
/

 

Age-dependent   effects   in   the   transmission   and   control   of  
COVID-19   epidemics  
 

Authors:   Nicholas   G.   Davies 1* ,   Petra   Klepac 1^ ,   Yang   Liu 1^ ,   Kiesha   Prem 1 ,   Mark   Jit 1 ,   CMMID  

COVID-19   working   group,   Rosalind   M   Eggo 1*  

 

The   CMMID   COVID-19   working   group 1    is:   Carl   A   B   Pearson,   Billy   J   Quilty,   Adam   J  

Kucharski,   Hamish   Gibbs,   Samuel   Clifford,   Amy   Gimma,   Kevin   van   Zandvoort,   James   D  

Munday,   Charlie   Diamond,   W   John   Edmunds,   Rein   MGJ   Houben,   Joel   Hellewell,   Timothy   W  

Russell,   Sam   Abbott,   Sebastian   Funk,   Nikos   I   Bosse,   Fiona   Sun,   Stefan   Flasche,   Alicia  

Rosello   &   Christopher   I   Jarvis.   Order   of   working   group   determined   at   random.  

 

1    Department   of   Infectious   Disease   Epidemiology,   London   School   of   Hygiene   &   Tropical  

Medicine,   Keppel   Street,   WC1E   7HT  

^   these   authors   contributed   equally  

*   correspondence   to   Rosalind   M   Eggo    r.eggo@lshtm.ac.uk    or   Nicholas   G   Davies  

nicholas.davies@lshtm.ac.uk  

 

 
 
The   COVID-19   pandemic   has   shown   a   markedly   low   proportion   of   cases   among  

children.   Age   disparities   in   observed   cases   could   be   explained   by   assortative   mixing  

patterns   and   reactive   school   closures   which   decrease   mixing   between   children,   or   by  

children   exhibiting   lower   susceptibility   to   infection,   or   by   children   having   a   lower  

propensity   to   show   clinical   symptoms.   We   formally   test   these   hypotheses   by   fitting   an  

age-structured   mathematical   model   to   epidemic   data   from   six   countries,   finding  
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strong   age   dependence   in   the   probability   of   developing   clinical   symptoms,   rising  

from   around   20%   in   under   10s   to   over   70%   in   older   adults.   We   find   that   interventions  

aimed   at   halting   transmission   in   children   may   have   minimal   effects   on   preventing  

cases   depending   on   the   relative   transmissibility   of   subclinical   infections.   Our  

estimated   age-specific   clinical   fraction   has   implications   for   the   expected   global  

burden   of   clinical   cases   because   of   demographic   differences   across   settings.   In  

younger   populations,   the   expected   clinical   attack   rate   would   be   lower,   although   it   is  

likely   that   comorbidities   in   low-income   countries   will   affect   disease   severity.   Without  

effective   control   measures,   regions   with   older   populations   may   see   disproportionally  

more   clinical   cases,   particularly   in   the   later   stages   of   the   pandemic.  

 

The   outbreak   of   COVID-19   caused   by   a   novel   coronavirus   has   shown   a   markedly   low  

proportion   of   children   among   reported   cases   from   China 1,2    and   other   countries 3,4 ,   a   feature  

shared   with   the   2003   SARS   epidemic 5    but   not   with   the   2009   influenza   A/H1N1p   pandemic 6,7 .  

There   are   not   only   relatively   few   COVID-19   cases   reported   in   children,   but   more   generally   an  

increased   number   of   cases   and   risk   of   severe   disease   as   age   increases 8,9 .   Understanding  

the   role   of   age   in   transmission   and   disease   severity   is   critical   for   determining   the   likely  

impact   of   social-distancing   interventions   for   decreasing   transmission,   especially   those   aimed  

at   schools,   and   for   estimating   the   expected   global   disease   burden.   

 

There   are   at   least   three   hypotheses   that   could   give   rise   to   the   age   gradient   in   observed  

COVID-19   cases   in   China.   First,   the   contact   patterns   and   demographics   of   China,   and  

Wuhan   in   particular,   could   have   resulted   in   fewer   children   being   infected.   The   outbreak   was  

linked   to   the   Huanan   Market   in   Wuhan   City,   China,   and   early   cases   were   in   older   adults 10 .  

Assortative   mixing   between   adults   could   therefore   have   reduced   transmission   to   children   in  

the   very   early   stages   of   the   outbreak.   The   subsequent   closure   of   schools   on   12th   January  
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2020   for   the   Lunar   New   Year   holiday   could   have   reinforced   this   effect.   Children   tend   to   make  

more   social   contacts   than   adults 11    and   hence,   all   else   equal,   contribute   more   to   transmission  

in   the   community   than   adults 12,13 .   This   is   why   school   closures   are   considered   a   key  

intervention   for   epidemics     of   respiratory   infections 8 ,   and   without   them,   one   would   expect   a  

higher   number   of   infected   children.   There   is   also   a   low   proportion   of   children   in   China   (21%  

under   18 14 ),   which   would   decrease   the   relative   proportion   of   cases   seen   in   children.   Outside  

of   China,   COVID-19   outbreaks   may   have   been   initially   seeded   by   working-age   travellers  

entering   the   country 15,16 ,   producing   a   similar   excess   of   older   individuals   in   early   phases   of  

local   epidemics.  

 

Second,   there   could   be   age-varying   susceptibility   to   infection   by   SARS-CoV-2,   where  

children   may   be   less   susceptible   to   becoming   infected   on   contact   with   an   infectious   person.  

This   would   further   reduce   cases   among   children,   and   potentially   lower   transmission   in   the  

population   overall.   Decreased   susceptibility   could   result   from   immune   cross-protection   from  

other   coronaviruses,   or   non-specific   protection   resulting   from   recent   infection   by   another  

respiratory   virus 17    of   which   children   have   higher   rates 18,19 .   

 

Third,   children   may   be   as   susceptible   to   SARS-CoV-2   infection   as   other   individuals,   but   may  

more   frequently   experience   milder   or   no   symptoms.   Such   age-dependent   variation   in  

severity   has   been   observed   for   other   respiratory   virus   infections 20 ,   including   SARS 14,15 .   For  

COVID-19,   there   are   indications   of   age   dependence   in   severity 8    and   mortality 21    of   reported  

cases 21 ,   which   could   extend   to   severity   and   likelihood   of   clinically   reportable   symptoms   on  

infection.   These   “subclinical”   infections   are   more   likely   to   remain   undetected   and   would   lead  

to   a   reduction   in   reported   cases   among   children,   but   children   could   still   be   capable   of  

transmitting   the   virus   to   others,   potentially   at   lower   rates   than   individuals   exhibiting   clinical  
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infections,   as   shown   for   influenza 22 .   Subclinical   cases   are   sometimes   called   “asymptomatic”  

but   very   mild   symptoms   may   not   be   noticed,   even   though   they   occur.  

 

Distinguishing   which   of   these   hypotheses   is   most   supported   by   available   data   has   important  

implications   for   policies   that   aim   to   control   transmission 23 ,   especially   through   interrupting  

child-driven   transmission.   For   example,   the   impact   of   school   closures   depends   on   the   role  

and   importance   of   children   in   the   epidemic.   Additionally,   if   the   number   of   infections   or   cases  

depends   strongly   on   the   role   of   children,   countries   with   different   age   distributions   could  

exhibit   substantially   different   epidemic   profiles   and   overall   impact   of   COVID-19   epidemics.  

 
The   role   of   children   in   transmission   in   Wuhan  

We   tested   three   hypotheses—(1)   no   age   variation   in   susceptibility   or   severity,   with   the   age  

distribution   of   cases   driven   by   age-dependent   contact   patterns   alone;   (2)   varying  

susceptibility   to   infection   by   age;   and   (3)   varying   clinical   fraction   by   age—using   an  

age-structured   dynamic   transmission   model   (see   Methods)   with   heterogeneous   contact   rates  

between   age   groups   drawn   from   social   contact   surveys   in   Shanghai 17 .   We   generated   model  

variants   for   each   hypothesis   ( Fig   1a )   and   fitted   to   three   data   sources   from   the   early   epidemic  

in   Wuhan   for   each   hypothesis   ( Fig,   1b,   1c ).   We   included   school   closures,   for   which   we  

decreased   the   school   contacts   of   children.   We   also   estimated   the   effect   of   the   holiday  

period,   and   the   travel   and   movement   restrictions   in   Wuhan,   on   transmission   ( Fig   1d ).    We  

found   that   under   each   hypothesis,   the   basic   reproduction   number    R 0     was   3.2–3.6   initially,  

was   inflated   1.2–1.5-fold   during   the   pre   Lunar   New   Year   holiday   period,   and   then   fell   by  

80–95%   during   restrictions   in   Wuhan,   which   brought    R 0    below   1   ( Fig   1e ).  

 

All   model   variants   fitted   the   daily   incident   number   of   confirmed   cases   equally   well   ( Fig   1f ).  

However,   hypothesis   1   did   not   reproduce   the   observed   age   distribution   of   cases,  

overestimating   the   number   of   cases   in   children   and   underestimating   cases   in   older   adults  
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( Fig   1g ).   Hypotheses   2   and   3   fitted   the   age   distribution   of   cases,   but   each   implied   a   very  

different   fraction   of   subclinical   infections   by   age,   with   much   higher   numbers   of   subclinical  

infections   under   hypothesis   2    (Fig   1h) .     Comparison   using   Deviance   Information   Criterion 6  

(DIC)   showed   that   hypothesis   2   (DIC:   691)   and   3   (DIC:   558)   were   preferred   over   hypothesis  

1   (DIC:   880),   and   hypothesis   3   was   better   supported   than   hypothesis   2.  

 

Under   hypothesis   2,   where   the   severity   was   equal   by   age,   20%   of   both   clinical   and  

subclinical   infections   occurred   in   the   70-100   year   old   age   group   ( Fig   1h ).   Under   hypothesis  

3,   20%   of   clinical   cases   but   less   than   5%   subclinical   cases   are   in   this   group.   Recent   work  

has   demonstrated   an   age-dependent   severity   in   hospitalised   confirmed   cases 24,25 ,   which  

suggests   that   a   high   rate   of   subclinical   infection   in   older   adults   may   not   be   realistic.   Close  

follow-up   of   contacts   of   cases   in   Shenzhen,   China,   found   that   children   were   infected   at   the  

same   rate   as   adults 16 ,   lending   more   weight   to   hypothesis   3.   Additionally,   evidence   of  

increased   severity   by   age 19    suggests   that   clinical   signs   are   more   likely   in   older   adults,   which  

further   decreases   the   plausibility   of   hypothesis   2.  
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Fig.   1.   Comparing   the   fit   of   hypotheses   1,   2,   and   3   when   fitted   to   data   from   Wuhan   City,   China.  
(a)    Model   diagram   showing   duration   of   disease   states,   where    d    parameters   represent   the   duration   of  
time   in   each   disease   state   and    y i    is   the   fraction   of   infections   that   are   clinical   in   age   group    i    (see  
Methods).    (b)    Susceptibility   by   age   for   the   three   hypotheses.   Age-specific   values   were   estimated   for  
hypothesis   2   and   all   ages   had   equal   susceptibility   for   hypothesis   1   and   3.   Susceptibility   is   measured  
as   the   probability   of   infection   on   contact   with   an   infectious   person.    (c)    Clinical   fraction   ( y i )   by   age   for  
the   3   hypotheses.   Age-specific   values   were   estimated   for   hypothesis   3   and   all   ages   were   equal   for  
hypothesis   1   and   2.    (d)    Fitted   contact   multipliers   for   holiday   and   restricted   periods   for   each   hypothesis  
showed   an   increase   in   non-school   contacts   beginning   on   January   12th   (start   of   Lunar   New   Year)   and  
a   decrease   in   contacts   following   restrictions   on   January   23rd.    (e)    Estimated   R 0    values   under   each  
hypothesis.   The   red   barplot   shows   the   inferred   window   of   spillover   of   infection.    (f)    Incident   reported  
cases   (black),   and   modelled   incidence   of   clinical   cases   for   the   three   hypotheses   as   fitted   to   the   cases  
reported   by   China   Centers   for   Disease   Control 1    with   onset   on   or   before   February   1st,   2020.   Line  
marks   mean   and   shaded   window   is   the   95%   highest   density   interval   (HDI).    (g)    Age   distribution   of  
cases   by   onset   date   as   fitted   to   the   age   distributions   reported   by   Li   et   al. 26     Data   are   shown   in   the  
hollow   bars,   and   model   predictions   in   filled   bars,   where   the   dot   marks   the   mean   posterior   estimate.    (h)  
Inferred   distribution   of   subclinical   cases   by   age   under   each   hypothesis.   Credible   intervals   on   modelled  
values   show   the   95%   HDIs;   credible   intervals   on   data   for   panels   d-f   show   95%   HDIs   for   the   proportion  
of   cases   in   each   age   group.   
 
 

Estimating   the   age-specific   clinical   fraction   

Since   the   initial   outbreak   in   Wuhan,   the   virus   has   spread   to   other   regions   within   China   and  

internationally.   Local   epidemics   have   exhibited   a   less   extreme,   but   still   marked   lack   of  

reported   cases   among   children.   The   expected   proportion   of   children   infected   depends   on  
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mitigation   measures   in   place   in   each   region,   and   is   expected   to   be   lower   in   regions   which  

have   closed   schools.   

 

Using   the   best   fitting   and   most   biologically   plausible   hypothesis,   hypothesis   3   —   age-varying  

clinical   fraction   —   we   estimated   the   age-specific   clinical   fraction   for   32   settings   across   six  

countries   by   using   the   stationary   distribution   of   the   next   generation   matrix   to   reproduce   the  

locally-reported    age   distribution   of   cases   compiled   from   a   variety   of   sources    (Fig   2a) .   We  

used   setting-specific   demographics,   measured   contact   matrices   where   possible,   and  

synthetic   contact   matrices   otherwise 27 .   The   age-dependent   clinical   proportion   was   markedly  

lower   in   younger   age   groups   in   all   regions    (Fig   2b),    with   20%   of   infections   in   children   under  

10   resulting   in   clinical   cases,   rising   to   over   70%   in   adults   over   70   in   the   consensus   age  

distribution   estimated   across   all   regions.   To   determine   whether   this   distribution   was   capable  

of   reproducing   epidemic   dynamics,   we   fitted   our   dynamic   model   to   the   incidence   of   clinical  

cases   in   Beijing,   Shanghai,   South   Korea   and   Italy   ( Fig   2c ).   The   consensus   age-specific  

clinical   fraction   was   largely   capable   of   reproducing   the   age   distribution   of   cases,   although  

there   are   some   outliers,   for   example   the   20-30   age   group   in   South   Korea.   This   could   be   the  

result   of   clustered   transmission   within   a   church   group   in   this   country 4 .   The   predicted   age  

distribution   of   cases   for   Italy   is   also   less   skewed   towards   older   adults   than   reported   cases  

show,   suggesting   potential   differences   in   age-specific   testing   in   Italy 28 .   Locally-estimated  

age-varying   clinical   fraction   captured   these   patterns   more   precisely    (Fig.   2c) .  
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Fig   2.     Estimating   age-specific   symptomatic   rate   from   age-specific   case   counts   for   6   countries.  
(a)    Age-specific   reported   cases   from   13   provinces   of   China,   12   regions   of   Italy,   Japan,   Singapore,  
South   Korea,   and   Ontario,   Canada.   Hollow   bars   are   data   and   colour   is   model   fit   with   95%   HDI.    (b)  
Fitted   mean   and   95%   HDI   for   the   age   distribution   in   clinical   fraction   for   all   countries.    (c)    Fitted  
incidence   of   confirmed   cases   and   resulting   age   distribution   of   cases   using   either   the   consensus   (grey)  
or   country-specific   (colour)   age-specific   clinical   fraction   from   b.  
 
 

Impact   of   school   closures   under   different   demographics   and   subclinical  

infectiousness  

School   closures   during   epidemics 29,30    and   pandemics 31,32    aim   to   slow   the   spread   of   infections  

by   decreasing   transmission   amongst   children 12 .   School   closures,   which   have   been   used  

during   influenza   pandemics 31 ,   can   decrease   cases   in   children,   but   may   also   have  

whole-population   effects   if   children   play   a   major   role   in   transmission.   The   impact   will   depend  

on   the   fraction   of   the   population   that   are   children   and   the   contacts   they   have   with   other   age  

groups.   Using   schematic   values 7    for   pandemic   influenza   and   our   inferred   values   for  

COVID-19    (Figure   3a)    we   compared   epidemics   in   three   cities   with   very   different  

demography:   Milan   (Italy,   high   median   age),   Birmingham   (UK,   intermediate   median   age),  
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and   Bulawayo   (Zimbabwe,   low   median   age)    (Fig   3b) ,   using   measured   contact   matrices   for  

each   country.   There   were   many   more   clinical   cases   for   COVID-19   than   influenza   in   all   cities,  

with   relatively   more   cases   in   children   in   the   influenza-like   scenario,   and   more   cases   in   adults  

in   simulated   COVID-19   epidemics   ( Fig   3c) .   More   clinical   cases   were   seen   in   older   adults   in  

Milan   compared   with   the   other   cities,   and   a   markedly   younger   age   distribution   in   clinical  

cases   in   Bulawayo.   Using   the   same   age-dependent   clinical   fraction   drawn   from   high   and  

upper-middle   income   countries   in   low   and   lower-middle   income   countries   (LMIC)   may  

underestimate   clinical   cases   due   to   the   presence   of   comorbidities.   

 

To   fully   explore   the   effect   of   school   closure   we   simulated   3   months   of   school   closures   with  

varying   infectiousness   of   subclinical   cases,   at   either   0,   0.25,   0.5   or   0.75   times   the  

infectiousness   of   clinical   cases   ( Fig   3d) .   We   found   that   school   closures   decreased   peak  

incidence   slightly   for   influenza-like   infections,   and   delayed   the   peak   substantially.   For  

COVID-19   epidemics,   the   delay   and   decrease   of   the   peak   was   smaller,   and   this   was  

especially   the   case   in   Bulawayo,   which   has   the   highest   proportion   of   children    (Fig   3e) .  

Because   children   exhibit   more   subclinical   cases   for   COVID-19,   school   closures   were   more  

effective   at   reducing   transmission   of   COVID-19   when   the   subclinical   infectiousness   was  

assumed   to   be   higher    (Fig   3f) .   
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Fig.   3.   Effect   of   school   closure   under   different   demographics   and   subclinical   infectiousness.  
(a)    Age   dependence   in   clinical   fraction   (severity)   and   susceptibility   to   infection   on   contact   for   COVID,  
and   for   the   schematic   influenza-like   scenarios   (simplified,   based   on 7 )   considered   here.    (b)    Age  
structure   for   the   3   exemplar   cities.    (c)    Age-specific   attack   rate   for   COVID-19   and   influenza-like  
infections,   assuming   50%   subclinical   infectiousness.    (d)    Daily   incidence   of   clinical   cases   in   exemplar  
cities   for   COVID-19   versus   influenza-like   infections.   R 0    is   fixed   at   2.4.   The   rows   show   the   impact   of  
varying   the   infectiousness   of   subclinical   infections   to   be   0%,   25%,   50%,   or   75%   as   infectious   as  
clinical   cases   while   keeping   R 0    fixed.    (e)    Change   in   peak   timing   and   peak   cases   for   the   three   cities,  
for   either   COVID-19   or   pandemic   influenza.    (f)    Change   in   median   COVID-19   peak   timing   and   peak  
cases   for   the   three   cities,depending   on   the   infectiousness   of   subclinical   infections.  
 
 

Implications   for   global   preparedness  

Strong   age   dependence   in   the   fraction   of   COVID-19   infections   that   become   clinical   cases  

has   implications   for   the   projected   global   burden.   Simulating   COVID-19   outbreaks   in   146  

capital   cities,   we   found   that   the   total   expected   number   of   clinical   cases   in   an   unmitigated  

epidemic   varied   between   countries   depending   on   the   median   age   of   the   population,   which   is  

a   proxy   for   the   age   structure   of   the   population.   The   total   clinical   attack   rate   was   higher,   and  

the   peak   height   of   the   epidemic   was   greater,   in   older   populations   ( Fig   4a ).   By   contrast,   the  

number   and   peak   of   subclinical   infections   was   lower   in   older   populations   ( Fig   4b ).   The   mean  

estimated   basic   reproduction   number,   R 0 ,   was   higher   in   cities   with   a   lower   median   age   ( Fig  

4c ),   because   of   the   greater   proportion   of   children   and   the   higher   number   of   contacts   made  

by   children   compared   to   adults.   We   applied   the   same   age-dependent   clinical   fraction   to   all  
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countries,   but   the   relationship   between   age   and   clinical   symptoms   may   be   different   in  

different   countries,   perhaps   because   of   the   age   distribution   of   comorbidities,   or   the   presence  

of   other   possible   comorbidities,   such   as   HIV 33 .   If   the   relationship   between   clinical   fraction  

and   age   skews   younger   in   low   and   lower-middle   income   countries,   there   would   be   higher  

clinical   attack   rates   in   these   countries   (Supplementary   Section   4).   

 

The   expected   age   distribution   of   cases   shifted   substantially   over   time,   where   in   the   early  

phase   of   the   epidemic,   the   clinical   case   distribution   tended   to   be   skewed   to   younger   ages,  

and   the   late   phase   showed   more   cases   in   older   individuals   ( Fig   4d ).   This   impacts  

projections   for   likely   healthcare   burdens   at   different   phases   of   the   epidemic,   particularly  

because   older   individuals   tend   to   have   higher   healthcare   utilisation   on   infection 1    ( Fig   4e ).  

 
 

Fig.   4.   Implications   for   global   preparedness.    (a)   Expected   clinical   case   attack   rate   (mean   and   95%  
HDI),   and   peak   in   clinical   case   incidence   for   146   countries   in   the   Global   Burden   of   Disease   (GBD)  
country   groupings 34    for   an   unmitigated   epidemic.   (b)   Expected   sub   clinical   case   attack   rate,   and   peak  
in   subclinical   cases.   (c)   Estimated   basic   reproduction   number   (R 0 )   in   the   capital   city   of   each   country  
assuming   age-specific   clinical   fraction   shown   in   Fig.   2b   and   50%   infectiousness   of   subclinically  
infected   people.   (d)   Mean   age   of   clinical   cases   on   each   day   of   an   unmitigated   epidemic   in   the   146  
countries,   and   the   epidemic   curve   for   those   epidemics.   The   epidemics   are   aligned   at   the   peak,   and  
colours   mark   the   GBD   groupings   in   a.   (e)   Age   distribution   of   the   first   third   and    last   third   of   clinical  
cases   for   146   countries   in   GBD   country   groupings.   
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Conclusions  
We   have   shown   a   strong   age   dependence   in   the   probability   of   displaying   clinical   symptoms  

for   COVID-19,   from   around   20%   in   under   10s,   to   over   70%   in   older   adults.    Given   evidence   of  

a   stark   age   gradient   in   severity 8    and   mortality 21,28 ,   and   recent   studies   of   close   follow   up   of  

children   at   risk   of   infection 16    showing   that   infection   was   frequent   in   all   age   groups,   the  

plausibility   of   age-specific   severity   is   higher   than   age-specific   susceptibility   to   infection.   For   a  

number   of   other   pathogens,   there   is   evidence   that   children   (except   for   the   very   youngest)  

have   lower   rates   of   symptomatic   disease 12    and   mortality 26 .   For   these   reasons,   we   find   that  

age-specific   clinical   fraction   is   more   supported   than   age-specific   susceptibility   to   infection.  

Serological   surveys   will   provide   critical   information   on   the   true   distribution   of   subclinical  

infections.   

 

The   age-specific   distribution   of   subclinical   infection   we   have   found   is   similar   in   shape   (but  

larger   in   scale)   to   that   generally   assumed   for   pandemic   influenza.   However,   for   the   2009  

influenza   A/H1N1p   pandemic,   the   age-specific   susceptibility   to   infection   was   lower   in   older  

individuals   compared   to   COVID-19.   These   differences   have   a   large   effect   on   how   effective  

school   closures   may   be   in   limiting   transmission,   delaying   the   peak   of   expected   cases,   and  

decreasing   the   total   and   peak   number   of   cases.   For   COVID-19,   school   closures   are   likely   to  

be   much   less   effective   than   for   influenza-like   infections   where   children   play   a   more  

substantial   role   in   transmission.   

 

It   is   critical   to   determine   how   infectious   subclinical   infections   are   compared   to   clinical  

infections   in   order   to   properly   assess   predicted   burdens   both   with   and   without   interventions.  

It   is   biologically   plausible   that   milder   cases   are   less   transmissible,   for   example,   because   of  

an   absence   of   cough 28,29 ,   but   direct   evidence   is   limited 35 .   If   those   with   subclinical   infection  

are   similarly   efficient   transmitters   of   infection   compared   to   those   with   clinical   infections,   the  
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overall   burden   in   the   groups   at   risk   of   severe   disease,   primarily   older   populations   for  

COVID-19 21 ,   remains   high.   If   those   with   subclinical   infections   are   (much)   less   efficient   at  

transmitting,   then   the   overall   contribution   to   the   burden   of   clinical   disease   in   the   population  

may   be   proportionally   lower.   At   the   same   time,   lower   relative   infectiousness   would   reduce  

the   impact   of   interventions   targeting   younger   ages,   such   as   school   closure.   By   analysing  

epidemic   dynamics   before   and   after   school   closures,   it   may   be   possible   to   estimate   the  

infectiousness   of   subclinical   infections,   however   this   will   rely   on   granular   data   by   age   and  

time.   

 

A   great   deal   of   concern   has   been   directed   toward   the   expected   burden   of   COVID-19   in   low  

and   middle   income   countries   (LMIC),   which   have   lower   population   median   age   than   many  

high   income   countries.   Our   results   show   that   these   demographic   differences,   coupled   with   a  

lower   symptomatic   fraction   in   younger   ages,   can   result   in   proportionally   fewer   clinical   cases  

than   would   be   expected   in   higher-income   countries   with   flatter   demographic   pyramids.   This  

should   not   be   interpreted   as   few   cases   in   LMIC,   because   the   projected   epidemics   are   still  

very   large,   resulting   in   high   numbers   infected.   Moreover,   the   particular   relationship   found  

with   age   here   is   drawn   from   high   income   countries,   primarily   in   East   Asia,   and   may   reflect  

not   only   age,   but   also   the   increasing   frequency   of   comorbidities   with   age.   This   relationship,  

therefore,   may   differ   in   LMIC   for   two   key   reasons:   first,   the   distribution   of   non-communicable  

comorbid   conditions—which   are   already   known   to   increase   the   risk   of   severe   disease   from  

COVID-19 21 may   be   differently   distributed   by   age,   often   occurring   in   younger   age   groups 34 ,  

along   with   other   possible   risk   factors   such   as   undernutrition 36 ;   and   second,   communicable  

comorbidities   such   as   HIV 33 ,   TB   coinfection   (which   has   been   suggested   to   increase   risk 37 ),  

and   others 38    may   alter   the   distribution   of   severe   outcomes   by   age.   Observed   severity   and  

burden   in   LMIC   may   also   be   higher   due   to   a   lack   of   health   system   capacity   for   intensive  

treatment   of   severe   cases.   
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There   are   some   limitations   to   the   study.   The   true   explanation   for   the   age   distribution   could  

be   a   combination   of   age-specific   susceptibility   and   clinical   fraction,   although   some   recent  

studies   indicate   children   are   infected   at   similar 24 ,   or   slightly   lower   rates 39    than   adults,   and  

children   are   not   commonly   spared   from   other   coronavirus   infections 40,41 .   It   is   not   possible   to  

simultaneously   estimate   both   effects   from   available   data,   so   we   were   unable   to   validate   a  

mixture   model.   While   information   drawn   from   the   early   stages   of   the   epidemic   are   subject   to  

uncertainty,   age-specific   information   is   drawn   from   several   regions   and   countries,   and  

clinical   studies   support   the   hypothesis   presented   here.   We   assumed   that   clinical   cases   are  

reported   at   a   fixed   fraction   throughout   the   time   period,   although   there   may   have   been  

changes   in   reporting.   We   assumed   that   subclinical   infections   were   less   infectious   than  

clinical   infections   but   were   not   able   to   estimate   how   infectious   subclinical   infections   were,  

instead   testing   the   sensitivity   of   our   findings   to   this   parameter.   We   have   used   mixing  

matrices   from   the   same   country,   but   not   the   same   location   as   the   fitted   data.   We   used  

contact   matrices   that   combined   physical   and   conversational   contacts.   We   therefore   implicitly  

assume   that   they   are   a   good   reflection   of   contact   relevant   for   the   transmission   of  

SARS-CoV-2.   If   fomite,   or   faecal-oral   routes   of   transmission   are   important   in   transmission,  

these   contact   matrices   may   not   be   representative   of   transmission   risk.  

 

The   role   of   age   in   transmission   is   critical   to   designing   interventions   aiming   to   decrease  

transmission   in   the   population   as   a   whole,   and   to   projecting   the   expected   global   burden.  

Early   evidence 24 ,   including   presented   here,   suggests   that   there   is   age   dependence   in   the  

risk   of   clinical   symptoms   following   infection.   Understanding   if   and   by   how   much   subclinical  

infections   contribute   to   transmission   has   implications   for   predicted   global   burden   and   the  

impact   of   control   interventions.   This   question   must   be   resolved   to   effectively   forecast   and  

control   COVID-19   epidemics.  
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Methods  
 
Transmission   model   structure   used   in   all   analyses  

We   use   an   age-structured   deterministic   compartmental   model   (Fig.   1a,   main   text)   stratified  

into   5-year   age   bands,   with   time   approximated   in   discrete   steps   of   0.25   days.   We   assume  

that   people   are   initially   susceptible   (S),   and   become   exposed   (E)   after   effective   contact   with  

an   infectious   person.   After   an   incubation   period,   exposed   individuals   either   develop   a   clinical  

or   subclinical   infection;   an   exposed   age- i    individual   develops   a   clinical   infection   with  

probability   ,   otherwise   developing   a   subclinical   infection.   Clinical   cases   are   preceded   by   a yi  

preclinical   but   infectious   (I P )   state;   from   the   preclinical   state,   individuals   develop   full  

symptoms   and   become   clinically   infected   (I C ).   Based   on   evidence   for   other   respiratory  

infections 22    we   assume   that   subclinical   infections   (I S )   are   less   infectious   compared   to  

preclinical   and   clinical   infections,   and   that   subclinical   individuals   remain   in   the   community  

until   they   recover.   We   use   50%   as   a   baseline   for   the   relative   infectiousness   of   individuals   in  

the   subclinical   state,   and   test   the   impact   of   other   values   (Supplementary   section   3).   Isolated  

and   recovered   individuals   eventually   enter   the   removed   state   (R);   we   assume   these  

individuals   are   no   longer   infectious   and   are   immune   to   reinfection.  

 

The   length   of   time   an   individual   spends   in   states    E,   I P ,   I C ,   or    I S    is   distributed   according   to  

distributions   ,   or   ,   respectively   (Table   1).   The   force   of   infection   for   an   individual , d , ddE   P   C dS  

in   age   group    i    at   time    t    is  

, (I I ) Nλi,t = ui∑
 

j
cij,t P j + ICj + f S j / j  

where     is   the   susceptibility   to   infection   of   an   age- i    individual,   is   the   number   of   age- j ui  cij,t  

individuals   contacted   by   an   age- i    individual   per   day   at   time    t ,    f    is   the   relative   infectiousness  

of   a   subclinical   case,   and   is   the   effective   probability   that   a   random   age- j I I ) N  ( P j + ICj + f S j / j  
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individual   is   infectious.   Contacts   vary   over   time    t    depending   upon   the   modelled   impact   of  

school   closures   and   movement   restrictions   (see   below).  

 

To   calculate   the   basic   reproductive   number,    R 0 ,   we   define   the   next   generation   matrix   as  

  . GM c (y E(d ) 1 )fE(d )  N ij = ui ij,t j P + dC + (  yj S  

R 0    is   the   absolute   value   of   the   dominant   eigenvalue   of   the   next   generation   matrix.  

 

We   use   the   local   age   distribution   for   each   city   or   region   being   modelled,   and   synthetic   or  

measured   contact   matrices   for   mixing   between   age   groups   (Table   2).   The   mixing   matrices  

have   four   types   of   contacts:   home,   school,   work   and   other   contacts.   

 
 

Parame 
ter  

Description  Applies   in   fits  Value  Reference  

dE  Incubation   period   (E   to   I P    and   E   to   I S ;  
days)  

All  amma(μ .0, )  ~ g = 4 k = 5  Derived  
from 42   

dP  Duration   of   preclinical   infectiousness  
(days)  

All  amma(μ .4, )  ~ g = 2 k = 5  Derived  
from 42   

dC  Duration   of   clinical   infectiousness   (I C    to   R;  
days)  

All  amma(μ .2, .7)  ~ g = 3 k = 3  43  

dS  Duration   of   subclinical   infectiousness  
(days)  

All  amma(μ , )  ~ g = 7 k = 5  Assumed  

ui  Susceptibility   for   age   group    i  Varies   by   age   in  
Wuhan   hypothesis  
2,   otherwise   all   ages  
equal  

Estimated   

yi  Probability   of   clinical   infection   for   age  
group    i  

Varies   by   age   in  
Wuhan   hypothesis  
3,   otherwise   all   ages  
equal  

Either   fixed   (50%)   or  
estimated  

44  

 f  Relative   infectiousness   of   subclinical  
cases  

All  50%   (25%   and   75%   in  
sensitivity   analysis)  

Assumed  

cij  Number   of   age- j    individuals   contacted   by  
an   age- i    individual   per   day  

All  Country-specific   contact  
matrix   (sensitivity   analysis  
using   synthetic   matrices 19 )  

China 32 ;   UK 7 ;  
Zimbabwe 34   

N i  Number   of   age- i    individuals  All  Demographic   data     14  

tΔ  Time   step   for   discrete-time   simulation  All  0.25   days   

,Amin Amax  Age   range   of   seed   cases  Wuhan   Estimated   
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tseed  Day   upon   which   seeding   of   infections  
starts  

All  Estimated   

qH  Relative   change   in   non-school   contacts  
during   lunar   new   year   holidays   

Wuhan  Estimated   

qL  Relative   change   in   non-school   contacts  
following   large-scale   restrictions  

Wuhan,   South  
Korea,   Shanghai,  
Beijing,   Italy  

Estimated   

tL  Day   upon   which   large-scale   restrictions  
start  

Wuhan,   South  
Korea,   Shanghai,  
Beijing,   Italy  

Fixed   to   January   23   for  
Wuhan;   estimated   for   other  
settings  

 

Table   1.    Model   parameters.  
 
 

Location  Mixing   matrix   details  

Wuhan   City,   China  We   used   mixing   matrices   measured   in   Shanghai   in  
2017/2018 45 ,   adapted   to   the   demographics   of   Wuhan  
prefecture.   This   implicitly   assumes   that   Shanghai   mixing  
patterns   are   representative   of   large   cities   in   China.  

Regions   of   China:   Anhui,   Guangdong,  
Guangxi,   Hubei,   Hunan,   Jiangsu,   Jiangxi,   Jilin  
Shaanxi,   Shandong,   Sichuan,   Tianjin,   Zheijiang  
provinces;   Beijing,   Shanghai.  

We   used   mixing   matrices   measured   in   Shanghai   in  
2017/2018 45 ,   adapted   to   the   demographics   of   each   province  
/   city.  

Regions   of   Italy:   Lombardia,   Piemonte,   Trento  
Veneto,   Friulli   Venezia   Giulia,   Liguria,  
Emilia-Romagna,   Toscana,   Marche,   Lazio,  
Campania,   Puglia   regions;   Milan.  

We   used   mixing   matrices   measured   in   Italy   in   2005/2006 11 ,  
adapted   to   the   demographics   of   each   region   /   city.   This  
assumes   that   these   contact   patterns   will   still   be  
representative   of   contact   patterns   in   2020.  

Ontario,   Canada  We   used   synthetic   contact   matrices,   generated   based   on  
demographic   information   about   the   country 27 .  

Japan  We   used   synthetic   contact   matrices,   generated   based   on  
demographic   information   about   the   country 27 .  

Singapore  We   used   synthetic   contact   matrices   based   on   demographic  
information   about   the   country 27 .  

South   Korea  We   used   synthetic   contact   matrices   based   on   demographic  
information   about   the   country 27 .  

Birmingham,   UK  We   used   mixing   matrices   measured   in   the   UK   in  
2005/2006 11 ,   adapted   to   the   demographics   of   Birmingham.  
This   assumes   that   these   contact   patterns   will   still   be  
representative   of   contact   patterns   in   2020.  

Bulawayo,   Zimbabwe  We   used   mixing   matrices   measured   in   Manicaland,  
Zimbabwe   in   2013 46 ,   adapted   to   the   demographics   of  
Bulawayo.   This   implicitly   assumes   that   Manicaland   mixing  
patterns   are   representative   of   Bulawayo.  

150   capital   cities  We   used   synthetic   contact   matrices,   generated   based   on  
demographic   information   about   each   country 27 .  

Table   2.    Details   on   mixing   matrices   used   in   the   study.  
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Comparing   age   hypotheses   by   fitting   to   the   Wuhan   epidemic  

We   contrasted   three   possible   hypotheses.   In   hypothesis   1,   there   were   no   age-related  

differences   in   susceptibility   ( )   or   symptomatic   fraction   ( ).   In   hypothesis   2, ui = u yi = y  

susceptibility   varied   by   age   ( ),   but   the   proportion   of   exposed   individuals   who   became (i)ui = u  

clinical   cases   did   not   vary   by   age   ( ).   In   hypothesis   3,   the   clinical   case   probability   varied yi = y  

by   age   ( ),   but   susceptibility   did   not   ( ).   Susceptibility   and   clinical   fraction   curves (i)yi = y ui = u  

were   fitted   using   three   control   points   for   young,   middle,   and   old   age,   interpolating   between  

them   with   a   half-cosine   curve   (see   Methods   for   details).  

 

We   assumed   that   the   initial   outbreak   in   Wuhan   was   seeded   by   introducing   one   exposed  

individual   per   day   of   a   randomly   drawn   age   between    A min    and   A max    for   14   days   starting   on   a  

day   ( t seed )   in   November 30,31 .   We   used   the   age   distribution   of   Wuhan   City   prefecture   in   2016 47  

and   contact   matrices   measured   in   Shanghai 32    as   a   proxy   for   large   cities   in   China.   This  

contact   matrix   is   stratified   into   school,   home,   work,   and   other   contacts.   We   aggregated   the  

last   three   categories   into   non-school   contacts   and   estimated   how   components   of   the   contact  

matrix   changed   early   in   the   epidemic   in   response   to   major   changes.   Schools   closed   on  

January   12th   for   the   Lunar   New   Year   holiday,   so   we   decreased   school   contacts,   but   the  

holiday   period   may   have   changed   non-school   contacts,   so   we   estimate   this   effect   by  

inferring   the   change   in   non-school   contact   types,   .   Large-scale   restrictions   started   on  qH  

January   23rd   2020   giving   restrictions   on   travel   and   movement   imposed   by   authorities,   and  

we   inferred   the   change   in   contact   patterns   during   this   period,   .   Specifically:  qL  

, chool(t)·c ther(t)·c  cij,t = s ij|school + o ij|other  
where  

chool(t)  s = { 1 t    <   12   January  
0 t    ≥   12   January  

and  
1 t    <   12   January  

ther(t)  o = { q H 12   January   ≤    t    <   23   January   
q L t    ≥   23   January.  
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We   fitted   the   model   to   incident   confirmed   cases   from   the   early   phase   of   the   epidemic   in  

China   (December   8,   2019-February   1,   2020)   reported   by   China   CDC 1 .   During   this   period,  

the   majority   of   cases   were   from   Wuhan   City,   and   we   truncated   the   data   after   February   1st  

because   there   were   more   cases   in   other   cities   after   this   time.   We   jointly   fitted   the   model   to  

the   age   distribution   of   cases   at   3   time   windows   (December   8,   2019   to   January   22,   2020)  

reported   by   Li   et   al. 26    and   a   further   time   window   (December   8,   2019   to   February   11,   2020)  

reported   by   China   CDC 1 .   Because   there   was   a   large   spike   of   incident   cases   reported   on  

February   1   determined   to   have   originated   from   the   previous   week,   we   amalgamated   all  

cases   from   January   25   to   February   1,   including   those   in   the   large   spike,   into   a   single   data  

point   for   the   week.   We   assumed   10%   of   clinical   cases   were   reported 19 .   We   used   a   Dirichlet  

distribution   with   a   flat   prior   to   obtain   95%   HDIs   for   reported   case   data   stratified   by   age   group  

for   display   in   figures.  

 

We   used   Markov-chain   Monte   Carlo   to   jointly   fit   each   hypothesis   to   the   two   sets   of   empirical  

observations   from   the   epidemic   in   Wuhan   City,   China.   We   used   a   negative   binomial  

likelihood   for   incident   cases   and   a   Dirichlet-multinomial   likelihood   for   the   age   distribution   of  

cases,   using   the   likelihood  

 

 L = egBinom(C |size 00, ean )(∏K
k=1

N k = 2 m = ck ) irMultinom(A | a )(∏M
m=1

D m
200
||a ||m

m )  

 
Above,    C k    is   the   observed   incidence   on   day    k    while    c k    is   the   model-predicted   incidence   for  

day    k,    for   each   of    K    days.    A m    is   the   observed   age   distribution   for   time   period    m    (case   counts  

for   each   age   group)   while    a m    is   the   model-predicted   age   distribution   for   the   same   period,   and  

  is   the   total   number   of   cases   over   all   age   groups   in   time   period    m ,   measured   for    M    time |a ||  | m    

periods.   We   set   the   precision   of   each   distribution   to   200   to   capture   additional   uncertainty   in  

data   points   that   would   not   be   captured   with   a   Poisson   or   multinomial   likelihood   model.  
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We   distinguished   fitted   models   using   Deviance   Information   Criterion   (DIC) 48 .  

 
 

Parameter  Description  Prior  

ui  Susceptibility   to   infection   upon  
contact   with   an   infectious  
person  

Non-age-varying:   ormal(μ .1, .025, in )ui ~ n = 0 σ = 0 m = 0  
Age-varying:   young,   middle,   and   old   age   fit   as  
    ormal(μ 5, 5, in , ax 0)ay ~ n = 1 σ = 1 m = 0 m = 3  
    ormal(μ 5, 5, in 0, ax 0)  am ~ n = 4 σ = 1 m = 3 m = 6  
    ormal(μ 5, 5, in 0, ax 0)  ao ~ n = 7 σ = 1 m = 6 m = 9  
 
Susceptibility   for   young,   middle,   and   old   age   fit   as  
    ormal(μ .1, .025, in )uy ~ n = 0 σ = 0 m = 0  
    ormal(μ .1, .025, in )  um ~ n = 0 σ = 0 m = 0   
    ormal(μ .1, .025, in )  uo ~ n = 0 σ = 0 m = 0  
 
Then  
      (see   final   row) oss(i|a , , , , , )ui = c y by am bm ao bo  

yi  Clinical   fraction   on   infection  Non-age-varying:   .5yi = 0  
Age-varying:   young,   middle,   and   old   age   fit   as  
    ormal(μ 5, 5, in , ax 0)ay ~ n = 1 σ = 1 m = 0 m = 3  
    ormal(μ 5, 5, in 0, ax 0)  am ~ n = 4 σ = 1 m = 3 m = 6  
    ormal(μ 5, 5, in 0, ax 0)  ao ~ n = 7 σ = 1 m = 6 m = 9  
 
Susceptibility   for   young,   middle,   and   old   age   fit   as  
    ormal(μ .5, .1, in , ax .5)yy ~ n = 0 σ = 0 m = 0 m = 0  
    .5  ym = 0   
    ormal(μ .5, .1, in .5, max )  yo ~ n = 0 σ = 0 m = 0   = 1  
 
Then  
      (see   below) oss(i|a , , , , , )yi = c y yy am ym ao yo  

tseed  Timing   of   introduction   of   cases  ormal(μ 5, 0, min , max 0)  tseed ~ n = 1 σ = 3   = 0   = 3  

qH  Multiplicative   factor   for  
transmission   during   holiday  
period  

eta(α , ) scaled to 0  qH ~ b = 2 β = 2  2  

qL  Multiplicative   factor   for  
transmission   during   large-scale  
restrictions  

eta(α , )qL ~ b = 2 β = 2  

,Amin Amax  Age   bounds   for   introduced  
cases  

ormal(μ 0, 0, in 0, ax 0)  A ~ n = 6 σ = 2 m = 4 m = 8  
eta(α , ) scaled to 0 0  Arange ~ b = 2 β = 2  1  

 Amin = A  Arange  
Amax = A + Arange  

oss(a|x , , , , , )  c 1 y1 x2 y2 x3 y3  Cosine-smoothing   function  For   a   given   age    a    (the   midpoint   age   of   age   group    i )   the  
function   evaluates   to   for   ,   to     for   ,   and   to y1 ≤x  a 1 y2 a = x2  

  for   .   Values   of     between   and   are y3 ≥x  a 3 a x1 x2  
interpolated   between     and   ,   and   values   of   y1 y2 a  
between     and     are   interpolated   between     and   , x2 x3 y2 y3  
where   the   interpolation   takes   the   shape   of   a   cosine   curve  
between     and   .   π π  

Table   2.   Details   of   model   fitting  
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 Hypothesis   1  Hypothesis   2  Hypothesis   3  

DIC  880  691  558  

Age   control   points  N/A  Young   13   (3.7-24)  
Middle   43   (32-55)  
Old   70   (61-79)  

Young   14   (11-18)  
Middle   55   (49-60)  
Old   64   (60-68)  

ui  0.077   (0.073-0.08)  Young   0.0076   (0.00081-0.014)  
Middle   0.062   (0.045-0.077)  
Old   0.11   (0.1-0.12)  

0.078   (0.074-0.083)  

yi  Fixed   at   0.5  Fixed   at   0.5  Young   0.056   (0.0084-0.11)  
Middle   0.49   (0.48-0.51)  
Old   0.74   (0.64-0.89)  

,   days   after   Nov   1 tseed  19   (17-21)  18   (15-21)  16   (14-20)  

Amid|seed  74   (63-80)  60   (34-75)  48   (31-70)  

Arange|seed  4.5   (0.8-8.1)  0.78   (0.089-1.5)  2.9   (0.84-4.4)  

qH  1.4   (1.3-1.6)  1.4   (1.3-1.5)  1.4   (1.3-1.5)  

qL  0.14   (0.046-0.23)  0.21   (0.091-0.34)  0.2   (0.098-0.33)  

Table   3.   Posterior   estimates   and   95%   highest   density   intervals   for   parameters   fitted   to   data   from   Wuhan,   China.   
 
 

Analysis   of   the   stationary   age   distribution   of   cases  

To   infer   age-specific   susceptibility   from   reported   case   distributions,   we   assumed   that  

reported   cases   follow   the   stationary   distribution   of   cases   reached   in   the   early   phase   of   an  

epidemic.   Using   our   dynamic   model   would   allow   modelling   any   transient   emphasis   in   the  

case   distribution   associated   with   the   age   of   the   individuals   who   seeded   infection   in   a   given  

region,   but   since   the   age   of   the   true   first   cases   is   not   generally   known,   we   used   the  

stationary   distribution   instead.   Specifically,   we   used   Bayesian   inference   to   fit   age-specific  

susceptibility   to   the   reported   case   distribution   by   first   generating   the   expected   case  

distribution   k i    from   (1)   the   age-specific   susceptibility   y i ,   (2)   the   measured   or   estimated  

contact   matrix   for   the   country,   and   (3)   the   age   structure   of   the   country   or   region.   We   then  

used   the   penalised   likelihood  

 

  , ultinom(c |k ) ormal(y |μ , .25)L = M i  i ∏
n

i=2
N i  yi1 = 0 σ = 0
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where   c i    is   the   observed   case   distribution,   when   fitting   to   data   from   a   single   country   or  

region.   Above,   the   product   of   normal   PDFs   constrains   the   age-specific   susceptibilities   to  

avoid   overly   sensitive   responses   to   noisy   data.   When   fitting   to   a   combined   set   of   regions  

and/or   countries,   we   used   the   penalised   likelihood  

irMultinom(c |sk ) ormal(y |μ , .25)L = ∏
m

j=1
D i,j  i,j

wj∏
n

i=2
N i  yi1 = 0 σ = 0

 
 

across   countries      with   weights     such   that   .   We   weighted 49    each   of 1, , .., }  j ∈ { 2 . m wj ∏
 

j
wj = 1  

the   13   provinces   of   China   in   our   data   set   by   1/13,   each   of   the   12   regions   of   Italy   by   1/12,   the  

three   reported   case   distributions   from   China   CDC   by   1/3,   and   data   from   South   Korea,  

Singapore   and   Japan   each   by   1,   then   scaled   all   weights   to   multiply   to   1.  

 

We   fitted   to   the   following   data   sources.   For   provinces   of   China,   we   used   age-specific   case  

numbers   reported   by   China   CDC 1    as   well   as   linelist   data   compiled   by   the   Shanghai  

Observer 50 .   For   regions   of   Italy,   we   used   age-specific   case   numbers   reported   by   the   Istitute  

Superiore   di   Sanità   on   March   13,   2020 51 .   For   South   Korea,   we   used   the   linelist   released   by  

Kim   et   al.   based   on   data   from   the   Korea   Centers   for   Disease   Control   and   Prevention 16 .   For  

Japan,   we   used   the   Open   Covid   Linelist 52,53 .   For   Singapore,   we   use   data   compiled   from  

Singapore   Ministry   of   Health   data   by   Alex   Koh 15 .  

 

To   validate   our   line   list   analysis,   we   fitted   the   dynamic   model   to   incidence   data   from   Beijing,  

Shanghai,   South   Korea   and   Lombary,   Italy.   We   fixed   the   reporting   rate   for   Beijing,   Shanghai,  

South   Korea,   and   Lombardy   to   20%.   Beijing   and   Shanghai   incidence   data   were   given   by  

case   onset,   so   we   assumed   no   delay   between   reported   and   true   case   onsets.   Incidence  

data   for   South   Korea   were   given   by   the   date   of   confirmation   only,   so   we   assumed   the  

reporting   delay   followed   a   gamma   distribution   with   a   7-day   mean.   Incidence   data   for   Italy  

were   given   separately   for   case   onset   and   case   confirmation,   with   only   a   subset   of   onset  
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dates   available;   accordingly,   we   fit   the   proportion   of   confirmed   cases   with   onset   dates   and  

the   delay   from   onset   to   confirmation.   We   adjusted   the   size   parameter   of   the   negative  

binomial   distribution   used   to   model   case   incidence   to   10   to   reflect   greater   variability   among  

fewer   data   points   for   these   countries   than   for   Wuhan.   Beijing   and   Shanghai   were   fitted  

jointly,   with   separate   dates   of   introduction   but   the   same   fitted   susceptibility,   large-scale  

restriction   date   and   large-scale   restriction   magnitude.   South   Korea   and   Italy   were   each   fitted  

separately;   we   fitted   a   large-scale   restriction   date   and   magnitude   for   both   South   Korea   and  

Italy.   

 

For   both   the   linelist   fitting   and   validation,   we   assumed   that   schools   were   closed   in   China,   but  

remained   open   in   South   Korea,   Japan,   Italy,   Singapore,   and   Canada,   as   schools   were   open  

for   the   majority   of   the   period   covered   by   the   data   in   the   latter   five   countries.  

 

Quantifying   the   impact   of   school   closure  

To   determine   the   impact   in   other   cities   with   different   demographic   profiles   we   used   the  

inferred   parameters   from   our   linelist   analysis   to   parameterise   our   transmission   model   for  

projections   to   other   cities.   We   chose   these   to   compare   projections   for   a   city   with   a   high  

proportion   of   elderly   individuals   (Milan,   Italy);   a   moderate-aged   population   (Birmingham,  

United   Kingdom);   and   a   city   in   a   low-income   country   with   a   high   proportion   of   young  

individuals   (Bulawayo,   Zimbabwe).   For   this   analysis,   we   compared   an   outbreak   of  

COVID-19,   for   which   the   burden   and   transmission   is   concentrated   in   relatively-older  

individuals,   with   an   outbreak   of   pandemic   influenza,   for   which   the   burden   and   transmission   is  

concentrated   in   relatively-younger   individuals.   We   assumed   that   immunity   to   influenza   builds  

up   over   a   person’s   lifetime,   such   that   an   individual’s   susceptibility   to   influenza   infection  

plateaus   at   roughly   age   35,   and   assumed   that   the   severity   of   influenza   infection   is   highest   in  

the   elderly   and   in   children   under   10   years   old 7 .  
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To   model   Milan,   we   used   the   age   distribution   of   Milan   in   2019 54    and   a   contact   matrix  

measured   in   Italy   in   2006 11 .   To   model   Birmingham,   we   used   the   age   distribution   of  

Birmingham   in   2018 55    and   a   contact   matrix   measured   in   the   UK   in   2006 11 .   To   model  

Bulawayo,   we   used   the   age   distribution   of   Bulawayo   Province   in   2012 56    and   a   contact   matrix  

measured   in   Manicaland,   Zimbabwe   in   2013 46 .   We   assumed   that   the   epidemic   was   seeded  

by   two   infectious   individuals   in   a   random   age   group   per   week   for   5   weeks   to.   We   scaled   the  

age-specific   susceptibility    u i    by   setting   the   “target”   basic   reproductive   number    R 0    =   2.4   as   an  

illustrative   example.   We   also   performed   a   sensitivity   analysis   where   we   scaled    u i    to   result   in  

R 0    =   2   in   Birmingham,   and   using   the   same   setting   for    u i    in   all   three   cities,   so   that   the   actual  

R 0    changed   depending   upon   contact   matrices   and   demographics   used   to   model   each   city.  

This   produced   qualitatively   similar   results   (Supplementary   Information).  

 

We   projected   the   impact   of   school   closure   by   setting   the   contact   multiplier   for   school  

contacts    school(t)    to   0.   Complete   removal   of   school   contacts   may   overestimate   the   impact   of  

school   closures   because   of   alternative   contacts   children   make   when   out   of   school 57 .   This   will  

however   give   the   maximum   impact   of   school   closures   in   the   model   to   demonstrate   the  

differences.  

 

Projecting   the   global   impact   

 

To   project   the   impact   of   COVID-19   outbreaks   in   global   cities,   we   used   mixing   matrices   from  

Prem   et   al. 27    and   demographic   structures   for   2020   from   World   Population   Prospects   2019   to  

simulate   a   COVID-19   outbreak   in   146   global   capital   cities   for   which   synthetic   matrices,  

demographic   structures   and   total   populations   were   available.   For   simplicity,   we   assumed  

that   capital   cities   followed   the   demographic   structure   of   their   respective   countries   and   took  
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the   total   population   of   each   capital   city   from   the   R   package    maps .   For   each   city,   we   scaled    u i  

to   result   in   an   average    R 0    =   2   in   Birmingham,   UK,   and   used   the   same   setting   for    u i    for   all  

cities,   so   that   the   realised    R 0    would   change   according   to   the   contact   matrices   and  

demographics   for   each   city.   We   simulated   20   outbreaks   in   each   city,   drawing   the  

age-specific   clinical   fraction    y i    from   the   posterior   of   the   estimated   overall   clinical   fraction   from  

our   line   list   analysis   (Fig.   2),   and   analysed   the   time   to   the   peak   incidence   of   the   epidemic,  

the   peak   clinical   and   subclinical   incidence   of   infection,   and   the   total   number   of   clinical   and  

subclinical   infections.   We   took   the   first   third   and   the   last   third   of   clinical   cases   in   each   city   to  

compare   the   early   and   late   stages   of   the   epidemic.  
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