Sustainable social distancing through facemask use and testing during the Covid-19 pandemic

Gerardo Chowell2*, Diego Chowell1, Kimberlyn Roosa2, Ranu Dhillon3, Devabhaktuni Srikrishna4*

1 Memorial Sloan Kettering, New York, New York
2 Department of Population Health Sciences, Georgia State University School of Public Health, Atlanta, Georgia
3 Division of Global Health Equity, Brigham and Women's Hospital Boston, MA 02115
4 Patient Knowhow, Inc.

*Correspondence to: Gerardo Chowell (gchowell@gsu.edu) or Devabhaktuni Srikrishna (sri.devabhaktuni@gmail.com)

Recent reports have documented substantial proportions of asymptomatic or mildly symptomatic Covid-19 infections that may also be infectious [1-3] as well as the potential role of respiratory droplets and contaminated surfaces in driving SARS-CoV-2 transmission [4]. While facemask use is promoted in healthcare settings as part of infection control protocols [5-8], its use during the COVID-19 pandemic varies across countries [9,10]. As the COVID-19 pandemic rages on, widespread facemask use has been recently recommended by Dr. George Gao, the director-general of the Chinese Center for Disease Control and Prevention (CDC) [11].

Any plan for stopping the ongoing 2019-nCov pandemic must be based on a quantitative understanding of the proportion of the population that needs to be protected by effective control measures such that each infected person infects no more than one other person on average (the effective reproductive number, \(R < 1 \)), at which point transmission contracts and eventually burns out. Based on a modeling study, we show that the pandemic may be readily controllable through a combination of testing, treatment if necessary, and self-isolation after testing positive (TTI) of symptomatic individuals together with social protection (e.g., facemask use, handwashing).

We used an SEIR-type model incorporating asymptomatic but infectious individuals (40%) [1-3] to investigate how individual protective behaviors, different levels of testing, and isolation influence the transmission and control of the COVID-19 pandemic (Appendix). When the basic reproduction number, \(R_0 \), is 2.4 [12], 65% effective social protection alone (35% of the unprotected transmission) brings the \(R \) below 1 (Appendix). Alternatively, 20% effective social protection brings the reproduction number below 1.0 so long as 75% of the symptomatic population is covered by TTI within 12 hours of symptom onset (Figure A and Appendix). Even with 20% effective social protection, TTI of 1 in 4 symptomatic individuals can substantially “flatten the curve”, cutting the peak daily incidence in half (Figure B, Appendix).
Figure. (A) Total number of infections in a population of 10 million individuals for varying levels of social protection and testing (TTI) at 12 hours testing delay and assuming 40% asymptomatic transmission. (B) Daily incidence in a population of 10 million individuals for 20% effectiveness of social protection and varying levels of testing (TTI) at 12 hours testing delay and assuming 40% asymptomatic transmission. Initial conditions were set as follows, susceptible individuals: 9,943,400; symptomatic individuals who underwent testing: 40,000; asymptomatic individuals: 16,000; and deceased individuals: 600.

References

10. Normile D. Coronavirus cases have dropped sharply in South Korea. What’s the secret to its success? Science 2020.
Supplementary Appendix to

Sustainable social distancing through facemask use and testing during the Covid-19 pandemic

Basic reproduction number, R_0

The basic reproduction number, R_0, is defined as the average number of secondary cases generated by primary infectious individuals during the early transmission phase in a completely susceptible population and in the absence of control interventions. This is a key metric to gauge the intensity and type of interventions that need to be implemented in order to bring the epidemic under control. For the ongoing epidemic of 2019-nCov, R_0 has been estimated at 2.4 (3.9, upper bound of 95% confidence interval).

Reproduction number with testing, isolation, and social protection

The reproductive number, R, quantifies the potential for infectious disease transmission in the context of a partially susceptible population. When $R > 1$, infection may spread in the population, and the rate of spread is higher with increasingly high values of R. If $R < 1$, infection cannot be sustained and is unable to generate an epidemic. As there are seven classes contributing to new infections, the reproduction number is the sum of the contributions of the infectious classes:

The contributions of the individual compartments are as follows

\[
R = R_E^2 + R_A^A + R_A^s + R_I^a + R_I^n + R_I^s + R_J
\]

\[
R_E^2 = \beta \frac{q_e}{\kappa_2}
\]

\[
R_A^A = \beta \frac{\rho_a(1 - n_s)q_aq}{\gamma_1}
\]

\[
R_A^s = \beta \frac{\rho_a n_s q_a}{\alpha}
\]

\[
R_I^a = \beta \frac{\rho_a n_s h_a q_a}{\gamma_2}
\]
Compartmental transmission models are commonly used in infectious disease epidemiology as a population-level modeling approach that subdivides the population into various classes based on epidemiological status. Compartmental models are specified by a set of parameters and ordinary differential equations that track the progression of the number of individuals within each state. Here, we developed an extension of the commonly used SEIR transmission model for modeling the transmission of COVID-19.

Individuals within the model are classified as susceptible (S), latent (E₁), partially infectious but not yet symptomatic (E₂), asymptomatic and will not be tested (Aₐ), asymptomatic and will be tested and will be isolated (Aₛ), infectious and will not be tested (Iₐ), infectious and will be tested and isolated (Iₛ), hospitalized/isolated infectious (J), isolated asymptomatic (Jₐ), recovered (R), and deceased (D). Constant population size is assumed, so \(N \) is equal to the sum of individuals in all of the compartments. Further, seven classes can contribute to new infections: E₂, Aₐ, Aₛ, Iₐ, Iₛ, J, Jₐ. Susceptible individuals move to E₁ at rate \(\beta [qₐE₂(t) + qₐqₐAₐ(t) + qₐAₐ(t) + q₁n(t) + q₁J(t) + h_JJₐ(t) + h_J(t)]/N \), where \(\beta \) denotes the overall transmission rate. The transmission rate, \(\beta \), was calibrated based on the baseline value of the basic reproductive number, \(R₀ = 2.4 \), which had been calculated.

Individuals in E₁ progress to E₂ at rate \(\kappa₁ \). Individuals from E₂ are partially infectious, with relative transmissibility \(qₑ \), and progress at rate \(\kappa₂ \), where a proportion \(ρₐ \) become asymptomatic and partially infectious (relative transmissibility \(qₐ \)), and \(1 - ρₐ \) become fully infectious. Among the proportion \(ρₐ \) who become asymptomatic, \(nₐ \) will be tested, while \(1 - nₐ \) will be undetected. Further, among the proportion \(1 - ρₐ \) that become fully infectious, \(ρₛ \) will be tested, while \(1 - ρₛ \) will be undetected. Asymptomatic individuals who are not tested and symptomatic individuals wear personal protective equipment (PPE) (such as wearing masks in public, handwashing, etc) and thus have relative transmissibility \(q \), which is proportional to the level of effectiveness of PPE. Individuals within Aₐ and Iₐ classes (who are not tested) recover at rate \(γ₁ \). Those who are tested
(I_s and A_s) will progress to the hospitalized and isolated class at diagnosis rate α, where relative transmission within hospitals and isolated places, h, can occur. However, we assume perfection isolation in our analyses. Individuals who are hospitalized and isolated progress to the recovered class at rate γ_2 or to the deceased class at rate δ.

Therefore, the system is defined by the following system of non-linear differential equations:

\[
\dot{S}(t) = -\beta [q_e E_2(t) + q_a q A_n(t) + q_a A_s(t) + q I_n(t) + q I_s(t) + h_a J_a(t) + h J(t)] / N \\
\dot{E}_1(t) = \beta [q_e E_2(t) + q_a q A_n(t) + q_a A_s(t) + q I_n(t) + q I_s(t) + h_a J_a(t) + h J(t)] / N - \kappa_1 E_1(t) \\
\dot{E}_2(t) = \kappa_1 E_1(t) - \kappa_2 E_2(t) \\
\dot{A}_n(t) = \kappa_2 \rho_a (1 - n_s) E_2(t) - \gamma_1 A_n(t) \\
\dot{A}_s(t) = \kappa_2 \rho_a n_s E_2(t) - \alpha A_s(t) \\
\dot{J}_a(t) = \alpha A_s(t) - \gamma_2 J_a(t) \\
\dot{I}_n(t) = \kappa_2 (1 - \rho_a)(1 - \rho_s) E_2(t) - \gamma_1 I_n(t) \\
\dot{I}_s(t) = \kappa_2 (1 - \rho_a) \rho_s E_2(t) - \alpha I_s(t) \\
\dot{J}(t) = \alpha I_s(t) - \gamma_2 J(t) - \delta J(t) \\
\dot{R}(t) = \gamma_1 (A_n(t) + I_n(t)) + \gamma_2 (J(t) + J_a(t)) \\
\dot{D}(t) = \delta J(t)
\]

Schematic of the model diagram

The population is classified into 10 epidemiological states: susceptible (S), latent (E_1), partially infectious but not yet symptomatic (E_2), asymptomatic and will not be tested (A_n), asymptomatic and will be tested and will be isolated (A_s), infectious and will not be tested (I_n), infectious and will be tested and isolated (I_s), hospitalized/isolated infectious (J), isolated asymptomatic (J_a), recovered (R), and deceased (D). Model parameters are described in Table 1.
Table 1. Parameter descriptions and values for model (** Indicates the value was estimated)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>value</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>β</td>
<td>Transmission rate</td>
<td>Calibrated for $R_0=2.4$</td>
<td>**</td>
</tr>
<tr>
<td>h</td>
<td>Relative isolation transmissibility of infected individuals</td>
<td>0</td>
<td>Assumed here</td>
</tr>
<tr>
<td>h_a</td>
<td>Relative isolation transmissibility of asymptomatic individuals</td>
<td>0</td>
<td>Assumed here</td>
</tr>
<tr>
<td>q_e</td>
<td>Relative transmissibility of exposed individuals</td>
<td>0.1</td>
<td>[1]</td>
</tr>
<tr>
<td>q_a</td>
<td>Relative transmissibility of asymptomatic cases</td>
<td>0.4</td>
<td>[1]</td>
</tr>
<tr>
<td>Parameter</td>
<td>Description</td>
<td>Value</td>
<td>Source</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>-------</td>
<td>--------</td>
</tr>
<tr>
<td>q</td>
<td>Level of effectiveness of personal protective equipment (PPE) such as mask and hand washing</td>
<td>0-100%</td>
<td></td>
</tr>
<tr>
<td>$1/\kappa_1$</td>
<td>Length of latent period</td>
<td>2.5 days</td>
<td>[2-6]</td>
</tr>
<tr>
<td>$1/\kappa_2$</td>
<td>Length of infectiousness prior to symptom onset</td>
<td>2.5 days</td>
<td>[4-7]</td>
</tr>
<tr>
<td>ρ_a</td>
<td>Proportion of exposed individuals who become asymptptomatically infected</td>
<td>20%, 40%, and 60%</td>
<td>[8, 9]</td>
</tr>
<tr>
<td>n_s</td>
<td>Proportion of asymptomatic individuals who will be tested and isolated</td>
<td>0%</td>
<td>Assumed here</td>
</tr>
<tr>
<td>ρ_s</td>
<td>Proportion of fully infectious individuals that undergo testing</td>
<td>0-100%</td>
<td></td>
</tr>
<tr>
<td>$1/\alpha$</td>
<td>Time from symptom onset to isolation or hospitalization</td>
<td>1, 2 days, and 12 hours</td>
<td></td>
</tr>
<tr>
<td>$1/\gamma_1$</td>
<td>Time from illness onset to recovery</td>
<td>7 days</td>
<td>[2, 3]</td>
</tr>
<tr>
<td>$1/\gamma_2$</td>
<td>Length of time from diagnosis to recovery</td>
<td>5 days</td>
<td>[10]</td>
</tr>
<tr>
<td>δ</td>
<td>Death rate within hospitals</td>
<td>$\delta = 0.04$</td>
<td>[11]</td>
</tr>
</tbody>
</table>
Figure 1. Thresholds for social protection and testing / isolation needed to bring R < 1.
Modeling Scenario:
40% asymptomatic
24 hours from symptoms to isolation for tested

Results: 40% asymptomatic with next day testing turnaround

Modeling Scenario:
60% asymptomatic
48 hours from symptoms to isolation for tested

Results: 60% asymptomatic with two-day testing turnaround
References