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Abstract	

Alzheimer’s	 disease	 (AD)	 is	 the	 leading	 cause	 of	 dementia	 in	 aging	 individuals.	However	

pathophysiological	 processes	 involved	 in	 the	 brain	 are	 still	 poorly	 understood.	 Among	

numerous	 strategies,	 a	 comprehensive	 overview	 of	 gene	 expression	 alterations	 in	 the	

diseased	 brain	 has	 been	 proposed	 to	 help	 for	 a	 better	 understanding	 of	 the	 disease	

processes.	 In	 this	work,	we	probed	 the	differential	 expression	of	genes	 in	different	brain	

regions	of	healthy	and	AD	adult	subjects	using	data	from	three	large	studies:	MAYO	Clinic;	

Mount	Sinai	Brain	Bank	(MSBB)	and	ROSMAP.	Using	a	combination	of	differential	expression	

of	 gene	 (DEG)	 and	 isoform	 switch	 analyses	 we	 provide	 a	 detailed	 landscape	 of	 gene	

expression	alterations	in	the	temporal	and	frontal	lobes,	harboring	brain	areas	affected	at	

early	and	late	stages	of	the	AD	pathology,	respectively.	Next,	we	took	advantage	of	an	indirect	

approach	 to	 assign	 the	 complex	 gene	 expression	 changes	 revealed	 in	 bulk	 RNAseq	 to	

individual	cell	types	of	the	adult	brain.	This	strategy	allowed	us	to	identify	cell	type/subtype	

specific	isoform	switches	in	AD	brains	previously	overlooked.	This	was	the	case,	for	example,	

for	the	AD	causal	gene	APP	and	the	risk	gene	BIN1,	which	presented	isoform	switches	with	

potential	functional	consequences	in	neuronal	cells.	Altogether,	our	work	proposes	a	novel	

integrative	strategy	to	analyze	RNAseq	data	in	AD	based	on	both	gene/transcript	expression	

and	regional/cell-type	specificities.	
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Introduction	

Changes	 in	 gene	 expression	 characterize	 a	 multitude	 of	 human	 diseases	 and	 have	 been	

successfully	used	to	predict	molecular	and	cellular	mechanisms	associated	with	pathological	

processes	 (Masters	 et	 al.,	 2015).	 Alzheimer’s	 disease	 (AD)	 is	 the	most	 prevalent	 type	 of	

dementia	 and	 causes	 a	 progressive	 cognitive	 decline,	 for	 which	 there	 is	 no	 effective	

treatment	or	cure.	Although	expression	analyses	in	brain	diseases	are	generally	limited	by	

tissue	availability,	RNA	sequencing	(RNAseq)	data	have	been	generated	from	postmortem	

brain	samples	of	healthy	and	AD	individuals	(Allen	et	al.,	2016;	De	Jager	et	al.,	2018;	Wang	et	

al.,	2018).	However,	a	comprehensive	description	of	the	gene	expression	alterations	in	the	

AD	brain	remains	elusive.		

Recent	work	has	begun	to	address	this	important	gap	in	the	study	of	AD	pathology	using	bulk	

brain	tissue	RNA	sequencing	(RNAseq)	(T.	Raj	et	al.,	2018)	or	single-cells	RNA	sequencing	

(scRNAseq)	(Grubman	et	al.,	2019;	Mathys	et	al.,	2019).	However,	these	studies	have	focused	

on	 samples	 obtained	 from	 different	 brain	 regions,	 namely	 the	 dorsolateral	 prefrontal	

(Mathys	et	al.,	2019;	T.	Raj	et	al.,	2018)	and	entorhinal	cortices	(Grubman	et	al.,	2019),	which	

could	 lead	 to	 important	 discrepancies	 in	 the	 results.	 Indeed,	 the	 AD	 pathology	 shows	 a	

progressive	impact	on	different	brain	regions,	characterized	at	early	stages	by	the	presence	

of	TAU	protein	inclusions	in	the	locus	coeruleus,	the	transentorhinal	and	entorhinal	regions	

(stages	 I	 and	 II).	 This	 is	 followed	 by	 the	 presence	 of	 tau	 inclusions	 in	 the	 hippocampal	

formation	and	some	parts	of	the	neocortex	(stages	III	and	IV),	followed	by	large	parts	of	the	

neocortex	(stages	V	and	VI)	(Braak	&	Braak,	1991).	Accordingly,	a	recent	study	has	shown	

that	changes	in	protein	expression	are	much	more	prominent	in	areas	affected	at	early	and	

intermediate	stages,	such	as	the	hippocampus,	entorhinal	cortex	and	cingulate	cortex	in	the	

temporal	lobe,	compared	to	other	brain	regions	affected	at	later	stages	of	AD	pathology,	such	

as	sensory	cortex,	motor	cortex	and	cerebellum	(Xu	et	al.,	2019).	

Another	 important	 aspect	 to	 consider	 is	 the	 descriptive	 relevance	 of	 gene	 expression	

analysis	based	solely	on	the	identification	of	differentially	expressed	genes	(DEG),	which	fails	

to	detect	dynamics	in	the	expression	of	multiple	related	transcripts	(Yi	et	al.,	2018).	Recently,	

new	 approaches	 using	 transcripts-level	 analysis,	 so	 called	 differential	 transcript	 usage	

(DTU),	enables	identification	of	alternative	splicing	and	isoform	switches	with	prediction	of	
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functional	consequences	(Anders	et	al.,	2012;	Vitting-Seerup	&	Sandelin,	2019).	Therefore,	

important	gene	expression	modifications	in	the	AD	brain	could	occur	at	the	transcript	level	

and	be	overlooked	in	classical	DEG	analyses.	

Here,	we	took	advantage	of	three	available	RNAseq	datasets,	generated	using	samples	from	

different	brain	regions,	to	systematically	probe	gene	expression	changes	(DEG	and	DTU)	in	

AD.	In	the	Mayo's	clinic	study,	both	the	temporal	cortex	and	cerebellum	were	used	to	obtain	

bulk	RNAseq	(Allen	et	al.,	2016).	In	the	Religious	Orders	Study	(ROS)	and	Memory	and	Aging	

Project	(MAP),	henceforth	called	ROSMAP,	the	dorsolateral	prefrontal	cortex	was	used	(De	

Jager	et	al.,	2018).	Finally,	in	the	Mount	Sinai/JJ	Peters	VA	Medical	Center	Brain	Bank	(MSBB),	

4	different	Brodmann	areas	of	the	brain	were	studied:	areas	22	and	36	from	the	temporal	

lobe,	areas	10	and	44	in	the	frontal	lobe	(Wang	et	al.,	2018).	We	also	added	another	level	of	

complexity	using	an	 indirect	 approach	 to	 assign	DEGs	and	gDTUs	 to	unique	 cell	 types	 in	

order	to	identify	AD	gene	expression	signatures	for	neural	cells,	microglia	and	endothelial	

cells.	Finally,	we	 linked	these	alterations	with	AD	causal	and	risk	genes,	 identifying	novel	

isoform	switches	in	BIN1	and	APP	genes	of	potential	functional	consequences	for	pathology	

progression.	
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Results	

	

Regional	gene	expression	alterations	in	the	AD	brain	correlates	with	pathological	progression	

Several	 consortia	 have	 generated	 RNAseq	 data	 from	 brains	 of	 individuals	with	 a	 clinical	

and/or	pathological	diagnostic	of	AD	 (Allen	et	 al,	 2016;	Wang	et	 al,	 2018;	De	 Jager	 et	 al,	

2018).	Considering	the	regional	progression	of	AD	pathology	(Braak	and	Braak,	1991),	we	

set	out	to	identify	and	compare	differentially	expressed	genes	(DEG)	in	the	temporal	lobe	

(TL),	encompassing	brain	regions	affect	at	early	stages	of	the	AD	such	as	the	hippocampus	

and	entorhinal	 cortex,	and	 in	 the	 frontal	 lobe	 (FL),	 affect	at	more	advanced	stages	of	 the	

pathology	(Figure	1).		
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Figure	1.	Schematic	summary	of	the	methodology.	Datasets	obtained	from	3	consortia	

(Mayo,	MSBB	and	ROSMAP)	were	grouped	according	to	the	brain	region	sampled	in	frontal	

lobe	(FL)	or	temporal	lobe	(TL).	Next,	RNAseq	data	was	pseudo-aligned	using	Kallisto	and	

analyzed	using	the	packages	from	R	(version	3.6)	DESeq2,	IsoformSwitchAnalyzeR	(ISAR)	

and	gene-set	enrichment	analysis	(GSEA).	Assignment	of	differentially	expressed	genes	or	

isoform	switches	to	specific	cell	types	was	performed	indirectly	using	scRNAseq	signatures	

obtained	from	the	Allen	Brain	Atlas	transcriptomic	data.	

	

We	found	3,348	(1244	down-	and	2104	up-regulated	genes)	and	2,172	(1170	down	and	999	

up-regulated	genes	in	BM22	and	BM36;	3	genes	regulated	in	opposite	directions	in	these	two	

areas)	 DEGs	 in	 the	 TL	 of	 AD	 individuals	 compared	 to	 their	 respective	 controls	 in	 the	

MSBB_TL	and	Mayo	datasets,	respectively	(Figure	2A-B;	Supplementary	table	1).	Of	those	

DEGs,	 734	 genes	 (145	 down	 and	 520	 up)	 were	 commonly	 regulated	 in	 both	 Mayo	 and	

MSBB_TL	(88.4%	of	genes	altered	in	the	same	direction;	15,33%	of	overlap;	p=	8.56	x	10-59,	

hypergeometric	test).	In	contrast,	only	327	(113	down	and	214	up)	and	209	(97	down	and	

112	up)	DEGs	were	detected	in	the	MSBB_FL	and	ROSMAP,	respectively.	Of	those,	31	genes	

(18	 down	 and	 13	 up)	 were	 found	 in	 both	 datasets	 (7,34%	 of	 overlap;	 p	 =	 1.67	 x	 10-14,	

hypergeometric	test)	(Figure	2A-B;	Supplementary	table	1).	These	differences	in	the	number	

of	DEGs	detected	in	the	FL	and	TL	cannot	be	attributed	to	lack	of	statistical	power,	since	the	

number	of	samples	in	the	FL	is	larger	than	in	the	TL	groups	(Figure	1).	Notably,	62.5%	of	the	

DEGs	 detected	 in	 the	 FL	 are	 also	 detected	 in	 the	 TL	 (Figure	 2B),	 suggesting	 that	 gene	

expression	changes	in	the	FL	could	recapitulate	initial	alterations	in	the	TL.		

Next,	we	performed	gene	set	enrichment	analyses	(GSEA)	for	genes	with	expression	altered	

in	similar	brain	regions	of	the	AD	brains	compared	to	controls,	and	identified	in	at	least	two	

independent	datasets.	For	that,	we	selected	only	DEGs	in	the	intersection	MAYO/MSBB	TL	

(temporal	lobe	intersection	-	TLI)	or	ROSMAP/MSBB	FL	(frontal	lobe	intersection	-	FLI).	We	

found	 that	 DEGs	 in	 the	 temporal	 lobe	 are	 enriched	 for	 terms	 (GO:BP,	 GO:CC	 and	 KEGG)	

associated	with	generic	biological	processes,	 such	as	cell-signaling	pathways	and	cell-cell	

signaling,	whereas	the	small	number	of	DEGs	in	the	FLI	were	not	significantly	enriched	for	
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any	term	(Figure	2C;	see	also	Supplementary	table	2	for	detailed	information	and	GSEA	using	

alternative	sources).	Together,	these	data	indicate	that	changes	in	gene	expression	are	much	

more	significant	in	the	TL	as	compared	to	the	FL.	Importantly,	this	 is	true	even	in	tissues	

obtained	 from	the	same	donors,	as	 it	 is	 the	case	 for	 the	MSBB_TL	and	MSBB_FL	samples,	

ruling	out	some	potential	biases	due	to	tissue	processing.	

	

	

	

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 16, 2020. ; https://doi.org/10.1101/2020.03.19.20038703doi: medRxiv preprint 

https://doi.org/10.1101/2020.03.19.20038703
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 
8 

 

	
Figure	 2.	 Gene	 expression	 alterations	 are	 more	 prominent	 in	 the	 temporal	 than	

frontal	lobe	of	AD	patients.	A)	Volcano	plots	showing	differentially	expressed	genes	(DEG,	

red	dots;	FC	>	1.3	and	FDR	<	0.01)	in	the	frontal	lobe	(ROSMAP	and	MSBB	FL	-	BM10	and	

BM44)	 and	 temporal	 lobe	 (MAYO	 and	 MSBB	 TL	 -	 BM22	 and	 BM36).	 B)	 Venn	 diagram	

showing	 the	number	of	DEGs	 identified	 in	 the	different	datasets.	C)	Gene	ontology	 terms	

enriched	for	DEGs	identified	in	the	TL	or	FL	intersections	(TLI	and	FLI,	respectively).		
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Differential	transcript	usage	analyses	reveal	novel	genes	associated	with	AD	pathology	

Gene-level	 expression	 analysis	 lacks	 the	 sensitivity	 to	 detect	 possible	 changes	 at	 the	

transcript-level	caused,	for	example,	by	alterations	in	alternative	splicing	(Vitting-Seerup	&	

Sandelin,	2017;	Yi	et	al.,	2018).	To	overcome	this	limitation,	we	used	differential	transcript	

usage	(DTU)	analysis	to	identify	additional	alterations	of	gene	expression	in	the	AD	brains	

compared	to	controls.	We	observed	2,509	and	1,843	genes	with	differential	transcript	usage	

(gDTU)	 in	 the	 temporal	 lobe	 of	 AD	 brains	 studied	 in	 the	 Mayo	 and	 MSBB	 datasets,	

respectively	(Figure	3A-B;	Supplementary	table	1).	Similar	to	what	we	observed	for	DEGs,	a	

much	smaller	number	of	gDTUs	were	detected	in	the	frontal	lobe,	both	in	ROSMAP	and	MSBB	

studies	(59	and	855	genes	with	transcripts	altered,	respectively).	We	found	435	gDTUS	in	

TLI	(11,1%	of	overlap;	p=	6.16	x	10-25,	hypergeometric	test)	and	13	gDTUs	in	FLI	(1,47%	of	

overlap;	p=	2.56	x	10-3,	hypergeometric	test).	In	TLI,	most	gDTUs	did	not	overlap	with	DEGs	

(TL	-	34	gDTUs	that	are	DEGs	out	of	435	gDTUs),	whereas	in	FLI,	we	found	no	overlap	at	all.		

Interestingly,	GSEA	revealed	that	gDTUs	in	the	TLI	were	significantly	enriched	for	vesicle-

mediated	transport	and	other	synapse-related	terms	that	were	not	observed	while	inputting	

only	DEGs	(Figure	3C;	Supplementary	table	2).	Among	the	gDTUs	in	synapse-related	terms	

that	were	not	detected	 in	DEG	analysis,	we	observed	several	genes	previously	associated	

with	AD	and/or	cognitive	 impairment,	such	as	APP,	CALB1,	GABRA1,	KCNA2,	NTRK2	and	

RAB5B	(Choi	et	al.,	2013;	Devi	&	Ohno,	2015;	Limon	et	al.,	2012;	Masnada	et	al.,	2017;	Odero	

et	al.,	2010).	In	contrast,	the	enrichment	for	cell-signaling	terms	observed	for	DEGs	was	not	

observed	for	gDTUs	alone	(Figure	3D).	Altogether,	these	observations	suggest	that	the	use	

of	 DTU	 is	 complementary	 to	 DEG	 analysis,	 allowing	 the	 detection	 of	 gene	 expression	

signatures	relevant	associated	with	key	hallmarks	of	the	AD	pathology.		

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 16, 2020. ; https://doi.org/10.1101/2020.03.19.20038703doi: medRxiv preprint 

https://doi.org/10.1101/2020.03.19.20038703
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 
10 

 

	

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 16, 2020. ; https://doi.org/10.1101/2020.03.19.20038703doi: medRxiv preprint 

https://doi.org/10.1101/2020.03.19.20038703
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 
11 

 

Figure	3.	Differential	transcript	usage	analysis	in	AD	brains	reveals	gene	expression	

alterations	overlooked	in	DEG	analysis.	A)	Volcano	plots	showing	genes	with	differential	

transcript	usage	(gDTU,	yellow	dots;	Differential	 isoform	fraction	(dIF)	>	0.05	and	FDR	<	

0.05)	 in	 the	 frontal	 lobe	 (ROSMAP	 and	MSBB_FL	 -	 BM10	 and	 BM44)	 and	 temporal	 lobe	

(MAYO	and	MSBB_TL	-	BM22	and	BM36).	B)	Venn	diagram	showing	the	number	of	gDTUs	

identified	in	the	different	datasets.	C)	Synapse-related	terms	enriched	for	gDTUs	in	the	TLI	

are	not	observed	in	the	FLI.		D)	Comparison	of	GO	and	KEGG	terms	enriched	for	DEG,	gDTU	

or	DEG+gDTU	identified	in	the	TLI.		

	

Differential	expression	of	genes	involved	in	alternative	splicing	correlates	with	isoform	switch	

To	evaluate	whether	gDTUs	could	be	associated	with	AD	hallmarks,	we	measured	gDTUs	

observed	 at	 different	 disease	 stages	 in	 the	 MSBB	 dataset	 using	 the	 Braak	 classification	

(Figure	4;	Supplementary	Table	3).	For	this	purpose,	we	subdivided	AD	and	control	samples	

in	 three	groups:	 low	Braak	(0,	1	and	2)	 -	196	samples	(clinical	diagnosis:	15	AD	and	181	

controls);	mid	Braak	(3	and	4)	-	133	samples	(clinical	diagnosis:	58	AD	and	75	controls);	and	

high	Braak	(5	and	6)	 -	308	samples	 (clinical	diagnosis:	305	AD	and	3	controls).	Next,	we	

evaluate	the	number	of	gDTUs	when	comparing	individuals	at	these	different	stages	(Figure	

4).	We	observed	that	most	gDTUs	were	detected	only	at	high	Braak	stages	(Figure	4A-D)	both	

in	the	FL	(BM10	and	BM44)	and	TL	(BM22	and	BM36),	indicating	that	gene	isoform	switch	

is	associated	with	AD	hallmark	progression.		

Next,	we	 set	 out	 to	 evaluate	possible	 alterations	 in	 the	 expression	of	 genes	 encoding	 for	

proteins	associated	with	the	splicing	machinery.	We	found	that	among	441	genes	related	to	

‘splicing’	or	‘spliceosome’	terms,	79	were	DEGs	at	high	Braak	stage	compared	to	low	or	mid	

Braak	stages	(Figure	4E).	In	contrast,	we	could	not	detect	any	DEG	in	the	comparison	of	mid	

vs	low	Braak	stages.	Noteworthy,	we	found	that	several	genes	associated	with	the	neuronal	

splicing	regulatory	network	(B.	Raj	&	Blencowe,	2015)	were	differentially	expressed	at	high	

Braak	stages	(Figure	4E,	highlighted	 in	red).	Among	them,	RBFOX1,	RBFOX2	and	ELAVL2	

were	downregulated	both	in	the	FL	and	TL,	whereas	MBNL3	and	PTBP1	were	upregulated	

in	 the	 TL	 (BM36)	 and	NOVA2	was	 upregulated	 in	 the	 FL	 (BM10).	 A	 similar	 pattern	was	

observed	when	we	evaluated	the	differential	expression	of	the	same	441	genes	in	all	AD	vs	
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control	subjects	in	different	datasets	(Figure	4F).	Of	note,	we	could	still	observe	that	DEGs	

were	more	prominent	in	the	TL	than	in	the	FL	(even	if	the	number	of	DEGs	was	smaller,	likely	

due	to	the	effects	of	combining	low,	mid	and	high	Braak	stages	in	the	AD	group).	Altogether,	

these	 data	 suggest	 that	 changes	 in	 the	 expression	 of	 splice	 regulator	 proteins	 are	more	

frequent	in	areas	with	high	stage	of	pathology	and	could	help	to	explain	the	predominant	

gene	isoform	switch	observed	in	the	TL	of	AD	brains.	
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Figure	4.	MSBB	brain	areas	with	gDTUs	and	DEGs	related	to	braak	stages	indicate	a	

possible	 alternative	 splicing	 mechanism.	 A-D)	 Total	 number	 of	 gDTUs	 identified	

following	comparison	of	different	Braak	stages	(Low	vs.	High,	Low	vs.	Mid	and	Mid	vs.	High)	

in	 the	 4	 brain	 regions	 sampled	 in	 the	MSBB	 study.	 E-F)	 Differential	 expression	 of	 genes	

associated	with	splicing/spliceosome	after	comparison	of	different	Braak	stages	(E)	or	AD	

vs	Controls	 in	 different	 datasets	 (F).	 Red	 and	blue	 squares	 indicate,	 respectively,	 up	 and	

downregulated	 genes.	 Gene	 symbols	 highlighted	 in	 red	 indicate	 genes	 belonging	 to	 the	

neuronal	splicing	machinery.		

	

Differential	gene	expression	in	separate	cell	types	of	the	human	brain	

To	 further	 refine	our	 analysis,	 considering	 the	 cellular	diversity	 in	 the	brain,	we	 took	an	

indirect	approach	to	sort	DEGs	and	gDTUs	according	to	cell	types.	To	that,	we	used	scRNAseq	

data	(Allen	Brain)	obtained	from	the	adult	human	brain	to	identify	cell	types	expressing	the	

genes	altered	in	our	DEG/gDTU	analysis	(Figure	4A;	supplementary	figure	3).	We	found	that,	

out	 of	 the	 1135	 genes	 with	 altered	 expression,	 i.e.	 gDTU	 +	 DEG,	 in	 the	 intersections	 of	

temporal	lobe	(Figures	2	and	3),	839	were	found	in	at	least	one	cell-type	(scTLI)	using	as	cut-

off	the	expression	in	more	than	10%	of	cells	assigned	for	a	specific	cell-type	(Supplementary	

table	4).	From	these,	239	were	identified	in	unique	cell-types/subtypes,	396	in	multiple	(2-

4	cell-types)	and	211	in	all	cell-types	analyzed	(Figure	5A;	Supplementary	Figures	3	and	4;	

Supplementary	table	4).	Confirming	our	strategy,	GO	analyses	using	cell-type	specific	genes	

revealed	that	DEGs/gDTUs	in	the	TLI	of	AD	patients	were	significantly	enriched	for	biological	

processes	associated	with	inflammation	in	microglial	cells,	whereas	those	associated	with	

cell	 adhesion	 were	 enriched	 in	 endothelial	 cells	 (Figure	 5B;	 Supplementary	 table	 5).	

Similarly,	 DEGs/gDTUs	 identified	 in	 neuronal	 cells	 were	 enriched	 for	 GO	 terms	 such	 as	

synaptic	signaling,	synaptic	plasticity	and	synapse	vesicle	cycle	(Figure	5C).	Notably,	these	

enrichments	 were	 more	 significant	 in	 GABAergic	 neurons,	 which	 could	 suggest	 a	 more	

pronounced	pathological	burden	on	these	cells	compared	to	glutamatergic	neurons	(Figure	

5C).	Also	of	note,	comparison	of	the	cell-type	gene	expression	signatures	identified	in	our	

work	with	previous	studies	using	scRNAseq	in	AD	(Mathys	et	al.,	2019;	Grubman	et	al.,	2019)	

showed	a	similar	degree	of	overlap	(Supplementary	Figures	1	and	2;	Supplementary	table	
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6).	 Altogether,	 these	 data	 support	 the	 notion	 that	 our	 indirect	 approach	 to	 assign	 gene	

expression	alterations	to	unique	cell	types	is	valid	and	allow	us	to	detect	cell-type	specific	

isoform	switches	associated	with	AD	pathology.		

	
	

	

Figure	5.	Cell-type	expression	pattern	 for	genes	altered	 in	AD	brains.	 	A)	Schematic	

representation	 showing	 our	 strategy	 to	 assign	 DEGs	 and	 gDTUs	 identified	 in	 the	 TLI	 to	
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specific	cell-types	of	the	adult	human	brain	(see	also	Supplementary	Figure	3).	Out	of	839	

single-cell	TLI	genes	(scTLI),	281	were	expressed	in	a	unique	cell-type,	249	in	2	to	4	cell-

types	and	77	in	all	cell-types/subtypes	analyzed.	B)	Gene	ontology	terms	enriched	for	scTLI	

DEGs,	 gDTUs	 or	 both	 per	 cell	 type.	 C)	 Selected	 GO	 terms	 associated	 with	 synaptic	

transmission.		

	

DEG/gDTU	analyses	identify	cell-type	specific	alterations	in	AD	risk/causal	genes	

Genomic	association	studies	have	revealed	about	45	loci	containing	variants	related	to	an	

increased	or	decreased	probability	of	developing	AD	 (Kunkle	et	 al.,	 2019;	Lambert	 et	 al.,	

2013).	 However,	 the	 functional	 variants	 and	 their	 target	 genes	 remain	 mostly	 elusive	

(Dourlen	et	al.,	2019).	To	contribute	with	the	identification	of	target	genes,	we	first	evaluate	

the	expression	of	176	genes	located	within	the	45	loci	associated	with	AD	odds	(Dourlen	et	

al.,	 2019)	 and	 3	 causal	 AD	 genes	 –	 PSEN1,	 PSEN2	 and	 APP	 (Supplementary	 table	 7)	 in	

individual	 cell	 types	 of	 the	 adult	 human	 brain.	 We	 found	 that	 116	 out	 of	 the	 179	 AD	

risk/causal	genes	were	expressed	by	at	 least	one	of	 the	major	cell	 types	 identified	 in	 the	

brain	 (Figure	6A).	 Subsets	of	 these	genes	were	exclusively	expressed	either	 in	microglial	

cells	(14	out	of	116),	neurons	(12),	astrocytes	(2),	oligodendrocytes	(6)	or	endothelial	cells	

(6),	suggesting	cell-type	specific	roles	for	these	AD	risk/causal	genes.	

Next,	we	set	out	to	evaluate	the	differential	expression	or	transcript	usage	for	these	genes.	

We	observed	 that	 54	DEGs/gDTUs	 among	 all	 three	 bulk	RNAseq	datasets	 out	 of	 116	AD	

risk/causal	genes	expressed	by	brain	cell	types	(Figure	6).	Among	those	genes,	only	2	were	

exclusively	 identified	 in	 the	 FL	 (Figure	 6B).	 We,	 therefore,	 decided	 to	 focus	 on	 the	 AD	

risk/causal	 genes	 identified	 in	 the	 temporal	 lobe	 for	 further	 analyses.	 In	 this	 region,	we	

identified	27	and	17	DEGs/gDTUs	in	the	MSBB_TL	and	Mayo	datasets,	respectively,	including	

some	well-characterized	AD	risk	genes,	such	as	ADAM10,	BIN1,	CLU	and	TREM2,	and	the	

causal	AD	genes	APP,	PSEN1	and	PSEN2	(Figure	6A-B).	Eight	genes	were	altered	 in	both	

datasets	(Figure	6B,	yellow	box;	15,38%	of	overlap)	and	were	selected	for	further	analysis	

of	isoform	switch.	Using	ISAR	to	identify	the	isoforms	altered	in	the	AD	brains	compared	to	

controls,	we	observed	some	patterns	of	isoform	switch	that	could	have	important	functional	

relevance	 (Figure	 6C	 and	 D).	 For	 instance,	 while	 BIN1	 transcripts	 ENST00000316724.9	
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(NP_647593.1	 -	 isoform	 1)	 and	 ENST00000409400.1	 (NP_647600.1	 -	 isoform	 9)	 were	

downregulated,	 transcripts	 ENST00000393040.7	 (NP_647598.1	 -	 isoform	 6)	 and	

ENST00000462958.5,	 ENST0000046611.5	 and	 ENST00000484253.1	 (Retained	 introns)	

were	upregulated	(Figure	6C).	This	pattern	could	lead	to	a	decrease	of	the	neuronal	specific	

BIN1	isoform	1	expression	(Zhou	et	al.,	2014),	given	that	retained	introns	are	non-coding	

sequences.	Using	western	blotting	analysis,	we	confirmed	this	decrease	of	BIN1	isoform	1	

protein	 in	the	frontal	cortex	and	hippocampus	of	AD	brain	samples	compared	to	controls	

(Supplementary	Figure	5).	

We	 also	 observed	 isoform	 switches	 in	 the	 AD	 causal	 gene	 APP	 with	 possible	 functional	

consequences	 in	 neuronal	 cells.	 While	 two	 APP	 isoforms	 were	 downregulated	

(ENST00000348990	 and	 ENST00000354192),	 the	 isoforms	 ENST00000346798	 and	

ENST00000357903	were	upregulated	in	Mayo	and	MSBB	datasets	(Figure	6D).	Noteworthy,	

significantly	downregulated	APP	isoforms	lack	exon	7,	which	contains	the	Kunitz	protease	

inhibitor	 (KPI)	 domain	 (Figure	 6).	 KPI	 is	 one	 of	 the	main	 serine	 protease	 inhibitors	 and	

increased	KPI(+)APP	mRNA	and	protein	expression	levels	have	been	described	in	AD	brains	

and	are	associated	with	increased	amyloid	beta	deposition	(Tanzi	et	al.,	1989;	Johnson	et	al.,	

1989;	Kitaguchi	al.,	1988).	At	the	exception	of	ENST00000354192,	the	other	transcripts	are	

mostly	expressed	in	neurons	(Marques-Coelho	and	Costa,	unpublished	data),	indicating	that	

these	cells	may	have	a	selective	increase	in	the	expression	of	KPI(+)APP		and,	consequently,	

enhanced	production	of	Aβ1-42.	
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Figure	6.	Expression	of	AD	risk/causal	genes	is	mostly	altered	in	the	TL	of	patients.	A)	

Heatmap	showing	the	expression	of	predicted	AD	risk/causal	genes	in	different	cell	types	of	

the	adult	human	brain.	DEGs	and	gDTUs	in	at	least	one	dataset	are	highlighted	in	red.	B)	Venn	

diagram	showing	the	number	of	AD	risk/causal	DEGs	or	gDTUs	identified	in	the	different	

datasets	analyzed.	The	 intersection	between	MAYO	and	MSBB	TL	 is	highlighted	 in	yellow	

and	genes	identified	are	shown	in	the	yellow	box.	C)	Representation	of	the	6	most	significant	

BIN1	isoforms	altered	(left)	and	quantification	of	the	differential	isoform	fraction	(dIF)	in	AD	

brains	 compared	 to	 controls	 (right).	 Main	 protein	 domains	 are	 indicated	 with	 different	

colors.	D)	Similar	representation	for	APP.	*	dIF	>	0.05	and	FDR	>	0.01.	
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Discussion	

	

A	comprehensive	knowledge	of	gene	expression	alterations	associated	with	the	onset	and	

progression	of	human	diseases	is	a	key	step	towards	the	understanding	of	their	cellular	and	

molecular	mechanisms	(T.	I.	Lee	&	Young,	2013).	In	this	work,	we	provide	a	novel	framework	

to	 identify	cell-type	specific	gene	expression	alterations	 in	AD	using	patient-derived	bulk	

RNAseq.	Comparing	RNA-sequencing	data	obtained	 from	distinct	brain	regions	of	control	

and	 AD	 patients,	 we	 show	 that	 changes	 in	 gene	 expression	 are	 more	 significant	 in	 the	

temporal	 than	 frontal	 lobe.	We	 also	 show	 that	 a	 large	 number	 of	 genes	 present	 isoform	

switches	without	changes	in	the	global	expression	levels.	As	a	consequence,	these	genes	are	

overlooked	 in	 classical	 differential	 expression	 analysis,	 but	 can	 be	 detected	 through	

differential	transcript	usage	analysis.	Gene	isoform	switches	are	mostly	evident	at	late	stages	

of	 the	 pathology	 and	 are	 likely	 associated	with	 altered	 expression	 of	 genes	 encoding	 for	

splicing-related	proteins.	Using	an	indirect	approach	to	assign	genes	to	unique	cell	types,	we	

are	 also	 able	 to	map	DEGs/gDTUs	 to	 unique	 cell	 populations	 of	 the	 adult	 brain,	 and	 our	

results	are	comparable	to	previously	published	scRNAseq	data	(Grubman	et	al,	2019;	Mathys	

et	al,	2019).	Finally,	we	show	that	a	subset	of	AD	causal/risk	factors	such	as	APP	or	BIN1	are	

differentially	 expressed	 in	 the	AD	brain.	Altogether,	 our	work	provides	 a	 comprehensive	

description	of	regional	and	cell-type	specific	gene	expression	changes	in	the	AD	brain	and	

suggests	 that	 alternative	 splicing	 could	 be	 an	 important	 mechanism	 for	 pathological	

progression.	

Despite	the	availability	of	RNAseq	datasets	generated	from	healthy	subjects	and	AD	patients	

(Allen	et	al,	2016;	Wang	et	al,	2018;	De	Jager	et	al,	2018),	a	systematic	evaluation	of	the	gene	

expression	changes	in	the	AD	brain,	as	well	as	comparisons	of	these	changes	in	distinct	brain	

region,	had	not	yet	been	performed.	To	the	best	of	our	knowledge,	only	one	study	aimed	at	

comparing	gene	expression	levels	in	different	AD	brain	regions	(Haroutunian	et	al.,	2009),	

but	this	work	was	based	on	microarray	data	which	has	a	 limited	gene	coverage.	We	here	

show,	 using	 bulk	 tissue	 RNAseq	 data,	 that	 alterations	 in	 gene	 expression	 are	 highly	

prominent	in	biological	samples	obtained	from	the	temporal	 lobe,	which	harbors	the	first	

brain	 regions	 affected	 in	 the	 AD	 pathogenesis	 (Braak	 and	 Braak,	 1991).	 Conversely,	 few	
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changes	 are	 present	 in	 biological	 samples	 derived	 from	 the	 frontal	 lobe,	whose	 cells	 are	

affected	only	at	advanced	stages	of	the	AD.	These	observations	are	in	line	with	recent	data	

showing	that	changes	in	protein	expression	levels	in	AD	brains	are	much	more	prominent	in	

the	temporal	lobe	(hippocampus,	entorhinal	cortex	and	cingulate	gyrus)	than	in	the	frontal	

lobe	(motor	cortex)	(Xu	et	al.,	2019).	They	can	also	help	to	explain	the	low	number	of	DEGs	

identified	in	scRNAseq	data	obtained	from	the	frontal	lobe	compared	to	a	similar	study	in	

the	entorhinal	cortex	(Figures	S1	and	S2;	Mathys	et	al.,	2019;	Grubman	et	al.,	2019).	

Although	we	cannot	formally	rule	out	that	a	stage-dependent	increase	in	the	number	of	DEGs	

and	 gDTUs	 could	 be	 due	 to	 the	 loss	 of	 neuronal	 cells	 in	 brain	 regions	 affected	 by	 the	

pathology,	 several	 lines	 of	 evidence	 indicate	 that	 this	 is	 not	 the	 most	 parsimonious	

explanation	for	the	data	described	here.	Firstly,	we	observe	that	the	percentage	of	up	and	

down	regulated	genes	in	GABAergic	and	glutamatergic	neurons	are	close	to	50%,	ruling	out	

the	possibility	that	changes	in	cell	numbers	could	explain	these	changes.	Secondly,	previous	

scRNAseq	studies	in	AD	observed	a	consistent	fraction	of	cell	types	isolated	across	control	

and	AD	individuals	(Mathys	et	al.,	2019;	Grubman	et	al.,	2019),	ruling	out	significant	changes	

in	cellular	composition	of	AD	brains.	Lastly,	the	large	number	of	genes	with	total	expression	

levels	unchanged,	but	presenting	isoform	switches	in	the	AD	brains	may	likely	presuppose	a	

steady	cellular	composition	of	the	tissue.	

These	 latter	 findings	also	support	the	notion	that	a	substantial	source	of	gene	expression	

changes	in	the	AD	brain	might	be	due	to	alternative	splicing	(T.	Raj	et	al.,	2018).	Classical	

DEG	analysis	using	DESeq	or	edgeR,	which	rank	all	gene	transcripts,	including	non-coding	

sequences	(Costa-Silva	et	al.,	2017),	are	insensitive	to	the	dynamics	of	gene	expression	that	

could,	 for	 example,	 lead	 to	 isoform	 switches	 with	 important	 functional	 consequences	

(Vitting-Seerup	and	Sandelin,	2017).	Accordingly,	we	show	that	a	large	set	of	genes	in	the	AD	

brain,	especially	in	the	temporal	lobe,	have	isoform	switches	but	are	not	detected	by	DEG	

analysis.	In	other	words,	comparisons	of	the	total	expression	of	these	genes	in	AD	vs	control	

subjects	 does	 not	 show	 statistical	 significance,	 whereas	 the	 dynamics	 individual	

transcripts/isoforms	of	the	same	genes	may	be	profoundly	altered,	 leading	to	statistically	

significant	differences	in	transcript	usage.		
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By	using	DTU	analysis,	alone	or	in	combination	with	DEG	analysis,	we	are	able	to	identify	

gene	sets	associated	with	key	biological	processes	associated	with	AD	pathogenesis,	such	as	

synaptic	 communication,	 immune	 response,	 inflammation,	 endocytosis	 and	 cell-signaling	

(Canter	et	al.,	2016).	Notably,	a	significant	proportion	of	gDTUs,	but	not	DEGs,	are	associated	

with	synapse	GO	terms.	This	limitation	in	the	detection	of	altered	gene	expression	associated	

with	 synapse-related	 terms	 is	 partly	 overcome	 by	 analyzing	 separate	 cell	 populations	 in	

scRNAseq	 data	 (Mathys	 et	 al.,	 2018;	 Grubman	 et	 al.,	 2018).	 However,	 technical	 aspects	

hamper	 the	 analysis	 of	 these	 data	 to	 detect	 isoform	 switches	 (Arzalluz-Luqueángeles	 &	

Conesa,	2018).	We	here	used	an	indirect	approach	to	assign	DEGs	and	gDTUs	to	unique	cell	

types	and	provide	evidence	that	such	strategy	is	comparable	to	previous	scRNAseq	studies	

(Mathys	 et	 al.,	 2019;	 Grubman	 et	 al.,	 2019).	 Our	 results	 suggest	 a	 more	 pronounced	

pathological	 burden	on	GABAergic	 than	 glutamatergic	 neurons.	 Interestingly,	 it	 has	 been	

suggested	 that	 early	 parvalbumin-expressing	 GABAergic	 neuron	 dysfunction	 critically	

contributes	 to	 abnormalities	 in	 oscillatory	 rhythms,	 network	 synchrony,	 and	memory	 in	

hAPP	mice	and	possibly	 in	AD	 (Verret	et	 al.,	 2012).	 It	 is	 tempting	 to	 speculate	 that	early	

dysfunction	of	GABAergic	neurons	 could	 lead	 to	 increased	neuronal	 activity	 and	 synapse	

downscaling	(Dörrbaum	et	al.,	2020).		

Gene	 isoform	 switches	 can	 be	 partly	 explained	 by	 alternative	 splicing	 (Arzalluz-

Luqueángeles	 &	 Conesa,	 2018).	 Accordingly,	 we	 provide	 evidence	 for	 alterations	 in	 the	

splicing	machinery	at	mid	to	 late	stages	of	the	disease	that	could	help	to	explain	the	high	

number	of	gDTUs	observed	at	later	stages.	Again,	these	alterations	are	more	abundant	in	the	

TL	than	in	the	FL,	which	could	help	to	explain	the	low	number	of	gDTUs	in	the	latter	brain	

region	 identified	 in	 our	 work	 and	 in	 previous	 study	 using	 a	 different	 strategy	 to	 detect	

isoform	switch	(Raj	et	al.,	2018).	Also,	in	accordance	with	our	results,	it	has	been	shown	that	

APP-695	 transcript	 is	 reduced	 in	 the	 hippocampus,	 but	 not	 cerebellum,	 of	 AD	 patients	

(Johnson	et	al.,	1989).	Thus,	there	is	a	regional	susceptibility	to	isoform	switch	correlated	

with	changes	in	the	expression	of	genes	encoding	for	proteins	of	the	splicing	machinery	in	

the	AD	brain.		

Particularly	interesting,	genes	involved	in	the	control	of	alternative	splicing	in	neurons	are	

highly	affected	in	the	temporal	lobe.	Decreased	expression	of	RBFOX1	and	2,	for	example,	
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could	lead	to	an	increased	rate	of	exon	inclusion	(Alam	et	al.,	2014;	B.	Raj	&	Blencowe,	2015)	

as	observed	for	the	APP	gene	in	our	study.	Indeed,	reduced	expression	of	RBFOX1	has	been	

associated	with	an	increased	inclusion	of	exon	7	in	the	APP	gene,	 leading	to	an	enhanced	

expression	of	APP	isoforms	770	and	751	containing	the	KPI	domain	(Alam	et	al.,	2014).	A	

similar	switch	in	the	APP	isoforms	has	also	been	associated	with	somatic	gene	recombination	

in	 AD	 (M.	 H.	 Lee	 et	 al.,	 2018),	 further	 indicating	 that	 increased	 ratios	 of	 APP	 isoforms	

containing	the	KPI	domain	could	be	detrimental	to	neurons.	Considering	these	findings	and	

the	 well-established	 	 associations	 between	 APP-KPI	 expression	 levels,	 amyloid	 plaque	

deposition	and	AD	pathology	progression	(Tanzi	et	al.,	1988,	Johnson	et	al.	1990;	Kitaguchi	

et	 al.,	 1988),	 it	 is	 tempting	 to	 speculate	 that	 controlling	 APP	 isoform	 switches	 by	

manipulating	RBFOX	 family	proteins	 could	be	a	potential	 therapeutic	 strategy	 to	hamper	

disease	progression.		

Another	interesting	isoform	switch	detected	in	our	study	is	for	the	AD	risk	gene	BIN1,	which	

is	a	major	risk	factor	for	AD	(Lambert	et	al.,	2013;	Kunkle	et	al.,	2019).	BIN1	comprises	a	N-

BAR	domain	involved	in	membrane	curvature	sensing,	an	SH3	domain	that	binds	to	proline-

rich	motifs,	and	a	clathrin-binding	domain	(CLAP)	specific	of	the	neuronal	isoform	1	(Zhou	

et	 al.,	 2014).	We	 show	 that	 the	 transcript	 encoding	 for	 this	 latter	 isoform	 is	 significantly	

reduced	 in	the	temporal	 lobe,	suggesting	that	expression	of	BIN1	isoform	1	 in	neurons	 is	

reduced.	This	observation	is	in	line	with	decreased	BIN1	isoform	1	protein	expression	in	the	

AD	brain	compared	with	controls	(our	own	results;	Glennon	et	al.,	2013).	This	would	be	also	

in	agreement	with	 the	observation	 that	an	overexpression	of	 the	BIN1	 isoform	1	may	be	

protective	in	a	model	of	Tauopathy	(Sartori	et	al.,	2019).		

Altogether,	 our	work	 indicates	 that	 isoform	 switch	 is	 an	 important	mechanism	 for	 gene	

expression	alteration	in	AD	and	that	genes	associated	with	the	splicing	machinery	in	neurons	

could	be	interesting	therapeutic	targets	to	be	exploited.		

	

Code	availability		

	

Gene	 expression	 summaries,	 alternative	 splicing	 summaries,	 and	 protein	 domains:	

https://diegomscoelho.github.io/AD-IsoformSwitch/	
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Materials	and	Methods	

	

Bulk	RNAseq	data	from	human	control	and	disease	banks	

RNAseq	datasets	obtained	from	different	brain	regions	were	used	(Mayo:	Allen	et	al,	2016;	

MSBB:	Wang	et	al,	2018;	ROSMAP:	De	Jager	et	al,	2018).	Metadata	obtained	from	each	study	

was	used	 to	 classify	patients	 into	Control	 and	Alzheimer’s	disease	groups.	Datasets	were	

downloaded	 from	 AMP-AD	 Knowledge	 Portal	 (https://www.synapse.org)	 following	 all	

terms	and	conditions	to	use	the	data.	The	brain	area	analyzed	and	the	number	of	individuals	

per	 condition	 were	 the	 following:	 Mayo	 -	 Temporal	 cortex,	 which	 neuroanatomically	

subdivides	 into	 the	 inferior,	 middle,	 and	 superior	 temporal	 gyri	 (STG),	 and	

cytoarchitectonically	 can	 be	 subdivided	 into	 Brodmann	 areas	 (BM,	 instead	 of	 BA)	

20/21/22/41/42	(Strotzer,	2009),	N=160	subjects	(82	AD	and	78	controls);	MSBB	-	BM22,	

which	is	part	of	the	Wernicke’s	area	in	the	STG,	N=159	subjects	(98	AD	and	61	controls);	

MSBB	BM36,	corresponding	to	the	lateral	perirhinal	cortex,	N=154	subjects	(88	AD	and	64	

controls);	MSBB	BM10,	corresponding	to	the	anterior	prefrontal	cortex,	N=176	subjects	(105	

AD	 and	 71	 controls);	 MSBB	 BM44,	 corresponding	 to	 the	 inferior	 frontal	 gyrus,	 N=153	

subjects	(90	AD	and	63	controls);	and	ROSMAP	-			Dorsolateral	prefrontal	cortex	(DLPFC),	

containing	BM46	and	part	of	BM9,	N=423	subjects	(222	AD	and	201	controls).	Unless	stated	

otherwise,	data	obtained	 from	different	analyses	were	grouped	 in	 “temporal	 lobe”	 (TL)	 -	
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Mayo,	MSBB	BM22	and	MSBB	BM26;	or	“frontal	lobe”	(FL)	-	ROSMAP,	MSBB	BM10	and	MSBB	

BM44.		

For	single-cell	RNA	sequencing	(scRNAseq)	analyses,	we	used	processed	data	obtained	from	

the	 middle	 temporal	 gyrus	 (MTG),	 available	 at	 the	 Allen	 Brain	 Atlas	 consortium	

(https://celltypes.brain-map.org/rnaseq).	

Realignment	of	human	reads	into	single	pseudo	aligner	pipeline	

Using	human	GRCh38	cDNA	release	94	(ftp://ftp.ensembl.org/pub/release-94)	as	reference,	

we	built	an	index	to	align	all	our	fastq	files.	Next,	we	used	pseudoaligner	Kallisto	(Bray	et	al.,	

2016);	version	0.43.1)	with	our	pre-built	index	to	align	fastq	files.		

	

Differential	gene	expression	analyses	

Differentially	expressed	genes	(DEGs)	were	identified	using	differential	gene	expression	at	

transcript-level	using	DESeq2	R	library	(Love	et	al.,	2014,	2019).	To	facilitate	kallisto	output	

import,	 transcript-level	 estimated	 counts,	 length	 and	 abundance	 was	 extracted	 using	

tximport	 function	 (Soneson	et	al.,	2016).	As	described	by	Michael	Love	group,	 transcript-

level	 differential	 gene	 expression	 enhances	 analysis	 resolution	 (Love	 et	 al.,	 2019).	 Using	

DESeqDataSetFromTximport,	a	DESeq2	object	was	created	and	filtered	using	rows	with	sum	

of	all	counts	bigger	than	10.	Next,	DESeq	 function	was	used	with	default	values.	Using	the	

results	 function,	 we	 selected	 all	 genes	with	 False	 Discovery	 Rate	 (FDR)	 <	 0.01	 and	 Fold	

Change	(FC)	>	1.3.	

Differential	 Transcript	 Usage	 (DTU)	 analysis	 was	 performed	 using	 the	 R	 library	

IsoformSwitchAnalyzeR	(Vitting-Seerup	&	Sandelin,	2019).	Following	pipeline	instructions,	

kallisto	abundance	 tables	were	 imported	using	 importIsoformExpression	and	 importRdata	

functions	to	create	a	switchAnalyzeRlist	object.	Same	cDNA	release	used	in	kallisto	alignment	

and	 correspondent	 annotation	 (ftp://ftp.ensembl.org/pub/release-

94/gtf/homo_sapiens/Homo_sapiens.GRCh38.94.chr_patch_hapl_scaff.gtf.gz)	 were	 applied	

as	input.	We	filtered	data	using	a	gene	expression	cut	off	=	10,	isoform	expression	cut	off	=	

3,	 differential	 isoform	 fraction	 (dIF)	 cut	 off	 =	 0.05	 and	 removed	 single	 isoform	 genes.	

Although	 DEXSeq	 is	 recommended	 to	 test	 differential	 isoform	 usage,	 it	 does	 not	 work	

efficiently	for	large	datasets	(more	than	100	samples;	(Anders	et	al.,	2012)).	For	that	reason,	
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we	chose	isoformSwitchAnalysisPart1	function	using	DRIMSeq	(Soneson	et	al.,	2016)	to	test	

differential	transcript	usage.	Using	part1	fasta	files,	all	external	analysis	was	performed	and	

used	 as	 input	 to	 isoformSwitchAnalysisPart2	 function.	We	 used	 CPC2,	 Pfam,	 SignalIP	 and	

Netsurfp2	as	indicated	in	the	pipeline.	Next,	we	performed	a	confirmation	stage	using	stageR		

(Van	den	Berge	et	al.,	2017)	to	generate	isoforms	overall	false	discovery	rate	(OFDR).	We	

selected	all	isoforms	with	OFDR	<	0.01	and	dIF	>	0.05.	

To	 evaluate	 if	 intersections	 among	 different	 datasets	 were	 statistically	 relevant,	 we	

calculated	the	significance	of	overlap	between	every	two	sets	using	the	hypergeometric	test	

(phyper).	Our	universe	set	consists	in	genes	with	FDR	<	0.1	within	each	dataset.	

	

Single-cell	RNAseq	

Using	 R	 library	 seurat,	 we	 created	 a	 seurat	 object	 (CreateSeuratObject),	 normalized	 data	

(NormalizeData),	 found	 variable	 genes	 (FindVariableFeatures)	 and	 rescaled	 data	 using	 a	

linear	model	(ScaleData,	use.umi	=	F).	After	that,	we	generated	50	PC’s	(RunPCA)	but	only	

used	35	of	them	based	on	the	PC's	visualization	distribution	(ElbowPlot).	Since	Allen	data	

was	 already	 annotated,	we	only	used	 tSNE	 (RunTSNE)	 to	 facilitate	 visualization.	A	 group	

classified	 as	 “None”	 by	 Allen	 metadata	 were	 removed	 from	 our	 analysis.	 This	 strategy	

generated	7	main	different	cell	types:	Astrocytes,	Endothelial	cells,	Glutamatergic	Neurons,	

GABAergic	 Neurons,	 Microglia,	 Oligodendrocytes	 and	 oligodendrocyte	 precursor	 cells	

(OPCs).	To	assign	genes	to	specific	cell-types,	we	used	the	AverageExpression	function.	Using	

pct.exp	bigger	than	0.1,	we	created	a	list	of	genes	that	were	expressed	by	each	cell	type.	

	

Gene-set	enrichment	analysis	(GSEA)	

For	 gene	 ontology	 analysis,	 R	 library	 gprofiler2	 was	 used.	 Using	 gost	 function,	

correction_method=“fdr''	 and	 significant=TRUE.	 To	 minimize	 the	 enrichment	 of	 gene	

ontologies	based	on	small	set	of	genes,	we	used	three	conditions	for	significance	assessment:	

false	discovery	rate	(FDR)<0.01;	intersection	size	(intersection	between	gene	set	vs.	number	

of	genes	in	a	term)>3;	and	precision	(intersection	size	divided	by	gene	set)>0.03.	We	used	

Gene	Ontology	(GO	or	by	branch	GO:MF,	GO:BP,	GO:CC),	Kyoto	Encyclopedia	of	Genes	and	

Genomes	 (KEGG),	 Reactome	 (REAC),	 WikiPathways	 (WP),	 TRANSFAC	 (TF),	 miRTarBase	
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(MIRNA),	Human	Protein	Atlas	(HPA),	CORUM	(CORUM),	Human	phenotype	ontology	(HP)	

as	sources.	For	improved	visualization,	we	plotted	results	only	for	GO:BP,	GO:CC	and	KEGG	

and	show	only	FDR	for	terms	reaching	all	criteria	of	significance.	

	

Selection	of	splicing-associated	genes	

To	select	splicing	related	genes,	we	searched	for	terms	containing	the	words	“splicing”	or	

“spliceosome”	 in	 gProfiler	 bank	 (https://biit.cs.ut.ee/gprofiler/gost).	 Taking	 only	GO	 and	

WP	datasets,	25	terms	and	441	genes	related	to	those	terms	were	selected	(Supplementary	

table	8).	

	

Selection	of	AD	risk/causal	genes	

Late-onset	AD	risk	genes	were	curated	by	Dourlen	et	al.	(2019).	Briefly,	AD-associated	loci	

were	selected	from	genetic	studies,	mainly	GWAS	and	WES	[1–5,	7–25].	Genes	in	these	loci	

were	either	indicated	in	the	publications	or	determined	based	on	the	regional	association	

plots	provided	in	the	publications	assuming	that	the	functional	risk	variants	are	located	in	

the	 vicinity	 of	 the	 SNP	 producing	 the	 top	 signal	 and	 taking	 into	 account	 the	 linkage	

disequilibrium	patterns	and	the	recombination	peaks	within	the	loci	of	interest.	Early-onset	

AD	causal	genes	were	APP,	PSEN1	and	PSEN2.	The	complete	list	of	genes	is	described	in	the	

Supplementary	Table	9.	

Western	blotting	

Brain	 samples	 obtained	 from	 the	 frontal	 cortex	 (FCx)	 and	 hippocampus	 (Hip)	 of	 3	 non-

pathology	(two	samples	Braak	II	and	one	sample	Braak	IV)		and	6	AD	patients	(all	samples	

Braak	VI)	were	lysed	with	RIPA	buffer	and	sonicated	at	100%	during	10	seconds	before	use	

for	the	Western	blotting	analyses.	The	controls	for	BIN1	isoforms	1	(Iso1)	and	9	(Iso9)	were	

obtained	 using	 HEK	 cells	 transiently	 transfected	 with	 1µg/ml	 DNA	 solution	 containing	

plasmids	 encoding	 for	 BIN1	 isoforms	 mixed	 with	 the	 transfection	 reagent	 FuGENE	 HD	

(Promega)	at	 the	ratio	1:3.	Cells	were	 lysed	using	RIPA	buffer	48h	after	 transfection	and	

frozen	for	further	analyses.		

Protein	quantification	was	performed	using	the	BCA	protein	assay	(Thermo	Scientific).	10–

20	 μg	 of	 total	 protein	 from	 extracts	 were	 separated	 in	 SDS–polyacrylamide	 gels	 4-12%	
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(NuPAGE	Bis-Tris,	 Thermo	 Scientific)	 and	 transferred	 to	 nitrocellulose	membranes	 (Bio-

Rad).	 Next,	 membranes	 were	 incubated	 in	 milk	 (5%	 in	 Tris-buffered	 saline	 with	 0.1%	

Tween-20,	TTBS;	1	h	at	RT)	to	block	non-specific	binding	sites	during	30min	at	RT,	followed	

by	several	washes	with	TTBS.	Immunoblotting	was	carried	out	with	primary	antibodies	anti-

BIN1	(Abcam,	ab182562)	and	Anti-β-ACTIN	(SIgma-Aldrich,	A1978)	for	1	h	at	RT	on	20	RPM.	

The	membranes	were	washed	3	times	in	TTBS,	followed	by	incubation	with	HRP-conjugated	

secondary	 antibodies	 (Jackson,	 anti-Mouse	 115-035-003;	 anti-Rabbit	 111-035-003)		

overnight	 at	 4°C	 on	 20	 RPM	 agitation.	 Immunoreactivity	 was	 revealed	 using	 the	 ECL	

chemiluminescence	 system	 (SuperSignal,	 Thermo	 Scientific)	 and	 imaged	 using	 the	

Amersham	Imager	600	(GE	Life	Sciences).	Optical	densities	of	bands	were	quantified	using	

"Gel	Analyzer"	plugin	in	Fiji	(Schindelin	et	al.,	2012).	
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Supplementary	Figures:	

	

Supplementary	Figure	1.	Comparison	of	scRNAseq	signatures	in	this	study	with	those	

observed	by	Grubman	et	 al	 and	Mathys	et	 al	 in	Glutamatergic	Neurons,	GABAergic	

Neurons	and	Astrocytes.	A,C,E)	UpsetR	and	Venn	Diagram	illustrate	 intersection	among	

different	studies.	B,D,F)	Gene-set	enrichment	analysis	(GSEA)	with	cell-type	signatures.	As	a	

threshold	for	GSEA,	FDR	<	0.01,	 intersection	size	>	3	and	precision	>	0.03.	Analyses	were	

performed	for	glutamatergic	neurons	(A-B),	GABAergic	neurons	(C-D)	and	astrocytes	(E-F).	
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Supplementary	Figure	2.	Comparison	of	scRNAseq	signatures	in	this	study	with	those	

observed	by	Grubman	et	al	and	Mathys	et	al	in	Oligodendrocytes,	Endothelial	cells	and	

Microglia.	A,C,E)	UpsetR	and	Venn	Diagram	illustrate	intersection	among	different	studies.	

B,D,F)	 Gene-set	 enrichment	 analysis	 (GSEA)	with	 cell-type	 signatures.	 As	 a	 threshold	 for	

GSEA,	 FDR	 <	 0.01,	 intersection	 size	 >	 3	 and	 precision	 >	 0.03.	 Analyses	 were	 done	 for	

oligodendrocytes	(A-B),	endothelial	cells	(C-D)	and	microglia	(E-F).	
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Supplementary	Figure	3.	Allen	Brain	Atlas	scRNAseq	MTG	dataset	information.	A)	tSNE	

representation	 showing	 distribution	 of	 single	 cells	 in	 two	 dimensions;	 B)	 Donut	 plot	

indicating	the	percentage	of	cell	types/subtypes	among	all	groups	with	absolute	number	of	

cells.	 C)	 Dot	 plot	 showing	 the	 expression	 of	 some	 known	 cell	 type/subtype	markers.	 D)	

Boxplot	showing	the	average	expression	of	the	same	genes.	E)	UpsetR	showing	the	number	

of	genes	expressed	in	each	cell	type	/subtype.	
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Supplementary	 Figure	 4.	 Percentage	 of	 DEGs	 regulation	 among	 cell	 types.	 Graphic	

showing	the	percentage	of	genes	UP	(blue)	and	DOWN	(yellow)	regulated	in	both	TL	datasets	

(Mayo	and	MSBB_TL),	as	well	as	genes	altered	in	discordant	directions	in	these	two	datasets	

(grey).	Observe	that	neurons	have	about	half	of	the	genes	altered	in	each	direction,	whereas	

astrocytes,	 oligodendrocytes,	microglia	 and	 endothelial	 cells	 have	 a	 predominance	 of	 up	

regulated	genes.	
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Supplementary	 Figure	5.	 Expression	of	BIN1	 isoform	1	 is	 reduced	 in	AD	brains.	A)	

Western	blot	for	BIN1	and	ACTIN	in	brain	lysates	obtained	from	the	frontal	cortex	(FCx)	and	

hippocampus	(Hip)	of	non-pathology	(n=3)	and	AD	(n=6)	individuals.	Bands	corresponding	

to	isoforms	1	and	9	are	indicated	(Iso1	and	Iso9,	respectively).	B-C)	Quantification	of	total	

BIN1	normalized	per	ACTIN	(B)	and	BIN1	isoform	1	normalized	by	the	total	BIN1	(C).	ANOVA	

F(3,14)=	3.36	and	p=0.0494	(B);	F(3,14)=	16.24	and	p<0.0001	(C);	Tukey's	multiple	comparisons	

test	*	Padj<0.05	and	***	Padj<0.001.	D)	Western	blot	for	BIN1	in	brain	lysates	from	one	non-

pathology	subject	(Hip	and	FCx)	and	HEK	cells	 transfected	with	 lentiviral	vector	carrying	

plasmids	 encoding	 for	BIN1	 isoforms	1	 (Iso1)	 and	9	 (Iso9).	Observe	 the	 correspondence	

between	the	first	and	third	band	in	the	brain	(lanes	1	and	2)	with	isoform	1	(lane	3)	and	9	

(lane	4),	respectively.			
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Description	of	supplementary	tables:	

Supplementary	table	1.	Summary	statistics	for	DEG	and	DTU	analyses	

Supplementary	table	2.	GSEA	for	DEGs	and	gDTUs	in	the	temporal	lobe	intersection	(TLI)	

Supplementary	table	3.	Summary	statistics	for	DTU	analysis	in	MSBB	using	Braak	stages	

Supplementary	table	4.	Expression	of	genes	identified	in	DEGs	and	DTU	analyses	in	different	

cell	types/subtypes	

Supplementary	table	5.	GSEA	for	DEGs	and	gDTUs	in	the	TLI	per	cell	type	

Supplementary	table	6.	GSEA	for	DEGs	identified	in	different	cell	types	in	previous	single-

cell	RNAseq	studies	

Supplementary	table	7.	Expression	of	AD	risk/causal	factors	in	different	cell	types/subtypes	

Supplementary	 table	 8.	 List	 of	 splicing	 related	 genes	 used	 in	 this	 study	 and	 their	

corresponding	ontology	terms	

Supplementary	table	9.	List	of	AD	risk	genes	used	in	this	study	
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