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Abstract. We have analyzed the COVID19 epidemic data of more than 174 countries
(excluding China) in the period between January 22 and March 28, 2020. We found that
some countries (such as the US, the UK, and Canada) follow an exponential epidemic
growth, while others (like Italy and several other European countries) show a power law
like growth. At the same time, regardless of the best fitting law, most countries can be
shown to follow a trajectory similar to that of Italy, but with varying degrees of delay.
We found that countries with “younger” epidemics tend to exhibit more exponential like
behavior, while countries that are closer behind Italy tend to follow a power law growth.
We hypothesize that there is a universal growth pattern of this infection that starts
off as exponential and subsequently becomes more power law like. Although it cannot
be excluded that this growth pattern is a consequence of social distancing measures,
an alternative explanation is that it is an intrinsic epidemic growth law, dictated by a
spatially distributed community structure, where the growth in individual highly mixed
communities is exponential but the longer term, local geographical spread (in the absence
of global mixing) results in a power-law. This is supported by computer simulations of
a metapopulation model that gives rise to predictions about the growth dynamics that
are consistent with correlations found in the epidemiological data. Therefore, seeing a
deviation from straight exponential growth may not be a consequence of working non-
pharmaceutical interventions (except for, perhaps, restricting the air travel). Instead,
this is a normal course of raging infection spread. On the practical side, this cautions
us against overly optimistic interpretations of the countries epidemic development and
emphasizes the need to continue improving the compliance with social distancing behavior
recommendations.

1 Introduction

An outbreak of a novel coronavirus, named COVID19, was reported in December 2019
in Wuhan, China, and has been the source of significant morbidity and mortality due to
progressive pneumonia [1, 2]. It has since spread around the world and become a pan-
demic, with large infection burdens reported in Europe and the United States. Disease
severity and mortality seem age-dependent, with a higher chance of respiratory compli-
cations and death among older people [3], although morbidity and mortality also occur
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to some extent in younger segments of the population. The overall mortality rate fur-
ther depends on the prevalence of the infection in the population: Once the number
of infected individuals has reached sufficiently large sizes, health care systems become
overwhelmed and lose the capacity to treat all patients in need [4]. In particular, the
number of respirator units poses an important limitation, which has resulted in difficult
triaging policies in some countries, most notably Italy and Spain. Non-pharmaceutical
intervention methods, such as social distancing, have become an important tool in the
fight against coronavirus spread [5]. The idea is to slow down the rate at which the virus
spreads through human populations, and thus to maintain the number of infected indi-
viduals that require treatment below a threshold level, thus avoiding a situation in which
hospitals become overwhelmed. Hence, wide-spread closures of schools and businesses,
and stay-home orders, have been implemented across Asia, America, Europe, and other
affected regions.

A number of studies have been performed that investigated the kinetics of coron-
avirus spread through human populations. The pattern of virus spread was found to be
approximately exponential, at least during the early stages of virus spread [6, 7], and
importantly, the basic reproductive ratio of the virus has been estimated [8, 9, 10, 11].
The implementation of social distancing measures are expected to have a significant im-
pact on the virus spread kinetics [5], which has been observed in some Asian countries,
such as China [12]. While the effect of containment efforts have been very pronounced
in these countries, they might be more subtle in other countries across the globe, espe-
cially during the initial phase following their implementation. To better assess observed
virus spread trajectories following the implementation of social distancing measures, a
more detailed understanding of the basic kinetics of virus spread in different countries is
required. While the virus spread pattern is often quoted to be exponential [6, 7], power
law patterns have been reported in data from China [13].

In this study, we compare the per capita virus spread kinetics observed for many
countries around the globe, in order to obtain a better understanding of similarities and
differences. Interestingly, we find that as per capita infections grow towards larger num-
bers, the growth pattern deviates from exponential and is better described by a power
law. This can be hypothesized to be due to social distancing measures [5], or poten-
tially to the build-up of immunity in the population [14]. We show, however, that the
longer term per capita infection levels over time across a wide array of countries can be
remarkably similar, and follow the same power law trajectory as seen in countries that
are most strongly affected, such as Italy. This indicates that the long-term dynamics of
COVID19 spread might be intrinsically governed by a power law, even in the absence of
non-pharmaceutical interventions. We interpret these findings with computer simulations
of a metapopulation model, which can account for an initial exponential spread phase,
followed by a longer-term power law behavior, by assuming that the infection spreads in
a well-mixed manner inside local demes, while also spreading spatially across different
demes. We relate model predictions to epidemiological correlations found in the data.
These insights into the spread kinetics of COVID19 might be useful for assessing the
impact of non-pharmaceutical intervention methods in different countries.
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2 Data sources

The data of confirmed COVID19 cases over time have been obtained from the data reposi-
tory maintained by Johns Hopkins University Center for Systems Science and Engineering
(CSSE) (https://datahub.io/core/covid-19#data-cli). As of March 28, 174 coun-
tries were represented in the database, as well as the cases on “Diamond Princess” (which
were not used in the analysis). We only included the total counts for each country, even
though information on the different provinces was available for several countries. The
number of confirmed cases has been recorded since January 22, 2020, and has been up-
dated daily.

To compare the time course of COVID19 cases across different locations, the per
capita incidence was calculated, normalizing the numbers by the total population size of
the country. The information on the population size and the area of different countries
was taken from Wolfram Mathematica’s database, “CountryData”.

3 Comparing per capita infection levels over time in

different countries

3.1 Per capita case numbers and time lags

Here, we present the comparison of the kinetics according to which cumulative COVID19
cases grow over time in different countries around the world. Figure 1(a) presents the
raw data showing total case counts for a select number of key countries. Figure 1(b)
shows the corresponding per million case counts.

A complication for comparing the growth dynamics is that the timing of the onset
of community spread varies across locations. The growth curve of confirmed cases was
therefore shifted in time to make them comparable, according to the following procedure.
The cumulative confirmed COVID19 case counts in Italy were chosen to be the example
against which the growth curves in all other countries were compared, due to Italy being
a current epicenter of the outbreak. The (normalized, cases per million) infection growth
curves of the other locations were shifted in time such that the difference between all
data points of the country under consideration and Italy was minimized. The shift
that minimized this Euclidean distance between the curves was assumed to indicate the
number of days that the country lags behind Italy. Some examples of such results are
presented in figure 2. We note that this assumes that all the countries test for COVID19
at comparable levels, which is an over-simplification. If a country tests less than Italy,
it will lag behind Italy to a lesser extent. Conversely, if a country tests more than Italy,
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it is predicted to be further behind Italy. Reliable data on the total number of tests in
different countries are currently not available to our knowledge.

In this way, we obtained a time course of confirmed COVID19 cases that are tempo-
rally synchronized with Italy, which allows for a more straightforward comparison of the
kinetics.

Figure 1: Example of the data. The number of confirmed cases is plotted as a function
of time for 6 countries and Orange County: (a) the raw counts, (b) cases per million.
The numbers of confirmed COVID19 cases in Orange County, the home of the authors,
have been obtained from the daily updates provided by the website of the Orange County
Health Care Agency (OCHCA).

3.2 Growth laws of the epidemic in different countries

Heterogeneity in growth laws across the different countries are observed. While some
countries appear to show exponential growth of confirmed COVID19 cases, other coun-
tries appear to exhibit growth laws that deviate from exponential. Previous work [13] has
suggested that a power law might be a better description of the cumulative COVID19
cases over time in China during the earlier stages of the epidemic (before it was con-
trolled). Therefore, we hypothesized that for a subset of the countries that were analyzed,
a power law is an appropriate description. To test this hypothesis, we fit both exponen-
tial and power law curves to the data for each country and determined the goodness of fit.

This data fitting was performed as follows: Only the data points were considered
where the number of COVID19 cases had risen above a threshold, which we set at 1 case
per million people (see Appendix for variations of this threshold). We fit both a power
function and an exponential function to the data to determine which model fits the data
better. For the power law function, a complication arose because fitting requires knowl-
edge of the “zero” point, that is, the moment of time when the growth (according to the
power law) began. The fits to the data change if the time scale is changed. Hence, we
started by assuming the first data point to be the day when the infection frequency first
exceeded 1 case per million, and fitted the power law, a1x

b1 , for some constants a1 and
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Figure 2: The same data as in figure 1(bottom), presented by shifting individuals lines to
match the Italy curve. The table shows the lag, that is, by how many days each country
is behind Italy.

b1. Then we shifted the time series incrementally by one day, and for each shift the power
law was fitted. For each fitting frame, a different value of the power law exponent, b1, was
obtained. Subsequently, we fit an exponential function to the same data (a2e

b2x). The
estimated exponent does not depend on the time shift, so fitting the exponential func-
tion was straightforward and yields a unique value b2 for all the fitting frames. For both
the exponential and the power law fits, we determined the sum squared error between
observed and expected, and compared them. For more details of the fitting procedure,
see Appendix A.

Figure 3 shows the fitting errors calculated for 75 countries; we included a country if
the number of cases reached 20 per million, and excluded China and South Korea, since
their epidemics clearly deviate from an exponential or a power law. The yellow horizontal
lines represent the exponential fitting and the blue lines the power law fitting. We observe
that there are several different configurations that are repeatedly encountered.

• For some countries (like the US, see also figure 4(a)), the power fitting error is
always above the exponential fitting error. Such countries are clearly showing an
exponential epidemic growth.

• There is another group of countries (such as Italy, see also figure 4(b)), where the
power law fitting error is always below the exponential error; here we clearly have
a power law growth.

• There are some other countries that we can classify as power law-like and exponential-
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like. Suppose a power law error curve crosses the exponential error line (see Greece,
figure 4(c)), at a given frame shift. In this case, we will classify the growth as power
law-like if the value of the exponent b1 that corresponds to this frame shift satisfies
b1 < 5. Otherwise, we will classify the growth law as exponential-like.

For the examples mentioned here, figure 4 shows the best fits obtained by this method.
For (b) and (c) it is clear that the power law provides more satisfactory fits. More details
are provided in Appendix.

Since in smaller countries (such as for example Luxembourg) the laws may be harder
to determine and the data are subject to a higher degree of noise, for classification pur-
poses we restricted the pool of countries to those with over a million inhabitants. Then
the following country’s epidemics were classified as exponential and as a power law, see
also figure 5:

Exponential growth: Australia, Canada, Croatia, Israel, New Zealand, North Macedo-
nia, Oman, United Arab Emirates, US, Austria, Dominican Republic, Ecuador, Ireland,
Lithuania, Malaysia, Portugal, South Africa, United Kingdom.

Power law: Albania, Armenia, Belgium, Cyprus, Denmark, Georgia, Iran, Italy, Jordan,
Mauritius, Moldova, Netherlands, Norway, Qatar, Slovakia, Slovenia, Sweden, Turkey,
Uruguay, Bahrain, Bosnia and Herzegovina, Bulgaria, Chile, Costa Rica, Czechia, Es-
tonia, Finland, France, Germany, Greece, Hungary, Kuwait, Latvia, Lebanon, Panama,
Poland, Romania, Saudi Arabia, Serbia, Singapore, Spain, Switzerland, Trinidad and
Tobago.

In the lists above, the countries that are classified as power law-like and exponential-
like are printed in gray. There are 18 countries in the exponential law class, with 9 of
them being truly exponential and the rest exponential-like. There are 43 countries in the
power law class, with 20 of them being truly power law and the rest power law like.

3.3 Correlates of the growth law

It is interesting that the countries showing a power law (or power law-like behavior) are
different with respect to some characteristics compared to the countries showing exponen-
tial or exponential-like behavior. Figure 6(a) shows a numerical probability distribution
for the day when the infection in each country reached the level of 1 case per million.
Blue represents the power law set and yellow the exponential set (grey means an overlap
of the two colors). The average date of reaching 1 case per million (counting from Jan 22)
is about 48 days for the power law and 52 days for the exponential set (p = 0.035 by T
test). In other words, the countries that are demonstrating a power law infection spread
have had the relative infection level slightly longer than the exponentially developing
countries. This points us towards a hypothesis that perhaps it is typical to observe a
transition between an early, exponential stage of growth, and a later, power-like stage of
growth.

Figure 6(b) shows the difference between the two classes of countries in terms of
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Figure 3: 75 countries’ fitting results are presented as errors (blue for power law fits and
yellow for exponential fits) as functions of the frame shift. Three distinct configurations
can be observed: blue below yellow (a clear power law case), blue above yellow (a clear
exponential case), and blue intersecting yellow. For such intermediate cases, we clas-
sified the growth as power-like if the power corresponding to the point of intersection
corresponded to the power b1 < 5. Otherwise it was classified as exponent-like.

Figure 4: Examples of three error graph configurations. (a) US, exponential; a log plot
of the data is presented with the exponential fit. (b) Italy, power-law; a log log plot of
the data is presented with the best fitting power law and exponential fits. (c) Greece,
exponential-like; as in (b), a log-log plot is presented.
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Figure 5: Geographic distributions of different epidemic growth laws. (a) Power law
epidemics; (b) Exponential epidemics.

their area. We find that the exponentially growing infection class is associated with
larger countries (mean area of about 1.7 × 106 km2) compared to the power law class
(mean area about 2.3 × 105 km2, p = 0.018 by T test). Similarly, exponential epidemic
spread tends to correlate with lower density countries (figure 6(c)). It is possible that it
takes longer for a larger country of a lower density to transition to a power law growth.
We provide a possible explanation of this correlation in the context of metapopulation
modeling.

3.4 Possible explanations of the trends

It is important to understand the dynamics with which the cumulative case counts in-
crease over time, such that we have a better ability to judge whether non-pharmaceutical
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Figure 6: Comparison of the two classes of infection spread. (a) The timing of the
infection: the distribution of time of reaching 1 case per million (counting from Jan 22),
for the exponential and power law classes. The means are 48 days for the power law and
52 days for the exponential set (p = 0.035 by T Test). (b) Country size: the area of
countries for the exponential and power law classes. The means are about 2.3× 105 km2

for the power law and 1.7×106 km2 for the exponential, p = 0.018 by T test. (c) Country
density: the means are about 374 people per km2 for the power law and 98 people per
km2 for the exponential law, p = 0.035 by T test.

interventions (e.g. social distancing) have an impact on the course of the epidemic. The
COVID19 epidemic is often thought to grow exponentially. If this is the case, a deviation
from exponential growth following the introduction of non-pharmaceutical interventions
can indicate success of those interventions. In contrast, if the infection grows according
to a power law while growth is incorrectly assumed to be exponential, a slow down of
the cumulative COVID19 cases over time on a log scale can result in the false conclusion
that the non-pharmaceutical intervention methods are working. If the cumulative cases
grow like a power law, successful intervention would result in the growth deviating from
the power law, and not from exponential growth.

One interpretation of our analysis could be that in the absence of non-pharmaceutical
interventions, the disease burden grows exponentially, but that over time, the non-
pharmaceutical interventions slow down the spread. Hence, overall, the disease dynamics
are described better by a power law than by an exponential function, because the power
law is characterized by a slow-down of the growth rate over time. Italy, where one of the
most pronounced power laws was observed, implemented some degrees of social distanc-
ing relatively early, although the more strict measures were implemented only recently.
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While this cannot be excluded, the comparative plots in figure 2 might argue against
this hypothesis. These graphs shows the spread dynamics for a few countries, whose
epidemics are relatively advanced, and they have all been shifted to be temporally syn-
chronized with Italy. As the infection spreads to higher levels, the curves for the different
countries converge towards a common trajectory of the per capita cases of COVID19.
In other words, as the infection spreads, the per capita number of cases converge and
follow the same power law. If this deviation from exponential growth was due to non-
pharmaceutical interventions, then it is surprising that those countries follow the same
trajectory because they implemented those interventions at different times and to differ-
ent degrees.

Figure 7: Temporal development of infection. The “age” of the epidemic is measured by
the days of delay with respect to Italy. (a) The number of countries for each value of the
time-lag with respect to Italy. The number of countries in the two growth law classes is
shown for comparison. (b) The percentage of countries with a given delay that belong to
the Power law group and to the Exponential law group. The trend that the percentage
of exponential growth increases with the time lag (that is, decreases with the epidemic
“age”) is significant (p < 10−4 by linear fitting).

Alternatively, it is possible that the local epidemics characterized by power laws
demonstrate an intrinsic power law spread that is independent of interventions. Compu-
tational models suggest that infection spread across networks or in spatially structured
populations can lead to dynamics that follow a power law rather than an exponential
trajectory, see below.

If some countries truly show infection spread that is governed by a power law, the
question arises why other countries show clear exponential spread, and why yet other
countries are more difficult to classify. We hypothesize that different countries are at
different stages of epidemic development, but they all roughly follow the same trajectory,
where an initial exponential growth is gradually replaced by a more power like behavior.
Figure 7 demonstrates evidence in favor of this theory. Panel (a) plots the number of
countries classified by the number of days they are delayed with respect to Italy. As
explained in section 3.1 (see also figure 2), we shifted the growth trajectories of all coun-
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tries until, for each country, the best match with the Italian curve was obtained. As we
can see in figure 7(a), there are only a few countries that are just behind Italy, and as
the number of lag days increases, the number of countries grows. This corresponds to
the world wide spread of the pandemic: more and more countries become affected as
time goes by. Figure 7(b) calculates, for each lag time, the percentage of countries that
were classified as following power law or exponential dynamics. We can see that for the
countries that are just a few days behind Italy, 100% of them belong to the power law
group. As the lag time increases, indicating an earlier stage of the epidemic, more and
more countries exhibit exponential growth (p < 10−4). The same trend is also corrobo-
rated by figure 6(a) that shows that the epidemics in the exponential group are “younger”.

How can we explain the existence, to different extents, of power law like behavior
in different countries? One possible reason could be non-pharmaceutical interventions
that are only partially effective, see a schematic in figure 8. It is possible that in early
stages of the infection, exponential virus spread occurs because people have not yet al-
tered their behavior and continue to travel and socially mix with each other. Mass-action
dynamics are expected to yield exponential growth. As a result of non-pharmaceutical
interventions that are only partially effective, people might stop traveling and thus slow
down large scale mixing. However, they would still be interacting locally within their
social network, which would lead to a transition to power law dynamics. It is possible
that a number of countries are difficult to classify because they exhibit early mass action
dynamics (exponential), followed by network interactions that lead to a transition to a
power law. This would indicate that stronger non-pharmaceutical intervention methods
need to be implemented.

More generally, the results can be interpreted in the context of a minimally param-
eterized metapopulation model, see figure 8. Assume that within a local deme (such as
a local community), people interact with each other, resulting in mass action dynamics.
For the infection to spread further, however, people have to enter other demes, and seed
the infection there. We have performed computer simulations of such a model to explore
outcomes. The model is a two-dimensional metapopulation consisting of N ×N patches.
In each patch, i, the infection dynamics are given by a set of ordinary differential equa-
tions (ODEs) that take into account the population of susceptible (Si), infected (Ii),
recovered (Ri), and dead (Di) individuals:

dSi

dt
= − βSiIi

Si + Ii + ε
+ f

∑
j∈Bn

i

(Sj − Si), (1)

dIi
dt

=
βSiIi

Si + Ii + ε
− gIi + f

∑
j∈Bn

i

(Ij − Ii), (2)

dRi

dt
= g(1 − a)Ii + f

∑
j∈Bn

i

(Rj −Ri), (3)

dDi

dt
= gaIi. (4)
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Figure 8: The concept of partial social distancing measures and the metapopulation
model. There is a grid of N × N patches. Within each patch (which represents a local
community), deterministic SIR dynamics are assumed (complete mixing). Infection can
also spread by contact (mixing) with neighboring patches (demes). Global infection
transfer is also possible, e.g. by air travel within the country and outside, but this
is disrupted by partial social distancing measures. Equations (1-4) correspond to the
situation where long-haul interactions are not prresent. This is what we implemented by
simulations.

Here, infection is described by a frequency-dependent infection term [15], characterized
but the rate constant β and a saturation constant ε. Infected individuals die with a rate
ga and recover with a rate g(1− a). The migration terms include the outward migration
to n neighbors and an inward migration from all the n neighboring demes that belong
to neighborhood Bn

i of deme i. The migration rate is denoted by f and we assume
that each patch has eight direct neighbors, i.e. n = 8. The boundary demes are charac-
terize by fewer inward/outward migrations (that is, they have smaller neighborhood sets).

Using this model, we track the predicted dynamics for I + R + D over time, which
represents the cumulative infection case counts. In a first scenario, we start the com-
puter simulations with a small amount of infected individuals in a single patch, located
in the center of the grid. All other patches contain only susceptible individuals. The
resulting dynamics are shown in figure 9. We observe an initial exponential phase of
infection spread, followed by a transition to a power-law spread. The spread is initially
exponential, because within a single patch (the first patch), the dynamics are governed
by well mixed populations. As the infection spreads to other patches by migration, the
overall infection spread starts to be governed by spatial dynamics, which explains the
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Figure 9: Results from implementing the metapopulation model, equations (1-4). The
total number of cases (given by I+R+D) is plotted as a function of time, on a log log scale
(a) and a log scale (b). The black line shows the dynamics where the simulation starts
with 1/10 of individuals infected in a single patch in the middle. The blue line corresponds
to the initial condition where 1/50 of the individuals are infected in 5 randomly chosen
patches. The red line shows the consequence of 1/500 of the individuals infected in 50
randomly chosen patches. The rest of the parameters are S = 10, R = 0, D = 0 initially
in all patches, β = 0.1, g = 0.05, f = 0.001, a = 0.01, ε = 1, N = 300.

transition to the power law behavior. The key is the difference between the time scale of
local spread and the time-scale of global mixing.

Next we assumed that instead of starting with infecteds only being present in a single
patch, a small amount of infected individuals are initially present in more than one patch
around the same time. This could correspond to larger countries, in which the infection
is simultaneously seeded in multiple areas (e.g. due to travel from other places). Now,
we observe overall growth dynamics that are are more exponential-like. The length of
the predicted exponential phase becomes longer the more patches are initially seeded.
The reason is that with more initial seeding events, the importance of spatial spread
is de-emphasized. The metapopulation model can therefore predict an array of growth
patterns where an exponential phase of varying length is followed by a transition to power
law, depending on the initial conditions of the simulation.

4 Discussion and Conclusions

In this paper, we analyzed data that document the cumulative COVID19 case counts
over time in a large number of countries around the world, and examined the laws ac-
cording to which the infection spreads. This suggests that although the initial phase of
the spread may be exponential, the longer term dynamics tend to be governed by a power
law. The analysis indicates that the countries that display clear evidence for exponential
growth are currently in a relatively early phase of the epidemic. The data further suggest
that countries that are further along in the epidemic converge to a common power law
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behavior, and cumulative per capita case counts appear to converge over time. These
observations were interpreted by computer simulations of a metapopulation model that
takes into account both local spread and spread across geographical space. This model
predicts an initial exponential phase (due to local transmission events driving the dy-
namics), followed by a transition to a power law (once spatial dynamics significantly
drive spread). The duration of the exponential phase is determined by the number of
patches that are initially seeded with the infection. If the infection originates in a single
location (patch), the exponential phase is likely not very pronounced, and most of the
growth curve is predicted to follow a power law. If the infection is seeded simultaneously
or nearly simultaneously in multiple locations, the duration of the exponential phase be-
comes longer. The larger the number of initially seeded locations, the more pronounced
the exponential phase of the infection spread.

These predictions are further in agreement with the correlations that we found be-
tween the growth law of the infection and country size. Exponential growth was asso-
ciated with countries that are characterized by a larger area. More pronounced power
laws tend to occur in counties with a smaller area. If a country has a larger area, it is
more likely that multiple locations are seeded with the infection around a similar time,
for example due to travelers returning from a country with a larger disease incidence. For
this scenario, the metapopulation model predicts more pronounced exponential growth.
If the country has a smaller area, it is more likely that the infection is seeded within
one geographical area and spreads outward from there. In this case, the metapopulation
predicts an infection spread pattern that mostly follows a power law.

Beyond scientific interest, a better understanding of the laws according to which
COVID19 spreads through populations is also of practical importance. Currently, em-
phasis is placed on non-pharmaceutical intervention measures to slow down the spread of
the infection such that the ability of the health care system to cope with the number of
incoming patients is preserved. The success of these intervention measures should be re-
flected in slowed infection spread. An understanding of the infection spread laws is crucial
to interpret such data. If we assume that infection growth is exponential and if we plot
the cumulative number of COVID19 cases on a log scale, a deviation and slow-down from
exponential growth would lead to the conclusions that the non-pharmaceutical interven-
tion measures are successful [16]. If, however, the true spread dynamics are characterized
by a power law, we expect deviation and slow-down compared to exponential growth over
time, even if the infection continues to spread at full force. In this case, a deviation from
exponential spread cannot be interpreted to mean that non-pharmaceutical intervention
measures are sufficient. To come to that conclusion, we would need to observe a deviation
and slow-down of the infection spread compared to a power law null model.

As with any data and modeling studies, it is important to note that results can depend
on assumptions and methodologies. These are clearly spelt our here. One of the larger
challenges we faced in the data analysis is the lack of knowledge at what time the infection
was initiated in the individual countries. This information is not available. The time
frame in turn influences the fit of the power law to the data, which we have addressed
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with our time shifting methodology. If further information becomes available about
the time when infections are estimated to have originated in the individual countries,
the methodology can be updated. Genetic studies could provide valuable data in this
respect.

Another limitation of the data interpretation is the degree, to which different countries
test for the coronavirus. If some countries test less than others, they will appear to be
further behind Italy, while in reality the lag could be shorter. This type of uncertainty
however does not change the central finding that the long term dynamics of COVID19
cases in different countries follow a power law, after an initial stage of exponential growth.
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knowledged.
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A Details of the fitting

Here we present the details of the fitting procedure used to determine the growth laws
for different countries. It is illustrated with the example of Italy in figure 10. The full
data for the number of cases per million in Italy are presented in figure 1(b), orange
curve. In figure 10, the subset of same data starting from 1 case per million, is plotted
on the log-log scale (panel (a)) and on a linear scale (panel (b)), with varying horizontal
shift, which corresponds to changing the position of time zero. This is what we refer to
as a “fitting frame”. The fitting frame number one is when the first data point in the
selected subset corresponds to day 1. The ith fitting frame shifts this point to day i.
For each fitting frame, we obtained the best fit with function a1x

b1 , by using a built-in
Mathematica routine “FindFit”. Note that the natural logarithm of the data was fitted
for the figures presented here.1

Clearly, some fits are better than others, see figure 10(a,b). The fitting error for each
fitting frame, i, was calculated as the distance between the data and the fit, normalized
by the number of points:

Erri =
1

N

√√√√ N∑
j=1

(ln y
(i)
j − lnx

(i)
j )2,

where y
(i)
j is the jth component of the dataset in frame i, x

(i)
j is the corresponding

prediction of the fit and N is the number of points in the dataset. These errors are

1We also tried fitting the function without taking the logarithm; similar results were obtained (not
shown).
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shown for the different fitting frames in panel (c) of figure 10. The minimum error
corresponds to the power b1 = 4.3.

Exponential fits of the same data from Italy are shown in figure 11(a,b). In panel (a)
we used a log scale, such that the exponential fits look like straight lines. It is clear that,
first of all, these fits are all parallel lines and thus the error is exactly the same (thus the
exponential fitting errors as functions of the fitting frame are horizontal lines, see figures
3 and 4). Second, we note that these fits are not very good for Italy, that’s why the
power fit errors is always below the exponential error, see figure 4(b). For comparison,
panels (c) and (d) of figure 11 show the exponential fits for the US data. We can see
that the quality of the fits is better, see also figure 4(b).

Figure 10: Details of the fitting procedure, using the example of Italy. Power law fits are
presented for 7 choices of the fitting frame from 1 to 21, using (a) the log-log scale and
(b) the linear scale. The data are plotted as dots and the fits as lines. The best fit is
marked by the red line. (c) The power law fitting errors as a function of the frame. (d)
The fitted value of the power exponent, b1, as a function of the fit. The red dashed lines
in (c) and (d) mark the best fit.

In the main text and in this Appendix so far, we describe a fitting procedure where
the “confirmed cases” data for each country were used only if the numbers exceeded 1
case per million. Here we demonstrate how this changes if a different choice is made
and a minimum of 5 cases per million is required for each data point to be included. In
figure 12 we demonstrate the difference for 30 countries. The choice of countries for this
graphics was somewhat arbitrary: we included the 30 countries out of the subset used in
figure 3 that had the largest infection (cases per million).
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Figure 11: Examples of exponential fits for Italy (a,b) and the US (c,d), where the log
scale is used in (a,c) and the linear scale in (b,d). The yellow lines show exponential fits
for 7 different frames from 1 to 21, as in figure 10(a,b).

B Best fits for different countries

Here we present plots of the best fits for different classes of countries. Figure 13 shows
the 19 countries that were classified as a power law countries. The plots are presented on
a log-log scale, such that the power law fits are straight lines. We can see that the best
power law fit (blue) is a visibly better match than the exponential fit (yellow). Note that
for all of these countries the power law fitting error for any frame shift is smaller than
that obtained by the exponential fitting. The rest of the power law countries (those that
were classified as power law like) are shown in figure 14. This list contains 24 countries.
For convenience, we present both a log log plot (such that the power law fits, blue, appear
as straight lines) and a log plot (such that the exponential fits, yellow, appear as straight
lines).

Figure 15 shows the 9 countries that are characterized by a straight exponential
growth. For these data, we used a log scale, such that the exponential fits are straight
lines. For all of these countries the power law fitting error for any frame shift is larger
than that obtained by the exponential fitting. Note however that power fits that are
almost as good as exponential fits can always be found, if we we shift the frame far
enough. These fits correspond to very large values of the power coefficient b1 in the
power law, see for example figure 4(a) which presents the example of the US. As the
fitting frame index increases, the power law fitting error (top, blue line) approaches the
exponential fitting error (horizontal yellow line). This, however, is meaningless, and does
not indicate the presence of a power law. Figure 16 presents the rest of the countries
from the exponential class, that is, those that were classified as exponential-like.
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Figure 12: Comparison of two different choices of the fitting procedure, for 30 countries.
Each panel represents a country, with the hrizontal axes being the fitting frame, and the
vertical the fitting error. Red symbols correspond to the 1 case per million threshold,
and blue circles to the 5 cases per million threshold. Circles represent the error of the
power law fitting; they form non-constant functions. Squares represent the error of the
exponential fitting and form horizontal lines, because these errors do not depend on the
fitting frame.
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Figure 13: The 19 countries that were classified as those following a power law. For each
country, two panels are presented. One is the full data (cases per million) plotted on a log
log scale. The other is the subset of data (with 1 or more cases per mission) plotted on a
log-log scale (black circles) together with the best power law (blue line) and exponential
(yellow line) fits.
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Figure 14: The 24 countries that were classified as power law like. For each country,
three panels are presented: (1) is the full data (cases per million) plotted on a log log
scale. (2) is the subset of data (with 1 or more cases per mission) plotted on a log-log
scale (black circles) together with the best power law (blue line) and exponential (yellow
line) fits. (3) is the same as (2) except on a log scale.
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Figure 15: The 9 countries that were classified as those following an exponential law. For
each country, two panels are presented. One is the full data (cases per million) plotted on
a log log scale. The other is the subset of data (with 1 or more cases per mission) plotted
on a log scale (black circles) together with the exponential fit (yellow line). Note that for
these countries, the power law fits correspond to very high values of the exponent and
are therefore not significantly different from the exponential fits.

Figure 16: The 9 countries that were classified as exponential-like. Panels are as in figure
15.
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