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The rapid spread of  COVID-19 is a global public health challenge. To prevent 

the escalation of  its transmission, China locked down one-third of  its cities 

and strictly restricted personal mobility and economic activities. Using timely 

and comprehensive air quality data in China, we show that these counter-

COVID-19 measures led to a remarkable improvement in air quality. Within 

weeks, the Air Quality Index and PM2.5 concentrations were brought down by 

25%. The effects are larger in colder, richer, and more industrialized cities. We 

estimate that such improvement would avert 24,000 to 36,000 premature 

deaths from air pollution on a monthly basis.  
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1. Introduction 

The exponential spread of  the COVID-19 pandemic is a global public health crisis. In 

December 2019, an unknown disease, later named COVID-19, was identified in Wuhan, 

China (Lu et al., 2020; Zhu et al., 2020). Within three months, the disease had affected more 

than 100 countries (WHO, 2020). The explosion of  COVID-19 cases around the world has 

made it a global pandemic and brought about devastating consequences (Wang et al., 2020). 

To contain the virus, many countries have adopted dramatic measures to reduce human 

interaction, including enforcing strict quarantines, prohibiting large-scale private and public 

gatherings, restricting private and public transportation, encouraging social distancing, 

imposing a curfew, and even locking down entire cities.  

While the costs of  enforcing these preventive measures are undoubtedly enormous, these 

measures could unintentionally bring about substantial social benefits. Among them, locking 

down cities could significantly improve environmental quality, which would partially offset 

the costs of  these counter-COVID-19 measures. For example, satellite images caught a sharp 

drop in air pollution in several countries that have taken aggressive measures on the 

transmission of  the virus.2 

In this study, we carry out a rigorous investigation into this issue and estimate how 

locking down cities affected air quality at a national scale in China. We focus on China for 

two reasons. First, China was hit hard by the COVID-19 outbreak, and the Chinese 

                                                        
2 For example, the satellite images show dramatic declines in NO2 in the U.S., China, and Europe:  
US: https://edition.cnn.com/2020/03/23/health/us-pollution-satellite-coronavirus-scn-trnd/index.html;  
China: https://www.earthobservatory.nasa.gov/images/146362/airborne-nitrogen-dioxide-plummets- 
over-china; Europe: https://www.eea.europa.eu/highlights/air-pollution-goes-down-as. Relatedly, a news 
article in Forbes provided some rough estimates on the potential benefits caused by lockdowns in China: 
https://www.forbes.com/sites/jeffmcmahon/2020/03/16/coronavirus-lockdown-may-have-saved-77000-
lives-in-china-just-from-pollution-reduction.  
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government launched draconian countermeasures to prevent the escalation of  infections 

(Chen et al., 2020; Kucharski et al., 2020). Nearly one-third of  Chinese cities were locked 

down in a top-down manner, and various types of  economic activities were strictly prohibited. 

In these cities, individuals were required to stay at home; unnecessary commercial operations 

and private and public gatherings were suspended; all forms of  transportation were largely 

banned (both within a city and across cities); and mandatory temperature checking could be 

found in most public facilities. Second, China also suffers greatly from severe air pollution, 

with some estimates suggesting that air pollution is associated with an annual loss of  nearly 

25 million healthy life years (Kassebaum et al., 2014). If  locking down cities significantly 

improved the air quality in China, the implied health benefits would be an order of  magnitude 

larger than in countries with lower initial pollution levels.  

Our empirical analysis uses comprehensive data at a week-by-city level from January 1st 

to March 1st in 2020. We first collect air quality data from 1,600 monitoring stations covering 

all the prefectural cities in China and aggregate the station level data to the city level data. We 

then collect the local government’s lockdown policies city by city from news media and 

government announcements (Appendix Table A1). Because the disease prevalence varied 

greatly across different regions, the terms and requirements of  the lockdown also differed 

across provinces and cities. Thus, we define a city as locked down when all three of  the 

following preventive measures were enforced: 1) prohibition of  unnecessary commercial 

activities in people’s daily lives, 2) prohibition of  any types of  gathering by residents, 3) 

restrictions on private (vehicle) and public transportation. Following our definition, 95 out 

of  324 cities were locked down, as described in Figure 1 (Summary Statistics is described in 

Appendix Table A2). 

We employ two sets of  difference-in-differences (DiD) models to quantify the impact of  
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a city’s lockdown on air pollution in different groups of  cities. The DiD model is a well-

established econometric technique and has been widely applied in understanding the impacts 

of  government policies (Angrist and Pischke, 2008). In our DiD specification, the city-level 

air pollution is as a function of  the city-specific lock-down policy, city-specific fixed effects 

that capture city-level time-invariant determinants of  air pollution (e.g., geographical 

conditions, baseline income), month by week fixed effects that capture shocks common to 

all cities in a given week (e.g., nationwide holiday policy, macroeconomic conditions) and 

weather conditions (see Appendix Methods). Adopting this method, we can estimate the 

difference in air pollution levels between the treatment group (locked-down cities) and the 

control group (non-locked-down cities) before and after city lockdowns in 2020. In addition, 

because cities without formal lockdown policies might also have been affected by the disease 

preventive measures (e.g., all cities extended the Spring Festival holiday, required social 

distancing, and urged people to stay at home), we also apply the DiD model to compare air 

pollution levels in the control (no-lockdown) cities before and after China’s Spring Festival 

relative to the previous year.3 Combining these two sets of  DiD results, we can evaluate the 

total effects of  city lockdown on air quality.  

The underlying assumption for these DiD estimators is that treated and control cities 

had parallel trends in the outcome before the event. Intuitively, even if  the results show that 

air quality improves in the locked-down city after its enforcement, the results may not be 

driven by the lockdown but systematic differences in treatment and control cities (e.g., 

treatment cities have an improving trend in air quality). Thus, we adopt the event study 

approach that allows for displacing the actual timing of  lockdown to rule out these 

possibilities (Jacobson et al. 1993). 

                                                        
3 The explosion of  the COVID-19 cases coincided with the Festival, as illustrated in Appendix Figure A1. 
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We further examine whether the effects of  lockdowns vary across different types of  cities. 

Because the lockdown restricts unnecessary industrial activities for people’s daily life, 

industrialized cities could be more substantially influenced by such treatments. Similarly, 

colder cities with higher demand for coal winter heating, richer cities with higher electricity 

consumption, or cities with more traffic volumes might have a more substantial impact when 

the lockdown is implemented.  

Finally, a large strand of  literature has investigated how air pollution affects population 

health. Based on these findings, we provide some back-of-the-envelope calculations on the 

potential benefits caused by air quality improvement during this period. To achieve this, we 

borrow estimates from recent studies that adopt a quasi-experimental approach in China and 

calculate the averted number of  premature deaths. We focus on quasi-experimental studies 

because they are generally recognized as being more credible than those based on 

associational models (e.g., Graff  Zivin and Neidell, 2013; Dominici et al., 2014). We then 

discuss the magnitude of  the effect and the implications.  

 

2. Results 

2-1. The Trends in Air Quality 

We start by presenting the patterns in the raw air quality data. In Panel A of  Figure 2, we 

plot the AQI between the treatment and control cities over the study time in 2020. This 

figure shows the first margin: to what extent city lockdown affected air pollution between 

the treated and control cities. The figure shows the treatment group had worse air pollution 

levels (higher AQI) than the control group before the Chinese Spring Festival. However, the 

difference significantly decreased after more cities were locked down, suggesting that the 

lockdown improved air quality.  
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In Panel B of  Figure 2, we look at the second margin: to what extent the control cities 

were also affected by the counter-virus measures. We see the AQI levels were almost 

equivalent before the Spring Festival in 2019 and 2020, implying the parallel trend assumption 

is likely to hold. In 2020, shortly after the festival, we observe that the air pollution levels 

became slightly lower, relative to the 2019 post-festival season. This result suggests that air 

quality in the control cities marginally improved, although they were not formally locked 

down.  

2-2. Impacts of  City Lockdown on Air Pollution 

Table 1 summarizes the regression results. Here, we estimate the relative change in air 

pollution levels in the treatment group (locked-down cities) relative to the control group 

(non-locked-down cities) by fitting the DiD model described in the equation (A1). We find 

that a lockdown indeed improved the air quality: compared to cities without formal lockdown 

policies, the weekly Air Quality Index (AQI) and PM2.5 declined respectively by 19.4 points 

(18%) and 13.9 µg/m3 (17%) when including weather controls and a set of  fixed effects (in 

columns (2) and (4)).4 These estimates are remarkably robust to the inclusion of  weather 

variables, indicating that the changes in air pollution caused by city lockdown are not 

correlated with weather conditions. We also provide the results for other air pollutants 

(Appendix Table A3) 

In Columns (5) to (8), we estimate the changes in air pollution levels in the control (no-

lockdown) cities before and after the Spring Festival relative to the previous year by fitting 

the second DiD model described in the equation (A3). We find that air quality in 2020 

improved relative to the previous year's air quality after the Festival. The results show that 

                                                        
4 The Air Quality Index (AQI) is a comprehensive measure of  air pollution in China and also widely used 
around the world. The index is constructed by PM2.5, PM10, SO2, CO, O3, and NO2 concentrations. A lower 
AQI means better air quality. 
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AQI decreases by 8.8 points (7%) and PM2.5 by 8.4 (8%) after controlling for weather 

variables (in column ((6) and (8)), suggesting that the disease preventive measures matter for 

cities even without formal lockdown. 

Combining these two sets of  results, we estimate the total effects of  city lockdown on 

air quality relative to the identical season in the previous year. We find that lockdown 

improved air quality substantially: it reduced AQI and PM2.5 by around 25% in the locked-

down cities and 7~8% in the control cities.  

2-3. Tests for Pre-Treatment Prarallel Trends and Robustness Checks 

We adopt the event study approach to test whether the parallel trend assumption holds, 

which is an assumption for DiD estimators to be valid. (Refer to Appendix Method). Figure 

3 reports the regression results. (The corresponding regression results are reported in 

Appendix Table A4.) In Panel A, we estimate Equation (A2) and plot the estimated 

coefficients and their 95% confidence intervals. We find that there is no systematic difference 

in the trends between treatment and control groups before the city lockdown. The figure 

shows that the estimated coefficients for the lead terms (! ≤ −2 ) are all statistically 

insignificant. We also see that the trends break after the city lockdown, i.e., the lag terms (! ≥

0) became negative and statistically significant. The AQI dropped by 20~30 points within 

two weeks after lockdown, and this result remains statistically significant in subsequent 

periods.  

In Panel B, we test the parallel trend assumption for cities in the control group using data 

in 2019 and 2020. (The corresponding regression results are reported in Appendix Table 

A5.) The results suggest the air quality in 2019 could be a reasonable counterfactual for air 

quality in 2020 in the controlled cities; we find that their trends in air quality before the 

Chinese Spring Festival were also similar. The estimated coefficients after the festival show a 
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meaningful reduction in air pollution, with the AQI being reduced by 5 to 10 points. 

Appendix Figure A2 repeats the same exercise using log AQI, PM2.5, and log PM2.5 as the 

outcomes, and we observe very similar patterns.  

Finally, we provide additional evidence that our baseline findings are not driven by 

specific choices we made in the empirical analyses. First, in Panel A in Appendix Table A6, 

we exclude cities in Hubei province, where the COVID-19 was first identified in China, and 

re-estimate Table 1. All the findings remain similar, suggesting that our results are not driven 

by a few cities that were most affected by the virus. In Panel B, we repeat this exercise using 

daily-level data and again reach a similar conclusion.  

2-4. Heterogeneity 

In Figure 4, we show that the effect of  lockdown varies significantly across different 

types of  cities. The impact of  city lockdown on air quality was greater in colder, larger, richer, 

and more industrialized cities.  

Panel A reveals that the impact is much more significant in colder cities or northern cities. 

The estimated reduction in the AQI is around 20~30 points for those cities and is 0~10 

points in warmer or southern cities. The difference could be driven by the fact that colder 

cities consume more coal for heating, and lockdown reduces such consumption in offices, 

plants, and schools, which led to a greater improvement in air quality. In Panel B, we see the 

effect is greater in cities with larger GDP, population, and higher income (measured by per 

capita GDP). This is consistent with the fact that energy consumption is higher in more 

agglomerated economies, where a lot of  economic activities take place. Finally, Panels C and 

D show that, in the cities that rely more on industrial activities (measured by the 

manufacturing output, the volume of  traffic, the number of  firms, and the emissions of  

different types of  pollutants), the effect is more substantial.  
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This finding implies that coal consumption, industrial activities, and transportation all 

contribute substantially to air pollution in China. We repeat our heterogeneity analysis for 

PM2.5 and similarly illustrate the results in Appendix Figure A3. Appendix Table A7 presents 

the full set of  results on AQI and PM2.5. 

2-5. Potential Benefits from Improved Air Quality 

A large strand of  literature has investigated how air pollution affects population health. 

Here, we provide some back-of-the-envelope calculations on the potential benefits of  the air 

quality improvement caused by China’s efforts to contain the virus.  

The results are summarized in Table 2. Recall that the counter-COVID-19 measures 

reduced PM2.5 in the control cities by 8.40 µg/m3, and the city lockdown further decreased 

PM2.5 in the treated cities by 13.9 µg/m3(total 22.3 µg/m3). Two recent quasi-experimental 

studies in China show that a 10 µg/m3 increase in PM2.5 would lead to a 2.2%~3.25% increase 

in weekly/monthly mortality (He et al., 2020; Fan et al., 2020).5 That implies, the total 

number of  averted premature deaths caused by the improvement in air quality would be 

around 24,000 to 36,000 on a monthly basis. These numbers are significantly larger than the 

total number of  deaths caused by COVID-19 in China (less than 3,300 as of  March 28, 2020) 

(WHO, 2020) and illustrate the enormous social costs associated with air pollution. 

 

3. Conclusion 

Using a timely and comprehensive dataset, we investigate the effect of  city lockdown on 

air quality in China, which could bring about massive social benefits and partially offset the 

costs of  the COVID-19 epidemic. We find that such drastic preventive measures have a 

significant impact on air quality. We estimated that air quality improved by around 25% (a 

                                                        
5 We summarize the related studies in Appendix T8. 
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28.2 point decline for AQI, and 22.3µg/m3 for PM2.5) relative to the same season in 2019. 

We also showed that, even in the control cities, where lockdown was not fully implemented, 

air quality improved (AQI decreased by 8.8 points (7%) and PM2.5 by 8.4 µg/m3 (8%)). These 

effects are much larger in more industrialized, richer, and colder cities. 

The remarkable improvement in air quality could lead to substantial health benefits. 

Based on the previous estimates on the relationship between air pollution and mortality, we 

show that averted premature deaths per month could be around 24,000 to 36,000, which is 

an order of  magnitude larger than the number of  deaths caused directly by COVID-19 in 

China (WHO, 2020). Because air pollution also has significant impacts on morbidity, 

productivity, and defensive (preventive) expenditures, our estimates should be interpreted as 

the lower bound of  the benefits that can be derived from air quality improvement.6 

Our findings have important policy implications for China to mitigate air pollution. We 

find that shutting down the unnecessary commercial activities reduces air pollution by around 

25%, and the effects are even greater in cities with a larger economy, greater industrial 

activities and traffic, and higher demand for coal heating. These results suggest that such 

activities are indeed important sources of  air pollution and provide a benchmark for future 

environmental regulation and highlight the necessity to control emissions from these sources 

when the business goes back to normal. 

Meanwhile, although the air quality improvement during this period was unprecedented, 

the air pollution levels during the lockdown remained high. For example, the PM2.5 

concentration in locked down cities was still more than four times higher than WHO 

considers safe (10 µg/m3 for the annual mean) (WHO, 2005), even though almost all non-

                                                        
6 For example, the morbidity cost of  air pollution is found to be around two-thirds of  mortality costs in China 
(Barwick et al., 2018). 
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essential production and business activities were suspended. This finding suggests that other 

sources of  air pollution continue to contribute significantly; in particular, the coal-fired 

winter heating system could be the primary polluting source during our study period (Chen 

et al., 2013; Ebenstein et al., 2017). Our research highlights that, without further reducing its 

reliance on coal, it will be a real challenge for China to win its “war against pollution” 

(Greenstone and Schwartz, 2018; Greenstone et al., 2020). 

We conclude by pointing out two caveats of  this study. First, we only consider the short-

term effects of  city lockdown. As cities resume normal activities, the health benefits of  air 

quality improvement could be offset in the longer term. Second, our calculation of  the 

averted number of  deaths is not based on actual mortality data, which are not yet available. 

If  COVID-19 or city lockdown affects mortality through other channels, the overall 

mortality costs could be higher or lower, depending on how different channels are affected. 

For example, medical resources in many cities ran short immediately after the disease 

outbreak, thus patients could die because they were unable to receive timely and proper 

treatment (Xie et al., 2020). The counter-virus measures also negatively affected the economy 

and employment, which are detrimental to population health. In such cases, excess deaths 

could be caused by economic consequences than were saved by reduced pollution. In 

contrast, as the pandemic also signficantly increased individuals’ awareness of  their health 

conditions and made people practice good hygiene, the counter-virus measures might reduce 

deaths from other diseases, particularly influenza.7 While estimating the overall mortality 

impact of  COVID-19 and city lockdown is beyond the scope of  our paper, future research 

                                                        
7 For example, in Hong Kong,  the number of  deaths caused by influenza and the number of  cases of  
influenza-like illness were reduced by more than 50%, as compared to previous years: 
https://www.ft.com/content/ad7ae6b4-5eab-11ea-b0ab-339c2307bcd4; in Japan, the influenza-like illness 
cases in the first week of  February were only about 30% compared to the same week a year ago: 
https://www.japantimes.co.jp/news/2020/02/21/national/influenza-wave-drastically-wanes-japan-amid-
spread-coronavirus/#.Xn9VHqgzaUl.  
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on these issues is warranted to understand the full implications of  the COVID-19 pandemic.   
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Figure 1. Map of  the Locked-down Cities 

 
Notes: This map shows which cities were locked down during the COVID-19 pandemic. 
The blue diamond represents locked-down cities. Overall, 95 out of  324 cities were locked 
down. The orange triangle indicates Wuhan city, where COVID-19 was first identified in 
China.  
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Figure 2. Trend of  Air Quality in Treatment and Control Group 

 
Panel A: Trend of  AQI in the Treatment and Control Group in 2020 

 
 

Panel B: Trend of  AQI in the Control Group in 2019 and 2020 

 
Notes: These figures show the trends in the Air Quality Index (AQI) in different groups of  
cities. In Panel A, we plot the AQI in the treatment and the control group in 2020. In Panel 
B, we plot the AQI in the control group in 2019 and 2020. The vertical dashed purple line 
represents the timing of  the Chinese Spring Festival. 
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Figure 3. The Effects of  Lockdown Before and After its Implementation 

 
Panel A: The Effects of  Lockdown on AQI 

 
Panel B: The Effects of  the Disease Preventive Measures  

on AQI in the Control Group (2019 and 2020) 

 
Notes: These figures summarize the results of  the parallel trend tests. We include leads and 
lags of  the start of  the city lockdown dummy in the regressions. The dummy variable 
indicating one week before the city lockdown is omitted from the regressions. The 
estimated coefficients and their 95% confidence intervals are plotted. In Panel A, we 
compare the air pollution levels between the treated cities with the control cities, and in 
Panel B, we compare air pollution levels in the control cities between 2019 and 2020.   
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Figure 4. Heterogeneous Effects of  Lockdown on the Air Quality Index 

 
Notes: The X-axis shows the estimated coefficients and their 95% confidence intervals. 
Each row corresponds to a separate regression using a corresponding subsample. We use 
the mean values to separate the “high” group from the “low” group for each pair of  
heterogeneity analyses. For example, if  a city's GDP is higher than the mean GDP, it falls 
into a “high” GDP group. For temperature (colder or warmer group), we use data 
measured in the first week of  our study period. North and South are divided along the 
Huai River. Other socio-economic data for the classification are measured in 2017. Each 
regression implements the equation and controls for weather, city fixed effects, and month-
by-week fixed effects. Standard errors are clustered at the city level. 
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Table 1. The Effects of Lockdown on Air Quality  

  Treatment and Control Group in 2020  Control Group in 2019 and 2020 
  Levels Log  Levels Log 

    (1) (2) (3) (4)   (5) (6) (7) (8) 
Panel A. Air Quality Index (AQI) 
 Lockdown -18.84*** -19.43*** -0.17*** -0.18***      
  (3.27) (3.04) (0.03) (0.03)      
 Spring Festival in 2020      -6.51** -8.77*** -0.04 -0.07*** 
       (2.53) (2.40) (0.03) (0.03)            

 R-Squared 0.695 0.723 0.769 0.793  0.647 0.655 0.701 0.711 
Panel B. PM2.5 (µg/m3) 
 Lockdown -13.47*** -13.94*** -0.15*** -0.17***      
  (2.65) (2.36) (0.03) (0.03)      
 Spring Festival in 2020      -7.58*** -8.40*** -0.06* -0.08** 
       (2.06) (2.07) (0.03) (0.03)            

 R-Squared 0.722 0.752 0.809 0.828  0.651 0.654 0.729 0.735            
 Weather Control  Y  Y   Y  Y 
 City FE Y Y Y Y  Y Y Y Y 
 Month-by-Week FE Y Y Y Y  Y Y Y Y 
 Obs. 2,916 2,916 2,916 2,916  4,158 4,158 4,158 4,158 

  No. of Cities 324 324 324 324   232 232 232 232 
Notes: Weather controls include weekly mean temperature, its square, weekly mean precipitation, and weekly mean snow depth. Standard errors are clustered at 
the city level and reported below the coefficients. * significant at 10% ** significant at 5%. *** significant at 1%. 
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Table 2. Estimated Health Benefits from Improved Air Quality 

 
 

 
Elasticity  
(PM2.5 per 
10 µg/m3) 

Actual 
Change in 
PM2.5 (per 
10 µg/m3) 

Population  
Affected 

(per 1,000) 

Base 
Monthly 
Mortality 

Rate  
(per 1000) 

Estimated  
Monthly 
Deaths 

  (1) (2) (3) (4) (5) 

       

Panel A. Elasticity from Fan et al. (2020) 

 Lockdown Cities 2.20% 2.234 545,820 0.59 15,939 
 Control Cities 2.20% 0.84 738,720 0.59 8,111 

     total 24,050 
Panel B. Elasticity from He et al. (2020) 

 Lockdown Cities 3.25% 2.234 545,820 0.59 23,546 
 Control Cities 3.25% 0.84 738,720 0.59 11,983 

     total 35,529 
Notes: We estimate the overall monthly number of  deaths in China by multiplying four variables 
represented in Columns (1) to (4). In Column (1), the elasticity indicates the extent to which a 10 µg/m3 
change in PM2.5 concentration affects the mortality rate. Column (2) summarizes estimated changes in 
PM2.5 in different types of  cities based on Table 1. In Column (4), we obtain China’s annual death rate 
from World Development Indicators and divide it by 12 to obtain the monthly death rate. As we do not 
have city-level mortality rate, in this calculation, we assume that the baseline mortality rate is the same 
across cities. 
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COVID-19, City Lockdowns, and Air Pollution: Evidence from China 

GUOJUN HE, YUHANG PAN, AND TAKANAO TANAKA 

Online Appendix 
 

Appendix 1: Materials and Method 
 
1-1. Data Appendix 

Air Quality Data: The air quality data is a high-frequency dataset covering seven major sets 

of  air pollutants. We obtain these data from the Ministry of  Ecology and Environment. 

The original dataset includes hourly readings on Air Quality Index (AQI), PM2.5, PM10, 

SO2, O3, NO2, and CO from 1605 air quality monitoring stations covering all the 

prefectural cities in China. Based on weights of  the inverse of  squared distance from the 

station and city population center, we collapse the dataset to 324 cities at a weekly level. 

Weather Data: Weather data includes temperature, precipitation, and snow. These data are 

obtained from the Global Historical Climatology Network (GHCN) from the National 

Oceanic and Atmospheric Administration (NOAA). We collapse data to a weekly city-

level dataset using the same methods as the air quality data.  

Lockdown: We collect local governments’ lockdown information city by city from news media 

and government announcements. Most of  the cities’ lockdown policies were directly 

issued by the city-level governments, while a few were promulgated by the provincial 

governments. To improve policy compliance, civil servants and volunteers were assigned 

to communities, firms, business centers, and traffic checkpoints. The local government 

also penalized offenders if  the rules were violated. There are some variations in rules and 

degrees of  the lockdown. For example, in some cities, individuals were not allowed to go 

out (food and daily necessities were delivered to them), while in other cities, they could 
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go out if  they did not have a fever. In this paper, we define lockdown when the following 

three measures are all enforced: 1) prohibition of  unnecessary commercial activities for 

people’s daily lives, 2) prohibition of  any type of  gathering by residents, 3) restrictions 

on private (vehicles) and public transportation. The primary dataset for lockdown is at a 

daily level. Thus, we aggregate this to a weekly level. Here, we define treatment = 1 if  

more than half  of  the days in the week were locked down. The timings of  the cities’ 

lockdowns are presented in Appendix Table A1. 

Socio-Economic Status: To explore the heterogeneity, we assemble the cities’ socio-economic 

status from the 2017 China City Statistical Yearbook. It contains city-level statistics such 

as GDP, population, industrial output, number of  firms, amount of  traffic, and pollutant 

emissions.  

Summary Statistics: We report the summary statistics of  air pollution and weather variables 

during this period in Appendix Table A2. The average AQI is 74, with a standard 

deviation of  42. The PM2.5 concentration is 52 µg/m3, five times higher than the WHO 

standard (10 µg/m3 for annual mean, and 25 µg/m3 for a daily mean). Cities that were 

locked down were, on average, more polluted than the control cities before the 

lockdowns. This is likely because Wuhan and its neighboring cities are generally more 

polluted than cities that are far away. We also see a sharp decline in AQI after the 

lockdown. 

 
1-2. Method 

Difference-in-Differences Model and Event Study 

We use two sets of  Difference-in-Differences (DiD) models to identify the impact of  

counter-COVID-19 on air pollution. First, in our baseline regression, we estimate the relative 

change in air pollution levels between the treated and control cities using the following 
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model:  

!"# = 1['()*	,-'./-01]"# ∗ 4 + 6"# ∗ 7 + 8" + 9# + :"# (A1) 

where !"#  represents the level of  air pollution in city (  in month-by-week ) . 

1['()*	,-'./-01]"# denotes whether a lockdown is enforced in city ( in month-by-week 

), and takes the value one if  the city is locked down and zero otherwise. 6"# are the control 

variables, including temperature, temperature squared, precipitation, and snow depth. 8" 

indicate city-fixed effects and 9# indicate month-by-week fixed effects.  

The city fixed effects, 8" , which are a set of  city-specific dummy variables, can control 

for time-invariant confounders specific to each city. For example, the city’s geographical 

conditions, short-term industrial and economic structure, income, and natural endowment 

can be controlled by introducing the city fixed effects. The month-by-week fixed effects, 9#, 

are a set of  dummy variables that account for shocks that are common to all cities in a given 

week, such as the nationwide holiday policies, macroeconomic conditions, and the national 

air pollution time trend. 

As both location and time fixed effects are included in the regression, the coefficient 4 

estimates the difference in air pollution between the treated (locked down) cities and the 

control cities before and after the enforcement of  the lockdown policy. We expect the 

coefficient 4 to be negative, as the industrial and business activities were restricted in the 

locked-down cities, and thus their air pollution levels should significantly decrease.  

The underlying assumption for the DiD estimator is that treated and control cities had 

parallel trends in the outcome before the lockdowns. To test this assumption, we conduct a 

parallel trend test following Jacobson et al. (1993): 	

!"# = > 1['()*	,-'./-01]"#,@ ∗ 4@
A

BC@,BDEF

+ 6"# ∗ 7 + 8" + 9# + :"# (A2) 
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where 1['()*	,-'./-01]",#@  are a set of  dummy variables indicating the treatment status 

at different periods. The dummy for H = −1 is omitted in Equation (A2) so that the post-

lockdown effects are relative to the period immediately before the launch of  the policy. The 

parameter of  interest 4@  estimates the effect of  city lockdown H  weeks after the 

implementation. We include leads of  the treatment dummy in the equation, testing whether 

the treatment affects the air pollution levels before the launch of  the policy. Intuitively, the 

coefficient 4@ measures the difference in air quality between cities under lockdown and 

otherwise in period . relative to the difference one year before the lockdown. We expect 

lockdown would improve air quality with 4@ being negative when . ≥ 0. If  the parallel 

trend assumption holds, 4@ would be close to zero when . ≤ −2. 

Even in a city that did not have a formal lockdown policy, people’s daily lives could still 

be affected by the counter-virus measures. In fact, in all Chinese cities, the Spring Festival 

holiday was extended, and people were advised to stay at home when possible, enforce social 

distancing, and keep good hygiene. We examine this possibility by comparing the air pollution 

changes between 2019 and 2020 for the same period (January 1st to March 1st) within the 

control group. As the explosion of  the COVID-19 cases coincided with China’s Spring 

Festival (SF), we investigate whether the trend of  air quality in 2020 differs from the trend 

in 2019 after the festival, by fitting the following model:  

!"#M = 1[NO ∗ 1(*PQR ≥ 2020)]"#M ∗ 4 + 6"#M ∗ 7 + 8" + 9# + :"#M 																		(A3) 

where (  denotes city, )  is month-by-week, and T  represents year. 1[NU ∗ 1(*PQR ≥

2020)]"#M is our variable of  interest, and it takes the value one if  it is after the Chinese 

Spring Festival in the year 2020, and zero otherwise. The estimated coefficient 4 would be 

zero if  the coronavirus and countermeasures do not affect control cities. As in Model (1), 

6"#M  are the control variables, 8" are city fixed effects and 9# indicates month-by-week 
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fixed effects.  

The identifying assumption for Model (3) is similar to Model (1). We require the trends 

in air quality before the Spring Festival in 2019 to be similar to the trends in air quality in the 

corresponding period in 2020 (i.e., the parallel trend assumption). We can test this 

assumption analogously using Model (2). In all the regressions, we cluster the standard errors 

at the city level.  

 

Back-of-The-Envelope Calculations on Potential Health Benefits 

We predict the reduced mortality from the improvement in air quality by calculating the 

following equation:  

V-R)Q,()*"# = ∆XYZ"# ∗ [,Q\)('()* ∗ ]Q\P	V^"# ∗ U-_`,Q)(-1"# (A4) 

where V-R)Q,()*"#  represents estimated saved deaths in city ( in month ), and ∆XYZ"# 

indicates an estimated change in air quality from Equations (A1) and (A3) in city ( in month 

), where we assume the effect of  lockdown on air quality is identical within the treatment 

group and within the control group. We borrow the [,Q\)('()* estimates from existing 

studies that measure the effect of  air quality on mortality; this represents the change in 

number of  deaths in response to a one-unit change in air quality. ]Q\P	V^"#  represents the 

base mortality rate, and U-_`,Q)(-1"# denotes the population in city ( in week ). The 

computations are summarized in Table 2 in the main text. 

For [,Q\)('()* estimates, we focus on studies that meet the following two criteria. First, 

we rely on quasi-experimental studies that investigate how exogenous changes in air quality 

affect health outcomes. Because the air pollution variation could be confounded by factors 

that also affect population health, the estimates from quasi-experimental studies are generally 

recognized as being more credible than those based on associational models (e.g., Graff  Zivin 
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and Neidell, 2013; Dominici et al., 2014). Second, we focus on the most recent research in 

China. Because the effects of  air pollution on mortality could depend on the baseline 

pollution levels, income, and institutional quality, studies using data from earlier years may 

be less relevant to our research context (Arceo et al., 2014; Cheung et al., 2020). 

We search for the literature and identify two studies that meet both criteria: He et al. 

(2020) use seasonal agricultural straw burning as the instrumental variable for PM2.5, and 

estimate how PM2.5 affects mortality; and Fan et al. (2020) examine how turning on the coal-

fired winter heating system affects weekly mortality.8 These studies estimate that a 10 µg/m3 

increase in PM2.5 would lead to a 2.2%~3.25% increase in mortality, which is largely 

consistent with a recent quasi-experimental study in the U.S. (Deryugina et al., 2020).9 

  

                                                        
8 A few other studies also use quasi-experimental approaches to estimate the impacts of  air pollution on 
mortality in China, including Chen et al. (2013), He et al. (2016), and Ebenstein et al. (2017). However, these 
studies are less relevant to our research context because they use data from at least a decade ago and focus on 
coarse measures of  air pollution, such as total suspended particles (TSP), or on PM10.  
9 We summarize the related studies in Appendix Table A8. We see that quasi-experimental studies find larger 
effects on mortality than associational studies.  
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Figure A1. Timing of  Lockdown 

 
Notes: This graph shows the timing of  the start of  the city lockdown. The x-axis 
represents the date, and the y-axis represents the number of  locked down cities. 
The yellow background represents the Chinese Spring Festival, and the red 
background represents the extended Spring Festival.  
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Figure A2. Event-Study Results on AQI and PM2.5 
 

Panel A. The Effects of  Lockdown on Air Quality 

   
Panel B. The Effects of  2020 Spring Festival on Air Quality in the Control Group 

   
Notes: These figures summarize the results of  the parallel trend tests. We include leads and lags of  the start of  the city lockdown dummy in the 
regressions. The dummy variable indicating one week before the city lockdown is omitted from the regressions. The estimated coefficients and their 
95% confidence intervals are plotted. In Panel A, we compare the air pollution levels between the treated cities and the control cities, and in Panel 
B, we compare air pollution levels in the control cities between 2019 and 2020.
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Figure A3. Heterogeneous Impact Using PM2.5 

 
Notes: The x-axis shows the estimated coefficients and their 95% confidence intervals. Each 
row corresponds to a separate regression using a corresponding subsample. We use the 
mean values to separate the “high” group from the “low” group for each pair of  
heterogeneity analyses. For example, if  a city’s GDP is higher than the mean GDP, it falls 
into the “high” GDP group. For temperature (colder or warmer group), we use data 
measured in the first week of  our study period. North and South are divided along the 
Huai River. Other socio-economic data for the classification are measured in 2017. 
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Table A1. List of Locked Down Cities 

Starting Date Cities 

23-Jan Wuhan 

24-Jan Huangshi, Shiyan, Yichang, Ezhou, Jingmen, Xiaogan, Huanggang, Xianning, 

Enshi 

25-Jan Qinhuangdao 

26-Jan Xiangyang, Jingzhou, Xiantao 

28-Jan Tangshan 

30-Jan Dongying 

31-Jan Chongqing, Yinchuan, Wuzhong 

2-Feb Wenzhou 

3-Feb Wuxi, Jining 

4-Feb Harbin, Nanjing, Xuzhou, Changzhou, Nantong, Hangzhou, Ningbo, Fuzhou, 

Jingdezhen, Zaozhuang, Linyi, Zhengzhou, Zhumadian 

5-Feb Shenyang, Dalian, Anshun, Fushun, Benxi, Dandong, Jinzhou, Fuxin, 

Liaoyang, Panjin, Tieling, Chaoyang, Huludao, Yangzhou, Hefei, Quanzhou, 

Nanchang, Jinan, Qingdao, Taian, Rizhao, Laiwu, Nanning 

6-Feb Tianjin, Shijiazhuang, Suzhou, Pingxiang, Jiujiang, Xinyu, Yingtan, Ganzhou, 

Ji’an, Yichun, Fuzhou, Shangrao, Neijiang, Yibin, Xinyang 

7-Feb Suzhou, Guangzhou 

8-Feb Shenzhen, Foshan, Fangchenggang, 

9-Feb Cangzhou, Huaibei 

10-Feb Beijing, Shanghai 

13-Feb Hohhot, Baotou, Wuhai, Chifeng, Tongliao, Ordos, Hulun Buir, Bayan Nur, 

Ulanqab, Xing’an League, Xilingol League, Alxa League 

Notes: The lockdown information is from local government and various media news in 2020. 
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Table A2. Summary Statistics  

  2020 (01. January ~ 01. March)  2019 (01. January ~ 01. March) 
   Treatment Group     
   (Locked Down Cities)     

  
All Cities 

Before 
Treatment 

After 
Treatment 

Control 
Group  

Treatment 
Group 

Control 
Group 

    (1) (2) (3) (4)   (5) (6) 
Panel A. Air Pollutant and Lockdown 
 Air Quality Index (AQI) 74.48 103.24 67.91 69.96  99.89 76.27 
  (42.41) (47.94) (26.75) (41.41)  (41.58) (38.35) 
 PM2.5 (µg/m3) 51.70 76.88 46.89 47.56  70.90 49.61 
  (33.94) (39.88) (20.84) (32.48)  (34.74) (31.37) 
 Lockdown 0.14 0.00 1.00 0.00  / / 
    (0.35) (0.00) (0.00) (0.00)   / / 
Panel B. Weather 
 Temperature (℃) 3.75 2.44 6.35 3.50  3.44 3.01 
  (8.20) (6.19) (5.40) (8.89)  (5.23) (7.52) 
 Precipitation (100mm) 24.00 19.62 18.68 25.96  39.65 47.10 
  (45.89) (26.85) (20.07) (52.13)  (27.28) 47.10 
 Snow Depth (100mm) 60.13 59.78 58.30 60.57  61.10 65.70 
    (26.40) (23.27) (14.05) (28.77)   (24.87) (32.20) 
         
 Number of Cities 324 95 95 229  95 229 
Notes: Each column summarizes the mean values and standard deviations of each variable at a weekly level. More information about the dataset is described in Appendix 
1. 
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Table A3. Main Specification Using Other Air Pollutants 

  Treatment and Control Cities in 2020 
  CO NO2 PM10 SO2 O3 
  (mg/m3) (µg/m3) (µg/m3) (µg/m3) (µg/m3) 
  (1) (2) (3) (4) (5) 
Panel A. Levels 
 Lockdown -0.07*** -4.70*** -22.22*** -1.25** 3.10*** 
  (0.03) (0.63) (3.18) (0.49) (0.76) 
       
 R-Squared 0.788 0.870 0.688 0.857 0.770 
        
Panel B. log 
 Lockdown -0.03*** -0.13*** -0.22*** -0.09*** 0.09*** 
  (0.01) (0.02) (0.03) (0.02) (0.02) 
       
 R-Squared 0.814 0.907 0.811 0.907 0.753 
       
 Weather Control Y Y Y Y Y 
 City FE Y Y Y Y Y 
 Date FE Y Y Y Y Y 
 Obs. 2,916 2,916 2,916 2,916 2,916 
  No. of Cities 324 324 324 324 324 
Notes: Weather controls include weekly mean temperature, its square, weekly mean precipitation, and 
weekly mean snow depth. Standard errors are clustered at the city level and reported below the coefficients. 
* significant at 10% ** significant at 5%. *** significant at 1%. 
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Table A4. Event Study: The Effects of Lockdown on Air Quality 

 AQI  PM2.5 (µg/m3) 
 levels log  levels log 
  (1) (2)   (3) (4) 

>=4 Weeks Before -1.97 -0.03  -3.62 -0.06 
 (3.92) (0.04)  (3.35) (0.04) 

3 Weeks Before 5.48 0.02  2.54 0.01 
 (4.43) (0.04)  (3.89) (0.04) 

2 Weeks Before -1.97 -0.06  -2.41 -0.07 
 (4.77) (0.05)  (4.23) (0.05) 

Treatment Week -7.65** -0.08**  -8.10*** -0.11** 
 (3.65) (0.04)  (2.95) (0.05) 

1 Week Later -23.45*** -0.26***  -16.94*** -0.25*** 
 (4.24) (0.05)  (3.43) (0.05) 

2 Weeks Later -27.93*** -0.28***  -20.01*** -0.26*** 
 (4.97) (0.05)  (4.02) (0.05) 

3 Weeks Later -22.65*** -0.22***  -19.13*** -0.23*** 
 (4.75) (0.05)  (3.97) (0.05) 

>=4 Weeks Later -31.09*** -0.25***  -24.70*** -0.23*** 
 (5.09) (0.05)  (4.45) (0.06) 
      

Weather Y Y  Y Y 
City FE Y Y  Y Y 
Month-by-Week FE Y Y  Y Y 
Obs. 2,916 2,916  2,916 2,916 
R-Squared 0.719 0.795  0.740 0.822 
No. of Cities 324 324   324 324 
Notes: Weather controls include weekly mean temperature, its square, weekly mean precipitation, and weekly 
mean snow depth. Standard errors are clustered at the city level and reported below the coefficients. * 
significant at 10% ** significant at 5%. *** significant at 1% 
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Table A5. Event Study: The 2020 Spring Festival 

on Air Quality in The Control Group 
 AQI  PM2.5 (µg/m3) 
 levels log  levels log 
  (1) (2)   (3) (4) 

>=4 Weeks Before 0.65 0.02  0.73 0.02 
 (1.95) (0.02)  (1.48) (0.02) 

3 Weeks Before 2.46* 0.04**  2.64** 0.05** 
 (1.48) (0.02)  (1.19) (0.02) 

2 Weeks Before 0.31 -0.00  0.67 0.00 
 (1.51) (0.02)  (1.14) (0.02) 

Treatment Week -6.21** -0.06**  -6.32** -0.07** 
 (2.94) (0.03)  (2.55) (0.03) 

1 Week Later -8.18*** -0.07***  -7.70*** -0.10*** 
 (2.67) (0.03)  (2.21) (0.03) 

2 Weeks Later -8.65*** -0.08***  -8.10*** -0.09*** 
 (2.78) (0.03)  (2.44) (0.03) 

3 Weeks Later -5.70* -0.05  -5.87** -0.06* 
 (2.96) (0.03)  (2.47) (0.03) 

>=4 Weeks Later -7.96*** -0.07***  -6.19** -0.08*** 
 (3.01) (0.03)  (2.42) (0.03) 
      

Weather Y Y  Y Y 
City FE Y Y  Y Y 
Month-by-Week FE Y Y  Y Y 
Obs. 4,158 4,158  4,158 4,158 
R-Squared 0.653 0.712  0.652 0.735 
No. of Cities 232 232   232 232 
Notes: Weather controls include weekly mean temperature, its square, weekly mean precipitation, and weekly 
mean snow depth. Standard errors are clustered at the city level and reported below the coefficients. * 
significant at 10% ** significant at 5%. *** significant at 1% 
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Table A6. Robustness Check Using Different Samples 

    AQI log (AQI)   PM2.5 log (PM2.5) 
    (1) (2)   (3) (4) 
Panel A. Drop Cities in Hubei Province 
 Lockdown -21.69*** -0.20***  -15.83*** -0.19*** 
  (3.3) (0.03)  (2.56) (0.03) 
       

 R-Squared 0.725 0.796  0.754 0.831 
 Obs. 2808 2808  2808 2808 
 Month-by-Week FE Y Y  Y Y 

              
Panel B. Using Daily Data 
 Lockdown -19.84*** -0.17***  -14.07*** -0.17*** 
  (3.13) (0.03)  (2.53) (0.03) 
       

 R-Squared 0.515 0.601  0.541 0.641 
 Obs. 19764 19764  19764 19764 
 Date FE Y Y  Y Y 
       

 Weather Control Y Y  Y Y 
 City FE Y Y  Y Y 
 No. of Cities 324 324   324 324 

Notes: Weather controls include mean temperature, its square, precipitation, and snow depth. Standard errors 
are clustered at the city level and reported below the coefficients. * significant at 10% ** significant at 5%. 
*** significant at 1%. 
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Table A7. Heterogeneity Analysis 

  AQI  PM2.5 (µg/m3) 
  levels log  levels log 
  (1) (2)  (3) (4) 
Panel A  
 Cold Region -26.97*** -0.20***  -16.17*** -0.12*** 
      (Obs. = 1,224) (5.77) (0.05)  (3.90) (0.04) 
 Warm Region -8.58*** -0.12***  -6.78*** -0.14*** 
      (Obs. = 1,692) (2.83) (0.03)  (2.29) (0.04) 
 Northern China -25.71*** -0.20***  -16.11*** -0.13*** 
      (Obs. = 1,413) (5.23) (0.04)  (3.57) (0.04) 
 Southern China -5.75** -0.10***  -4.34** -0.11*** 
      (Obs. = 1,503) (2.50) (0.03)   (1.97) (0.04) 
Panel B 
 GDP (high) -22.70*** -0.22***  -13.98*** -0.19*** 
      (Obs. = 1,053) (5.19) (0.05)  (3.66) (0.05) 
 GDP (low) -17.79*** -0.16***  -14.44*** -0.16*** 
      (Obs. = 1,863) (3.85) (0.03)  (3.15) (0.04) 
 per capita GDP (high) -21.61*** -0.21***  -13.95*** -0.18*** 
      (Obs. = 1,395) (4.29) (0.04)  (3.16) (0.05) 
 per capita GDP (low) -17.65*** -0.16***  -14.32*** -0.16*** 
      (Obs. = 1,521) (4.23) (0.04)  (3.44) (0.04) 
 Population (high) -21.69*** -0.22***  -14.79*** -0.21*** 
      (Obs. = 1,395) (4.71) (0.04)  (3.46) (0.05) 
 Population (low) -16.21*** -0.14***  -12.63*** -0.12*** 
      (Obs. = 1,521) (3.94) (0.04)   (3.23) (0.04) 
 Weather Y Y  Y Y 
 City FE Y Y  Y Y 
 Month-by-Week FE Y Y  Y Y 
Notes: Each cell represents a separate regression using the corresponding subsample. For example, a 
warm region uses cities whose temperature is above the mean. Weather controls include weekly mean 
temperature, its square, weekly mean precipitation, and weekly mean snow depth. Standard errors are 
clustered at the city level and reported below the coefficients. * significant at 10% ** significant at 5%. 
*** significant at 1% 
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Table A7 (Cont.). Heterogeneity Analysis 

  AQI  PM2.5 (µg/m3) 
  levels log  levels log 
  (1) (2)  (3) (4) 
Panel C  
 Secondary Industry Output (high) -30.35*** -0.27***  -20.18*** -0.24*** 
      (Obs. = 1,098) (5.02) (0.04)  (3.48) (0.05) 
 Secondary Industry Output (low) -11.77*** -0.12***  -9.46*** -0.12*** 
      (Obs. = 1,818) (3.77) (0.04)  (3.08) (0.04) 
 No. of Firms (high) -24.74*** -0.23***  -16.21*** -0.20*** 
      (Obs. = 1,188) (4.91) (0.04)  (3.36) (0.04) 
 No. of Firms (low) -13.71*** -0.12***  -11.05*** -0.12*** 
      (Obs. = 1,728) (4.02) (0.04)  (3.38) (0.04) 
 Transportation Activity (high) -22.90*** -0.24***  -14.26*** -0.22*** 
      (Obs. = 1,053) (5.19) (0.05)  (3.77) (0.05) 
 Transportation Activity (low) -17.17*** -0.15***  -13.76*** -0.14*** 
      (Obs. = 1,863) (3.54) (0.03)  (2.90) (0.03) 
Panel D 
 Wastewater Emission (high) -21.88*** -0.24***  -13.89*** -0.21*** 
      (Obs. = 1,287) (4.62) (0.04)  (3.29) (0.05) 
 Wastewater Emission (low) -17.91*** -0.14***  -14.41*** -0.14*** 
      (Obs. = 1,629) (4.00) (0.04)  (3.31) (0.04) 
 SO2 Emission (high) -25.52*** -0.25***  -16.99*** -0.22*** 
      (Obs. = 1,269) (5.11) (0.05)  (3.75) (0.05) 
 SO2 Emission (low) -15.07*** -0.13***  -12.21*** -0.13*** 
      (Obs. = 1,647) (3.65) (0.03)  (3.00) (0.04) 
 Dust Emission (high) -24.75*** -0.25***  -16.61*** -0.22*** 
      (Obs. = 1,386) (4.48) (0.04)  (3.26) (0.04) 
 Dust Emission (low) -14.49*** -0.12***  -11.60*** -0.12*** 
      (Obs. = 1,530) (4.26) (0.04)  (3.54) (0.04) 
 Weather Y Y  Y Y 
 City FE Y Y  Y Y 
 Month-by-Week FE Y Y  Y Y 
Notes: Each cell represents a separate regression using the corresponding subsample. For example, a 
warm region uses cities whose temperature is above the mean. Weather controls include weekly mean 
temperature, its square, weekly mean precipitation, and weekly mean snow depth. Standard errors are 
clustered at the city level and reported below the coefficients. * significant at 10% ** significant at 5%. 
*** significant at 1% 
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Table A8. Summary of  Related Literature on the Health Impacts of  Air Pollution  

  Study Country Period Method Effects 

Panel A. Quasi-Experimental Studies 

 Fan et al. (2020) China 
2014~ 
2015 

Regression 
Discontinuity 

A 10 µg/m3 increment in PM2.5 is associated with a 2.2% increase in mortality 
rate per 100,000 using the timing of the start of winter heating. 

 He et al. (2020) China 
2013~ 
2015 

Instrumental  
Variable 

A 10 µg/m3 increment in PM2.5 is associated with a 3.25% increase in 
mortality rate per 100,000 using the air pollution from agricultural fire. 

 Deryugina et al. (2020) USA 
1999~ 
2013 

Instrumental  
Variable 

A 10 µg/m3 increment in PM2.5 is associated with a 1.8% increase in three-
day mortality rate per million people aged 65+ using the wind speed. 

Panel B. Associational Studies 

 Shang et al. (2013) China 
2004~ 
2008 

Meta-Analysis 
A 10-µg/m3 increase in PM2.5 concentrations is associated with a 0.38% 
increase in total mortality. 

 Zhou et al. (2015) China 2013 
Multi-City  

Time-Series 
A 10-µg/m3 increase in two-day average PM2.5 concentrations is associated 
with a 0.6-0.9% increase in all-cause mortality in rural China. 

 Franklin et al. (2008) USA 
2000~ 
2005 

Hierarchical  
Model 

A 1.21% increase in all-cause mortality is associated with a 10-µg/m3 increase 
in the previous day's PM2.5 concentrations.  

 Kloog et al. (2013) USA 
2000~ 
2008 

Time-Series 
For every 10-µg/m3 increase in PM2.5 exposure, PM-related mortality 
increases by 2.8%. 

  Atkinson et al. (2014) World - Meta-Analysis 
A 10-µg/m3 increment in PM2.5 is associated with a 1.04% increase in the risk 
of death. The substantial regional variation is observed around the globe. 
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