/2020) 15.38 (04/09/2020, New York)
II 0.00 0.00 0.00
III 23.29 8.88 (04/12/2020) 3.12 (04/12/2020), Missouri)
IV 302.75 61.35 (04/12/2020) 25.40 (04/09/2020, New York)

(50%, 25%) I 0.00 0.00 0.00
II 0.00 0.00 0.00
III† 3.58 2.04 (04/10/2020) 1.96 (04/10/2020, New Jersey)
IV 0.00 0.00 0.00

(50%, 50%) I 0.00 0.00 0.00
II 0.00 0.00 0.00
III 0.00 0.00 0.00
IV 0.00 0.00 0.00

(60%, 0%) I 611.21 75.37 (04/10/2020) 41.67 (04/09/2020, New York)
II 95.95 22.15 (04/12/2020) 7.30 (04/09/2020, New York)
III 2525.46 288.38 (2020-04-09) 183.50 (04/09/2020, New York)
IV† 2000.80 296.75 (04/12/2020) 139.70 (04/09/2020, New York)

(60%, 25%) I† 16.42 3.67 (04/12/2020) 2.38 (04/08/2020, Michigan)
II 0.00 0.00 0.00
III 0.00 0.00 0.00
IV† 2072.70 253.30 (04/12/2020) 92.15 (04/08/2020, Michigan)

(60%, 50%) I 0.00 0.00 0.00
II 0.00 0.00 0.00
III† 157.00 24.79 (04/12/2020) 8.08 (04/07/2020, Michigan)
IV† 32.10 6.10 (04/12/2020) 4.30 (04/08/2020, Michigan)

(75%, 0%) I† 4395.46 428.08 (04/12/2020) 153.92 (04/07/2020, New York)
II† 2877.37 299.10 (04/12/2020) 119.83 (04/07/2020, New York)
III† 15748.62 1548.04 (04/12/2020) 642.54 (04/07/2020, New York)
IV† 28529.72 2693.77 (04/12/2020) 1237.10 (04/07/2020, New York)

(75%, 25%) I 4260.38 372.21 (04/12/2020) 169.96 (04/07/2020, New York)
II† 3197.37 305.92 (04/12/2020) 123.72 (04/07/2020, New York)
III† 15026.58 1368.63 (04/09/2020) 646.88 (04/07/2020, New York)
IV† 26990.43 2436.63 (04/12/2020) 1168.08 (04/07/2020, New York)

(75%, 50%) I† 3667.96 339.42 (04/12/2020) 138.46 (04/07/2020, New York)
II† 2336.97 217.83 (04/09/2020) 111.38 (04/07/2020, New York)
III† 13300.00 1244.92 (04/09/2020) 591.54 (04/07/2020, New York)
IV† 24828.15 2264.55 (04/09/2020) 1081.03 (04/07/2020, New York)

† Reached the one-hour time limit. The reported results correspond to the best integer solution
found.
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Table 2: Inflow and outflow of ventilators under Case III (Mildy Worse than Average) and Case IV
(Severe), with (γ, τ) = (0.75, 0).

Case III Case IV

State Total inflow Total outflow Net flow Total inflow Total outflow Net flow

Alabama 379.75 0.00 379.75 460.85 7.60 453.25
Alaska 382.62 0.54 382.08 295.22 0.00 295.22
Arizona 274.71 1.00 273.71 320.77 2.10 318.67
Arkansas 29.96 0.00 29.96 119.17 0.00 119.17
California 5755.87 360.62 5395.25 4343.08 304.20 4038.88
Colorado 240.87 0.00 240.87 397.42 0.00 397.42
Connecticut 514.83 0.00 514.83 526.57 84.20 442.37
Delaware 111.88 0.00 111.88 60.13 0.00 60.13
District of Columbia 171.25 0.00 171.25 179.23 0.00 179.23
Florida 72.58 0.00 72.58 21.15 0.00 21.15
Georgia 624.08 1.54 622.54 837.52 1.80 835.72
Hawaii 32.50 0.00 32.50 253.68 0.00 253.68
Idaho 178.42 0.00 178.42 159.13 1.00 158.13
Illinois 547.58 30.42 517.17 828.43 7.97 820.47
Indiana 1306.50 88.08 1218.42 1885.82 88.00 1797.82
Iowa 62.37 0.00 62.37 101.70 0.00 101.70
Kansas 78.67 0.12 78.54 163.38 0.00 163.38
Kentucky 353.17 0.00 353.17 155.55 0.00 155.55
King and Snohomish Counties, WA 1072.08 2.00 1070.08 1618.42 195.72 1422.70
Louisiana 1187.46 14.92 1172.54 1351.48 32.80 1318.68
Maine 139.58 7.50 132.08 128.20 0.10 128.10
Maryland 410.75 0.00 410.75 327.03 3.35 323.68
Massachusetts 1304.42 42.08 1262.33 1675.13 55.05 1620.08
Michigan 3003.46 365.92 2637.54 3181.92 462.43 2719.48
Minnesota 347.08 0.33 346.75 172.70 0.00 172.70
Mississippi 38.29 0.00 38.29 22.85 0.00 22.85
Missouri 2235.88 558.04 1677.83 2430.73 332.15 2098.58
Montana 98.62 0.00 98.62 72.12 0.00 72.12
Nebraska 6.67 0.00 6.67 19.72 0.00 19.72
Nevada 630.37 13.08 617.29 604.22 9.20 595.02
New Hampshire 95.21 0.04 95.17 118.00 0.53 117.47
New Jersey 2087.25 259.42 1827.83 2650.07 385.95 2264.12
New Mexico 69.50 0.00 69.50 53.87 0.30 53.57
New York 9140.00 2086.33 7053.67 7769.53 420.08 7349.45
North Carolina 376.58 3.54 373.04 358.77 0.00 358.77
North Dakota 467.04 60.71 406.33 64.17 0.00 64.17
Ohio 66.54 0.00 66.54 133.48 0.00 133.48
Oklahoma 99.54 0.00 99.54 80.67 5.85 74.82
Oregon 66.38 0.00 66.38 116.92 0.00 116.92
Other Counties, WA 1050.92 46.54 1004.38 1151.35 44.85 1106.50
Pennsylvania 138.21 0.00 138.21 149.15 6.65 142.50
Rhode Island 53.29 0.00 53.29 73.37 0.00 73.37
South Carolina 45.29 0.00 45.29 100.35 0.00 100.35
South Dakota 26.67 0.00 26.67 79.87 0.05 79.82
Tennessee 1058.75 507.54 551.21 480.03 0.00 480.03
Texas 768.62 0.33 768.29 331.80 0.00 331.80
Utah 74.33 0.00 74.33 94.27 0.00 94.27
Vermont 732.62 85.88 646.75 280.43 93.10 187.33
Virginia 2750.17 433.25 2316.92 1820.38 37.10 1783.28
Washington 144.71 0.00 144.71 216.08 0.00 216.08
West Virginia 6.17 1.46 4.71 3.95 0.00 3.95
Wisconsin 483.50 0.00 483.50 48.90 0.00 48.90
Wyoming 51.17 0.00 51.17 56.65 0.00 56.65
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However, if no such sharing is considered, then a moderate number of ventilators (approximately 300)
will be required beyond FEMA’s current stockpile to meet demand in Cases I-IV.

The ventilator availability situation gets worse in the case where 75% (or greater %) of the available
ventilators must be used for non-COVID-19 patients. In this case, in Case III (Mildy Worse than
Average) and Case IV (Severe) the inventory shortfall on the worst day (04/12/2020) is between
1,500-2,700. This shortfall decreases moderately to 1,250-2,250 if states are willing to share part of
their initial ventilator inventory.

5 Concluding Remarks

We have presented a model for procuring and sharing life-saving resources whose demand is stochastic.
The demand arising from different entities (states) peaks at different times, and it is important
to meet as much of this demand as possible to save lives. Each participating entity is risk averse
to sharing their excess inventory at any given time, and this risk-aversion is captured by using a
safety threshold parameter. Specifically, the developed model is applicable for the current COVID-19
pandemic, where many US states are in dire need of mechanical ventilators to provide life-support
to severely- and critically-ill patients. Computations were performed using realistic ventilator need
forecasts and availability under a wide combination of parameter settings.

Our findings suggest that the fraction of currently available ventilators that are to be used for non-
COVID-19 patients strongly impacts a state/national ability to meet demand arising from COVID-19
patients. When more than 40% of the existing inventory is available for COVID-19 patients, national
stockpile is sufficient to meet the demand. However, if less than 25% of the existing inventory is
available for COVID-19 patients, the current national stockpile and the anticipated production may
not be sufficient under extreme demand scenarios. As expected, the magnitude of this shortfall
increases when one considers more and more extreme demand scenarios.

Overall, the model developed in this paper can be used as a planning tool/framework by state
and federal agencies in planning for the ventilator acquisition to meet national demand. The results
reported in this paper can provide a guide to states in their own planning for the ventilator needs. We,
however, emphasize that these results are based on certain modeling assumptions. This include the
process of demand forecast scenario generation, estimates of initial ventilator inventory, and future
production quantities. Each one of these, as well as other model parameters, can be changed in
the model input to obtain more refined results. Nevertheless, an important finding is that a state’s
willingness to share its idle inventory can help address overall shortfall.

While this paper has focused on ventilator needs in the US, such a model can also be adapted
for use in international supply-chain coordination across countries of equipment such as ventilators as
COVID-19 is expected to have different peak dates and demand cycles in other counties, and one or
two additional disease spread cycles are likely till an effective vaccine becomes available.

In concluding, we point out that the model developed in this paper has a one-time planning
decision, i.e., there are no “wait-and-see” decisions in the model. One can also formulate the ventilator
allocation problem as a time-dynamic multistage stochastic program, where the decision maker can
make recourse decisions as time evolves based on the information available so far on the stochastic
demands and past decisions. We are currently working on such an extension.
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