Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

Socio-economic and environmental patterns behind H1N1 spreading in Sweden

View ORCID ProfileAndrás Bóta, Martin Holmberg, Lauren Gardner, Martin Rosvall
doi: https://doi.org/10.1101/2020.03.18.20038349
András Bóta
1Integrated Science Lab, Department of Physics, Umea University, Umea, SE-90187 Sweden
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for András Bóta
  • For correspondence: andras.bota@umu.se
Martin Holmberg
1Integrated Science Lab, Department of Physics, Umea University, Umea, SE-90187 Sweden
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Lauren Gardner
2Department of Civil Engineering, Center for Systems Science and Engineering, Johns Hopkins University, Baltimore, MD-21218 USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Martin Rosvall
1Integrated Science Lab, Department of Physics, Umea University, Umea, SE-90187 Sweden
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Data/Code
  • Preview PDF
Loading

Abstract

The first influenza pandemic in our century started in 2009, spreading from Mexico to the rest of the world, infecting a noticeable fraction of the world population. The outbreak reached Europe in late April, and eventually, almost all countries had confirmed H1N1 cases. On 6 May, Swedish authorities reported the first confirmed influenza case. By the time the pandemic ended, more than 10 thousand people were infected in the country. In this paper, we aim to discover critical socio-economic, travel, and environmental factors contributing to the spreading of H1N1 in Sweden covering six years between 2009 and 2015, focusing on 1. the onset and 2. the peak of the epidemic phase in each municipality.

We apply the Generalized Inverse Infection Method (GIIM) to identify these factors. GIIM represents an epidemic spreading process on a network of nodes corresponding to geographical objects, connected by links indicating travel routes, and transmission probabilities assigned to the links guiding the infection process. The GIIM method uses observations on a real-life outbreak as a training dataset to estimate these probabilities and construct a simulated outbreak matching the training data as close as possible.

Our results show that the influenza outbreaks considered in this study are mainly driven by the largest population centers in the country. Also, changes in temperature have a noticeable effect. Other socio-economic factors contribute only moderately to the epidemic peak and have a negligible effect on the epidemic onset. We also demonstrate that by training our model on the 2009 outbreak, we can predict the timing of the epidemic onset in the following five seasons with good accuracy.

The model proposed in this paper provides a real-time decision support tool advising on resource allocation and surveillance. Furthermore, while this study only considers H1N1 outbreaks, the model can be adapted to other influenza strains or diseases with a similar transmission mechanism.

Competing Interest Statement

The authors have declared no competing interest.

Funding Statement

Andras Bota was supported by the Olle Engkvist Byggmästare Foundation. Martin Rosvall was supported by the Swedish Research Council, grant 2016-00796.

Author Declarations

All relevant ethical guidelines have been followed; any necessary IRB and/or ethics committee approvals have been obtained and details of the IRB/oversight body are included in the manuscript.

Yes

All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.

Yes

Data Availability

Data available on request from the authors

Copyright 
The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-ND 4.0 International license.
Back to top
PreviousNext
Posted March 20, 2020.
Download PDF
Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Socio-economic and environmental patterns behind H1N1 spreading in Sweden
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Socio-economic and environmental patterns behind H1N1 spreading in Sweden
András Bóta, Martin Holmberg, Lauren Gardner, Martin Rosvall
medRxiv 2020.03.18.20038349; doi: https://doi.org/10.1101/2020.03.18.20038349
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Socio-economic and environmental patterns behind H1N1 spreading in Sweden
András Bóta, Martin Holmberg, Lauren Gardner, Martin Rosvall
medRxiv 2020.03.18.20038349; doi: https://doi.org/10.1101/2020.03.18.20038349

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Epidemiology
Subject Areas
All Articles
  • Addiction Medicine (227)
  • Allergy and Immunology (501)
  • Anesthesia (110)
  • Cardiovascular Medicine (1233)
  • Dentistry and Oral Medicine (206)
  • Dermatology (147)
  • Emergency Medicine (282)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (529)
  • Epidemiology (10012)
  • Forensic Medicine (5)
  • Gastroenterology (498)
  • Genetic and Genomic Medicine (2448)
  • Geriatric Medicine (236)
  • Health Economics (479)
  • Health Informatics (1636)
  • Health Policy (751)
  • Health Systems and Quality Improvement (635)
  • Hematology (248)
  • HIV/AIDS (532)
  • Infectious Diseases (except HIV/AIDS) (11860)
  • Intensive Care and Critical Care Medicine (625)
  • Medical Education (252)
  • Medical Ethics (74)
  • Nephrology (268)
  • Neurology (2277)
  • Nursing (139)
  • Nutrition (350)
  • Obstetrics and Gynecology (452)
  • Occupational and Environmental Health (534)
  • Oncology (1245)
  • Ophthalmology (375)
  • Orthopedics (133)
  • Otolaryngology (226)
  • Pain Medicine (155)
  • Palliative Medicine (50)
  • Pathology (324)
  • Pediatrics (729)
  • Pharmacology and Therapeutics (311)
  • Primary Care Research (282)
  • Psychiatry and Clinical Psychology (2280)
  • Public and Global Health (4828)
  • Radiology and Imaging (834)
  • Rehabilitation Medicine and Physical Therapy (490)
  • Respiratory Medicine (650)
  • Rheumatology (283)
  • Sexual and Reproductive Health (237)
  • Sports Medicine (226)
  • Surgery (266)
  • Toxicology (44)
  • Transplantation (125)
  • Urology (99)