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Abstract

Detection of SARS-CoV-2 infections to date has relied on RT-PCR testing. However, a10

failure to identify early cases imported to a country, bottlenecks in RT-PCR testing, and
the existence of infections which are asymptomatic, sub-clinical, or with an alternative pre-
sentation than the standard cough and fever have resulted in an under-counting of the true
prevalence of SARS-CoV-2. Here, we show how publicly available CDC influenza-like illness
(ILI) outpatient surveillance data can be repurposed to estimate the detection rate of symp-15

tomatic SARS-CoV-2 infections. We find a surge of non-influenza ILI above the seasonal
average and show that this surge is correlated with COVID case counts across states. By
quantifying the number of excess ILI patients in March relative to previous years and compar-
ing excess ILI to confirmed COVID case counts, we estimate the symptomatic case detection
rate of SARS-CoV-2 in the US to be 1/100 to 1/1000. This corresponds to approximately20

10 million presumed symptomatic SARS-CoV-2 patients across the US during the week start-
ing on March 15, 2020. Combining excess ILI counts with the date of onset of community
transmission in the US, we also show that the early epidemic in the US was unlikely to be
doubling slower than every three days. Together these results suggest a conceptual model
for the COVID epidemic in the US in which rapid spread across the US are combined with25

a large population of infected patients with presumably mild-to-moderate clinical symptoms.
We emphasize the importance of testing these findings with seroprevalence data, and discuss
the broader potential to repurpose outpatient time series for early detection and understanding
of emerging infectious diseases.

1 Introduction30

The ongoing SARS-CoV-2 pandemic continues to cause tremendous morbidity and mortality
around the world [1, 2]. Regional preparation for the pandemic requires forecasting the growth
rate of the epidemic, the timing of the peak, the demand for hospital resources, and the degree
to which current policies may curtail the epidemic, all of which benefit from accurate estimates
of the true prevalence of the virus within a population [3]. Confirmed cases are thought to be35

underestimates of true prevalence due to some unknown combination of patients not reporting for
testing, testing not being conducted, and false-negative test results. Estimating the true prevalence
informs the scale of upcoming hospital, ICU and ventilator surges, the proportion of individuals
who are susceptible to contracting the disease, and estimates of key epidemiological parameters
such as the epidemic growth rate and the fraction of infections which are sub-clinical.40

The current literature suggests that the predominant symptoms associated with COVID are
fever, cough and sore-throat; that is, patients often present with an influenza-like illness (ILI) yet
test negative for influenza [4, 5]. With many COVID patients having a similar presentation as
patients with influenza, existing surveillance networks in place for tracking influenza could be used
to help track COVID.45

Here, we quantify background levels of non-influenza ILI over the past 10 years and identify
a recent surge of non-influenza ILI starting the first week of March, 2020. This surge of excess
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ILI correlates with known patterns of SARS-CoV-2 spread across states within the US, suggesting
the surge is unlikely to be due to other endemic respiratory pathogens, yet is orders of magnitude
larger than the number of confirmed COVID cases reported. Together this suggests that the50

true prevalence of SARS-CoV-2 within the US is much larger than currently appreciated and
that even the highest symptomatic case detection rates are likely lower than 3% corresponding
to approximately 9 million new ILI cases due to SARS-CoV-2. Our analysis provides empirical
corroboration of previous hypotheses of substantial undocumented cases [6] yet places the estimated
undocumented case rate an order of magnitude higher than prior reports [6]. Moreover, these55

updated prevalence estimates predict that epidemic doubling times greater than 3.5 days [7, 8]
would be unable to account for the magnitude of the ILI surge. We test our hypothesis of sub
3-day doubling times in the US by analyzing both state and national COVID surveillance data,
finding a broad agreement of doubling time less than 3.5 days in both confirmed COVID case
counts and documented COVID deaths. Our findings highlight probable trajectories of the US60

epidemic and provide evidence for a conceptual model for COVID spread in the US in which more
rapid spread than previously reported is coupled with a larger undiagnosed population to give rise
to currently observed trends.

2 Results

2.1 Influenza like illness surge65

We identified excess ILI cases by first subtracting cases due to influenza and then subtracting the
seasonal signal of non-influenza ILI (Figure 1). Many states, including Washington, New York,
Oregon, Pennsylvania, Maryland, Colorado, New Jersey, and Louisiana, have had a recent surge
in number of non-influenza ILI cases far in excess of seasonal norms. For example, in the second
week of March, 2020, Oregon saw 50% higher non-influenza ILI than it had ever seen since the70

inception of the ILINet surveillance system within the US. We find that with 95% probability
approximately 4% of all outpatient visits in Oregon during this time were for ILI that could not be
explained by either influenza or the normal seasonal variation of respiratory pathogens. We find
that as the seasonal surge of endemic non-influenza respiratory pathogens declines, this excess ILI
correlates more strongly with state-level patterns of newly confirmed COVID cases suggesting that75

this surge is a reflection of ILI due to SARS-CoV-2 (Pearson ρ = 0.8 and p < 10−10 for the last two
weeks; Figure S1). To equate this surge to state-wide or national case counts, we assume that the
average number of patients seen per week by sentinel providers is representative of their respective
states that week. Using this assumption, the total excess non-influenza ILI across the US was
approximately 9.2 million excess individuals in the week starting March 15th, 2020 compared to80

the same week in 2019 (95% credible interval of 8.0-10.1 million).

2.2 Symptomatic Case Detection Rate
The rate at which SARS-CoV-2+ patients with ILI symptoms are identified as having COVID varies
by state and over time (Figure S2). Our estimated symptomatic case detection rates have been
increasing over the month of March, which can be expected given increases in testing capacity across85

the US since the February 28 detection of community transmission in Washington State. For the
latest week ending March 14, COVID cases in the states with the highest estimated symptomatic
case detection rate (Washington, Nevada, and Michigan) are only capturing approximately 1% of
ILI surges in those states (Figure 2). Across the entire US we find the average symptomatic case
detection rate to be 0.75% (95% credible interval 0.59%-1.0%).90

2.3 Epidemic Growth Rates and Clinical Rates
The true prevalence of SARS-CoV-2 is unknown. However, if we assume the excess non-influenza
ILI is almost entirely due to SARS-CoV-2, an assumption that becomes more valid as the virus
becomes more prevalent, we can use the excess non-influenza ILI to understand the constraints
and mutual dependence of exponential growth rates, the rate of subclinical infections, and the time95

between the onset of infectiousness and a patient reporting as ILI Figure 3. With a January 15
start date of the US epidemic [9], allowing early stochasticity from start-time to the onset of regular
exponential growth, we find that it’s impossible to explain the ILI surge with an epidemic whose
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doubling time is longer than 3.5-days, as such slow growth scenarios fail to reach the observed
excess ILI even when accounting for possible asymptomatic cases.100

We tested our hypothesized constraint that doubling times across the US would be shorter than
3.5 days by analyzing the doubling time confirmed COVID cases and deaths due to COVID. We
find that both confirmed case data and COVID fatality data support our estimated doubling-time
bound derived from ILI data. Across the entire US, the doubling rate for deaths due to COVID
is 2.520 days (±0.001, p-value of test that doubling rate is less than 3.5 days approximately 0)105

and the doubling time for confirmed cases is 2.455 days (±0.001, p-value of test that doubling
rate is less than 3.5 days approximately 0). Under a 4-day lag from the onset of infectiousness to
reporting as ILI, these doubling times capture the ILI surge with clinical rates of 4.4% and 3.3%,
respectively.

3 Discussion110

Here we use outpatient ILI surveillance data from around the US to estimate the prevalence of
SARS-CoV-2+. We find a clear, anomalous surge in ILI outpatients during the COVID epidemic
that correlates with the progression of the epidemic across the US. The surge of non-influenza ILI
outpatients is much larger than the number of confirmed case in each state, providing evidence
of large numbers of symptomatic probable COVID cases that remain undetected. Moreover, this115

excess ILI surge allows us to develop a bound for the slowest epidemic doubling time, and the lowest
clinical rate that would still be consistent with the observed surge. We test whether or not observed
epidemic doubling times are shorter than our upper-bound and find that the observed doubling
time for both confirmed cases and deaths is faster than 3 days within the US. Together, the surge
in ILI and analysis of doubling times suggest that SARS-CoV-2 has spread rapidly throughout the120

US since it’s January 15th start date and is likely accompanied by a large undiagnosed population
of potential COVID outpatients with presumably milder clinical symptoms than would be thought
based on prior studies of SARS-CoV-2+ inpatients.

Our study has several limitations. First, the observed ILI surge may represent more than
just SARS-CoV-2 infected patients. A second epidemic of a non-seasonal pathogen that presents125

with ILI or changing patient behaviors causing higher rates of presentation for typical seasonal
ILI could confound our estimates of ILI due to SARS-CoV-2. Alternatively, it is also possible
that our use of ILI data has underestimated the prevalence of SARS-CoV-2 within the US. While
early clinical reports focused on cough and fever as the dominant features of COVID [5], other
reports have documented digestive symptoms as the complaint affecting up to half of patients130

with laboratory-confirmed COVID [11], and alternative presentations, including asymptomatic or
unnoticeable infections, could result in ILI surges underestimating SARS-CoV-2 prevalence.

Additionally, our models have several limitations. First we assume that ILI prevalence within
states can be scaled to case counts at the state level. This is based on the assumption that
the average number of cases seen by sentinel providers in a given week is representative of the135

average number of patients seen by all providers within that state in a given week. Errors in
this assumptions would cause proportional errors in our estimated case counts and symptomatic
case detection rate. Second, our epidemic models are crude, US-wide SEIR models varying by
growth rate alone and as such do not capture regional variation or intervention-induced changes
in transmission. Our models were used to estimate growth rates from ILI for testing with COVID140

data and to estimate the mutual dependency of growth rate, the lag between the onset of infection
and presentation to a doctor, and clinical rates; these models were not intended to be fine-grained
forecasts for municipality hospital burden and other common goals for COVID models. Finer
models with regional demographic, and case-severity compartments are needed to translate our
range of estimated prevalence, growth rate, and clinical rates into actionable models for public145

health managers.
While an ILI surge tightly correlated with COVID case counts across the US strongly suggests

that SARS-CoV-2 has potentially infected millions in the US, laboratory confirmation of our hy-
potheses are needed to test our findings and guide public health decisions. Our conceptual model
for the epidemic with the US makes clear and testable predictions. Our model would suggest rela-150

tively high rates of community seropositivity in states that have already seen an ILI surge. A study
of ILI patients from mid-march who were never diagnosed with COVID could test our model’s pre-
dictions about the number and regional prevalence of undetected COVID cases presenting with ILI
during that time. If seroprevalence estimates are consistent with our estimated prevalence from
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these ILI analyses, it would strongly suggest lower case severity rates for COVID and indicate155

the value of ILI and other public time-series of outpatient illness in facilitating early estimates
of crucial epidemiological parameters for rapidly unfolding, novel pandemic diseases. Since not
all novel pandemic diseases are expected to present with influenza-like symptoms, surveillance of
other common presenting illnesses in the outpatient setting could provide a vital tool for rapidly
understanding and responding to novel infectious diseases.160

4 Methods
In what follows, let i index state i and let t index week t (with t = 0 referring to October 3,
2010; the start of ILINet surveilance). Our analysis centers around decomposing the probability
of testing positive for COVID, δ into the product of the symptomatic case detection rate for ILI
patients, δs, and the probability that a COVID patients presents to the clinic with ILI, δc.165

4.1 Data Sources
Since 2010 the CDC has maintained ILINet for weekly influenza surveillance. Each week approx-
imately 2,600 enrolled providers distributed throughout all 50 states as well as Puerto Rico, the
District of Columbia and the US Virgin Islands, report the total number of patient encounters nit
and the total number of which met criteria for influenza-like illness (ILI – defined as a temperature170

100F [37.8C] or greater, and a cough or sore-throat without a known cause of than influenza; yit)
[12]. Let dit denote the number of reporting providers in state i in week t. For scale, in the
2018-2019 season ILINet reported approximately 60 million outpatient visits. Coupled to these
data are weekly state-level reports from clinical and public health labs detailing the number of
patient samples tested for influenza nfluit as well as the number of these samples which are positive175

for influenza yfluit . Therefore ILINet data can be thought of as a weekly state-level time-series
representing the superimposed prevalence of various viruses which can cause ILI. ILINet data was
obtained through the CDC FluView Interactive portal [13].

In addition to ILINet data, US State population data for the 2020 year was downloaded from
https://worldpopulationreview.com/states/. The number of primary care providers in each state180

per 100,000 residents b was obtained from Becker’s Hospital Review [14]. COVID confirmed case
counts were obtained from The New York Times’ database maintained at https://github.com/nytimes/covid-
19-data. This dataset contains the daily cumulative confirmed case count for COVID for each state
zil for day l.

4.2 Data Processing185

Within the ILINet dataset, New York City and New York were summed into a combined New York
variable representing both New York city and the surrounding state. Due to incomplete data in one
or more of the data-sources described above the Virgin Islands, Puerto Rico, The Commonwealth
of the Northern Mariana Islands, and Florida were excluded from subsequent analysis. In addition,
daily cumulative confirmed COVID cases were converted to weekly counts of new cases by

z̃it =
∑
l∈t

zit − zi(t−1).

4.3 Extracting non-influenza ILI signal
To subtract influenza signal from yit we assume that the population of patients with ILI within a
state are the same population that are potentially tested for influenza. This assumption allows us
to calculate the number of non-influenza ILI cases as

ỹit =

(
1− yfluit

nfluit

)
yit.

The resulting time-series ỹit are shown in Figure S4.
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4.4 Identifying ILI Surges
We identified ILI surges in ỹit by training a model on ỹit for all data prior to July 21, 2019. We then
used this model to predict the prevalence of non-influenza ILI (π̂it) for dates after and including190

July 21, 2019. We calculated the ILI surge as the difference between the observed proportion of
non-influenza ili ỹit/nit and π̂it.

More specifically, to account for variation in the number of reporting providers, we trained the
following binomial logistic-normal model

ỹit ∼ Binomial(πit, nit) (1)

πit =
exp(ηit)

1 + exp(ηit)
(2)

ηit ∼ N(λi(t), σ
2) (3)

λi(t) ∼ GP(θ, σ2Γ) (4)

σ2 ∼ InverseGamma(υ, ξ) (5)
θ(t) = θ (6)

Γ(t, t+ s) = α exp

(
−s2

2ρ2

)
(7)

We made the following prior specifications: We set the bandwidth parameter for the squared
exponential kernel as ρ = 3 representing a strong local correlation in time that died off sharply
beyond 3 weeks, α = 1 representing a signal to noise ratio of of approximately 1, υ = 1 and195

ξ = 1 representing weak prior knowledge regarding the overall scale of variation in the the latent
space. Finally, we set θ = −2.197 representing an off-season prevalance of 0.1% non-influenza ILI.
Samples from the posterior predictive density p(πit|yi1, . . . , ỹiT , ni1, . . . , niT ) were collected using
the function basset from the R package stray [15]; a total of 4000 such samples were collected in
this analysis. We define the prevalence of non-influenza ILI in excess of normal seasonal variation200

as y∗it = ỹit/nit − π̂it.
To exclude variation attributable to unseasonably high rates of other ILI causing viruses (such

as the outbreak of RSV in Washington state in November-December 2019) we only investigate y∗it
for sets of 1 or more weeks (t, t+ 1, . . . , t+K) such that the following criteria are met:

1. the 2nd order moving average of y∗i(t+k) < y∗i(t+k+1) must remain positive for all K205

2. at least one week in (t, t+ 1, . . . , t+K) corresponds to a week after February 23, 2020

Together these criteria for attributing excess non-influenza ILI to COVID reflect our assumption
that we expect COVID must be increasing within communities since Febuary 23, 2020.

4.5 Calculating scaling factors to relate ILINet data to COVID case
numbers210

As COVID new case counts z̃it represent the number of confirmed cases in an entire state and
ILINet data represents the number of cases seen by a select number of enrolled providers, we must
estimate scaling factors wi to enable comparison of ILINet data to confirmed case counts at the
who state level. Let π∗it denote the probability that a patient with ILI in state i has COVID as
estimated from ILINet data. Let pi denote the population of state i and let bi denote the number
of primary care providers per 100,000 people in state i. We simulated the number of COVID cases
(excess ILI meeting criteria above) as

λit ∼ Poisson
(
nit
dit

)
(8)

y†it =
bipi
105

λitπ
∗
it (9)

That is we translate the inferred proportion of individuals with ILI due to COVID to the state
level by considering the average number of patients seen by each provider in the study (nit

dit
) and

the number of primary care providers in state i ( bipi

105 ). Notably to account for potential errors
in these scaling factors, we add propogate uncertainty into our calculation by using Monte-Carlo
simulation of the average number of patients seen by each provider in the study.215
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4.6 Estimating symptomatic case detection rates
Assuming that the majority of SARS-CoV-2 testing within the US has been directed by patient
symptoms[16], the pool of newly diagnosed SARS-CoV-2+ patients is a subset of the pool of SARS-
CoV-2+ patients who are identified as having ILI. Therefore, we calculate the probability that a
symptomatic SARS-CoV-2+ patient will be identified as having SARS-CoV-2 as δsit = z̃ij/π

∗
it220

(Figure S2).

4.7 Accounting for asymptomatic patients
To account for the contribution of assymptomatic SARS-CoV-2+ patients we use a recent analysis
of cohort surveillance from the Diamond Princess [10]. Monte-Carlo simulations were used to
propagate error from our uncertainty regarding potential asymptomatic infections affecting the225

clinical rate δc into our calculation of posteriors for epidemic trajectories. To match posterior
estimates from Mizumoto et al.[10], we use quantile matching to parameterize δc ∼ Beta(α, β) to
achieve a mean of .179 and a 95% probability set of (.155, .202). We include this contribution to
the overall detection rate δit as δit = δsδcit.

4.8 Epidemic growth rates and clinical rates230

For a given epidemic growth rate, the clinical rate was estimated by comparing the excess ILI
across the US y†t =

∑
i y
†
it to the number of infections one might expect under simulated epidemic

parameterized by the growth rate. An SEIR model,

Ṡ = ζ − βSI − ωbS (10)

Ė = βSI − γE − ωbE (11)

İ = γE − νI − ωiI (12)

Ṙ = νI − ωbR (13)

was parameterized for the US to a timescale of units days by setting ζ = 3.23×10−5 corresponding
to a crude birth rate of 11.8 per 1000 per year, a baseline mortality rate ωb = 2.38 × 10−7

corresponding to 8.685 per 1000 per year, an infectious mortality rate ωi = 2.62×10−7, incubation
period γ−1 of 3 days, infectious period ν−1 of 10 days, and β parameterized to ensure I(t) grew with
a specified exponential growth rate early in the epidemic. A total of 14,000 simulations were run,235

each having a unique exponential growth rates, r, drawn uniformly from r ∈ [log(2)/7, log(2)/1.5],
reflecting doubling times in the range of 1.5 ≤ t2 ≤ 7 days.

Each simulation was initialized with (S,E, I,R, t) = (3.27 × 108, 0, 1, 0, 0) where time 0 was
January 15. To simulate the stochastic time it took from the first case to the onset of regular
exponential growth, a Gillespie algorithm was used from the initial conditions until either t = 50240

(March 5, 2020) or E(t) + I(t) = 100. The output from Gillespie simulations was input as an
initial value into the system of differential equations and integrated until the August 5, 2020. The
number of infected individuals on a given day was the last observed I(t) for that day, and a weekly
pool of infected patients was computed by a moving sum over the number of infected individuals
every day for the past week, Iw(t) =

∑k=6
k=0 It−k.245

Defining Yt =
∑

i y
†
it as the national excess ILI, the clinical rate was

δs(td) =
Yt

Iw(t−td)
(14)

for a given time delay td it takes from the onset of infectiousness to a patient reporting to the
doctor with ILI. An estimate of clinical rate as a function of exponential growth rate was obtained
by a generalized additive model log(δc) = s(log(r)))+ε where s(.) denotes a piece-wise cubic spline.

Simulated epidemic trajectories were matched to posterior samples of Yt through kernel density
estimation. For t corresponding to the weeks starting on March 8 and 15, 2020, the density each
simulated trajectory I(t) was evaluated against the density

vt ∼ log-normal(0, 0.1) (15)
p(I(t)|Yt + vt) (16)
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where noise vt was added to account for additional sources of error in our calculations of scaling250

factors, and p is a density estimated via kernel density estimation. The two weeks in March were
chosen as the ILI surge had the largest correlation with covid case counts during these two weeks.

4.9 Estimating Doubling Times
Doubling times for confirmed cases and deaths due to COVID were estimated using Poisson re-
gression with a log-link with an intercept and a covariate for the day of the epidemic. Poisson255

regression parameters r were converted to doubling times d using d = log(2)/r.
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Figure 1: The excess non-influenza ILI is extracted from all non-influenza ILI by identifying the
amount of non-influenza ILI in excess of seasonal norms (blue point and error bars represent the
posterior median and 95% credible set for ILI not explained by non-COVID endemic respiratory
pathogens). A binomial logistic-normal non-linear regression model was fit to non-influenza ILI
data from 2010-2018 (grey lines). The model predicted the expected amount of non-influenza ILI
in the 2019-2020 season (grey ribbons represent the 95% and 50% credible sets; the black line
represents the posterior median). Observed non-influenza ILI outside of the 95% credible set was
attributed to COVID based on the observed correlation across states with newly confirmed COVID
case rates (Figure S1). A number of regions are not represented due to insufficient laboratory
influenza data to complete our analysis (see Methods for full details).
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Figure 2: Assuming the non-influenza excess ILI for the week starting March 15 consists entirely
of patients with COVID, the probability that a symptomatic COVID+ patient will be detected
varies by state but even the highest symptomatic case detection rates are likely below 3%.In Figure
S2 we show how the symptomatic case detection rate varies over time across states.
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Figure 3: (a) 14,000 random SEIR models predict a range of current number of COVID cases in
the US; less transparant trajectories are better agreements with the ILI surge under an assumption
that 17% of infections are subclinical [10]. The inset plot shows COVID forecasts comparable to
weekly ILI counts (red dots) by summing I(t) over the prior week. A t2 = 3.5 day doubling time
(solid black lines) is the slowest possible growth rate which can account for the observed data
with a 4-day lag between the onset of infectiousness and reporting as ILI. Faster doubling times,
such as t2 = 1.6 (dashed black lines) can explain observed ILI data but require a larger rate of
subclinical infections to do so. (b) Different growth rates imply different clinical rates in order to
account for the excess ILI surge, and the relationship between growth rate and clinical rate varies
with the unknown time it takes from the onset of infectiousness to presentation an ILI outpatient.
The estimated 2.4-2.5 day doubling times across the US, for example, produce an estimated 3-4%
clinical rate.
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Figure 4: Doubling times for deaths due to COVID vary by states. Estimated doubling time and
standard error are plotted. The median doubling for states is shown in red and falls below our
bound of 3.5 days. Doubling times of confirmed cases is shown in Figure S3.
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Figure S1: Excess ILI correlates strongly with patterns of newly confirmed COVID cases. This
correlation is strongest for the last two weeks of data, when other seasonal respiratory pathogens
are at their lowest.
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Figure S2: Since March 1, 2020, the case-detection of symptomatic COVID patients has increased
by a factor of ≈ 100. This likely represents increased awareness of community transmission within
the US combined with increased availability of testing. Still, the symptomatic case detection rate
remains below 1% for most states with many states with detection rates closer to 0.1%.
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Figure S3: Doubling times of Confirmed Cases vary by states.... Estimated doubling time and
standard error are plotted. The median doubling for states is shown in red and falls below our
bound of 3.5 days.
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Figure S4: Once the signal attributable to influenza is extracted, the proportion of Patient encoun-
ters in which patient had non-influenza ILI (ỹit/nit) displays strong seasonal trends. The most
notable deviations from these trends occur around Febuary to March of the 2019-2020 flu season
and align with the onset of the COVID epididemic within the US.
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