Using influenza surveillance networks to estimate state-specific case detection rates and forecast SARS-CoV-2 spread in the United States
View ORCID ProfileJustin D. Silverman, View ORCID ProfileNathaniel Hupert, View ORCID ProfileAlex D. Washburne
doi: https://doi.org/10.1101/2020.04.01.20050542
Justin D. Silverman
1College of Information Science and Technology, Penn State University
2Department of Medicine, Penn State University
3Medical Scientist Training Program, Duke University
Nathaniel Hupert
4Weill Cornell Medicine, Cornell University
5New York-Presbyterian Hospital
Alex D. Washburne
6Department of Microbiology and Immunology, Montana State University
Data Availability
All simulation and analysis files will be made available upon request
Posted April 14, 2020.
Using influenza surveillance networks to estimate state-specific case detection rates and forecast SARS-CoV-2 spread in the United States
Justin D. Silverman, Nathaniel Hupert, Alex D. Washburne
medRxiv 2020.04.01.20050542; doi: https://doi.org/10.1101/2020.04.01.20050542
Subject Area
Subject Areas
- Addiction Medicine (395)
- Allergy and Immunology (707)
- Anesthesia (198)
- Cardiovascular Medicine (2905)
- Dermatology (249)
- Emergency Medicine (435)
- Epidemiology (12674)
- Forensic Medicine (10)
- Gastroenterology (822)
- Genetic and Genomic Medicine (4530)
- Geriatric Medicine (411)
- Health Economics (722)
- Health Informatics (2895)
- Health Policy (1065)
- Hematology (382)
- HIV/AIDS (917)
- Medical Education (422)
- Medical Ethics (115)
- Nephrology (466)
- Neurology (4292)
- Nursing (233)
- Nutrition (630)
- Oncology (2249)
- Ophthalmology (639)
- Orthopedics (257)
- Otolaryngology (324)
- Pain Medicine (274)
- Palliative Medicine (83)
- Pathology (493)
- Pediatrics (1190)
- Primary Care Research (491)
- Public and Global Health (6877)
- Radiology and Imaging (1514)
- Respiratory Medicine (912)
- Rheumatology (433)
- Sports Medicine (381)
- Surgery (481)
- Toxicology (60)
- Transplantation (208)
- Urology (178)