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ABSTRACT 

 

While genome-wide association studies have identified susceptibility variants for numerous 

traits, their combined utility for predicting broad measures of health, such as mortality, remains 

poorly understood. We used data from the UK Biobank to combine polygenic risk scores (PRS) 

for 13 diseases and 12 mortality risk factors into sex-specific composite PRS (cPRS). These 

cPRS were moderately associated with all-cause mortality in independent data: the estimated 

hazard ratios per standard deviation were 1.10 (95% confidence interval: 1.05, 1.16) and 1.15 

(1.10, 1.19) for women and men, respectively. Differences in life expectancy between the top 

and bottom 5% of the cPRS were estimated to be 4.79 (1.76, 7.81) years and 6.75 (4.16, 9.35) 

years for women and men, respectively. These associations were substantially attenuated after 

adjusting for non-genetic mortality risk factors measured at study entry. The cPRS may be 

useful in counseling younger individuals at higher genetic risk of mortality on modification of 

non-genetic factors. 
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INTRODUCTION 

 

Genome-wide association studies (GWAS) with increasingly large sample sizes have led to the 

discovery of thousands of genetic variants associated with individual traits, including complex 

diseases and risk factors for disease (1). Analyses of polygenicity of a variety of traits (2,3) have 

further indicated that many individual traits are likely to be associated with thousands to tens of 

thousands of genetic variants, each with very small effect. Thus, much attention has been paid 

to the utility of polygenic risk scores (PRS), which represent the genetic burden of a given trait, 

for developing strategies for risk-based intervention through lifestyle modification (4–8), 

screening (5,7–12), and medication (5,7,13,14). A PRS for a given trait is typically defined as a 

weighted sum of a set of germline single-nucleotide polymorphisms (SNPs), where the weight 

for each SNP corresponds to an estimate of the strength of association between the SNP and 

the trait (7). Recent studies indicate that while PRS tend to have modest predictive capacity 

overall, they have the potential to offer substantial stratification of a population into distinct 

levels of risk for some common diseases such as coronary artery disease (CAD) and breast 

cancer (4,15).  

 

There is ongoing debate regarding the utility of PRS in clinical practice (16–18). PRS can be 

more robust and cost-efficient tools for risk stratification than other biomarkers and risk factors. 

In particular, PRS do not change over time and thus need to be measured only once. 

Additionally, the risk associated with PRS for different traits appears in many cases to be fairly 

consistent over an individual’s life course (15,19) and time-varying lifestyle and clinical factors 

tend to act in a multiplicative way on baseline genetic risk (4,6,20,21). Further, if genome-wide 

genotype and/or sequencing data are available on an individual, the same data can be used to 

evaluate the PRS for a large number of traits simultaneously. Thus, beyond the use of PRS for 
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prevention of specific diseases, it is important to evaluate their utility for broad health outcomes, 

particularly if PRS are to be utilized in routine health care.  

 

The broad health impact of public health or clinical interventions is often measured in terms of 

their impact on all-cause mortality or lifespan (22–25). While a small number of genetic variants 

associated with lifespan have been identified (26–28), no study to date has systematically 

evaluated the ability of emerging PRS for life-threatening diseases and mortality risk factors to 

predict mortality. We used data from the UK Biobank, a large prospective cohort study, to 

assess the combined utility of PRS associated with 13 common diseases and 12 established 

risk factors for mortality. We used training data to combine the trait-specific PRS into sex-

specific composite PRS (cPRS) that are predictive of all-cause mortality. We then evaluated the 

association of these cPRS with all-cause mortality and their ability to stratify mortality risk in 

independent test data. We also assessed the degree to which mortality risk associated with the 

cPRS was accounted for by mortality risk factors measured at the time of entry into the study, 

i.e., middle age for most participants. Finally, we examined the potential clinical use of the 

cPRS, namely, counseling individuals at higher genetic risk of mortality on modification of non-

genetic risk factors such as body mass index (BMI) and smoking status.   

 

 

RESULTS 

 

Identification of Causes of Death, Mortality Risk Factors, and Associated SNPs  

 

We used data from the Centers for Disease Control (CDC) to identify the top causes of death 

with some genetic basis separately for men and women (see Methods). These included CAD, 

chronic obstructive pulmonary disease (COPD), Alzheimer’s disease, stroke, type 2 diabetes, 
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chronic kidney disease (CKD), hypertension, alcoholic liver cirrhosis, Parkinson’s disease, 

pancreatic cancer, colorectal cancer, lung cancer, breast cancer (women only), and prostate 

cancer (men only). We further identified major mortality risk factors known to have some genetic 

component: smoking status, alcohol consumption, systolic blood pressure (SBP), diastolic blood 

pressure (DBP), BMI, total cholesterol, low-density lipoprotein (LDL) cholesterol, high-density 

lipoprotein (HDL) cholesterol, triglycerides, fasting plasma glucose, estimated glomerular 

filtration rate (eGFR), and sleep duration (see Methods). We queried the NHGRI-EBI GWAS 

Catalog (for disease PRS) and used the most recent GWAS with summary data available (for 

risk factor PRS) to identify genome-wide significant SNPs associated with each trait (see 

Methods).  

 

UK Biobank: Disease, Mortality, and Genotype Data 

 

We retrieved imputed genotype data and data on mortality (including cause of death), incident 

and prevalent disease for the top causes of death, and mortality risk factors measured at 

baseline from the UK Biobank (see Methods). After removing individuals who were related, were 

not of British ancestry, or had withdrawn their consent to participate, our dataset included 

337,138 participants, including 181,027 women and 156,111 men (Table 1 and Supplementary 

Table 1). There were 13,610 deaths (4.0%) with 5,250 among women (2.9%) and 8,360 among 

men (5.4%). The diseases included in the top causes of death accounted for 45.9% of the 

deaths in women and 45.5% of the deaths in men in the UK Biobank. Notably, very few deaths 

in the UK Biobank were attributed to type 2 diabetes, which appears to be due to many more 

deaths in the UK Biobank having type 2 diabetes listed as a secondary cause of death as 

opposed to the primary cause. All analyses were sex-specific and included adjustment for the 

first ten genetic principal components provided by the UK Biobank unless specified otherwise 

(see Methods).  
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Constructing and Evaluating the Trait-Specific PRS in the UK Biobank 

 

We removed SNPs in linkage disequilibrium, yielding a list of independent SNPs for each trait 

(see Methods). The number of SNPs for each trait varied widely, between two SNPs for 

cirrhosis and 1,458 for BMI (Supplementary Table 2). Our analysis included a total of 3,941 

unique SNPs. Based on the list of SNPs for each trait, a PRS for each trait and each participant 

was constructed by weighting the SNP dosage by the reported association estimate (see 

Methods). The PRS were standardized to have unit variance. As anticipated, the trait-specific 

PRS tended to be moderately to strongly associated with the corresponding disease or risk 

factor (Supplementary Figure 1 and Supplementary Table 3; see Methods). The strongest 

associations for the disease traits (odds ratios or relative risks of at least 1.5 per standard 

deviation (SD)) were observed for Alzheimer’s disease (incident disease only), type 2 diabetes, 

breast cancer in women, prevalent CAD in men, cirrhosis in men, and prostate cancer in men.  

 

We observed that the PRS for each disease was generally at least moderately associated with 

death from that disease (Figure 1; see Methods), with the association being strongest for 

Alzheimer’s disease (hazard ratio (HR) per SD: 1.86 (95% confidence interval: 1.42, 2.42) in 

women; 2.01 (1.52, 2.65) in men), CAD (1.51 (1.34, 1.69) in women; 1.48 (1.40, 1.57) in men), 

breast cancer in women (1.51 (1.40, 1.63)), prostate cancer in men (1.68 (1.54, 1.84)), and 

cirrhosis in men (1.49 (1.03, 2.16)). In general, the PRS were stronger predictors of cause-

specific mortality among individuals without prevalent disease than they were among individuals 

with prevalent disease (Supplementary Figure 2); this indicates the PRS were typically more 

strongly associated with disease onset than with prognosis.  
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We also investigated the relationship between each risk factor PRS and mortality due to each of 

the top causes of death included in our analysis (see Methods). We found that the PRS for BMI 

was at least moderately associated with mortality related to CAD (primarily in men), COPD 

(among women), hypertension (among men), lung cancer (among women), pancreatic cancer 

(among women), Parkinson’s disease (among women), and stroke (among women) 

(Supplementary Figures 3 and 4). The PRS for smoking was weakly associated with mortality 

due to CAD (among men) and moderately associated with mortality due to COPD (primarily in 

men) and lung cancer. The PRS for LDL cholesterol was strongly associated with mortality 

related to Alzheimer’s disease (among men) and COPD (among women) and moderately 

associated with mortality due to CAD (primarily in men). The PRS for total cholesterol was 

strongly positively associated with mortality due to Alzheimer’s disease (primarily in men) and 

COPD (among women), moderately positively associated with mortality related to CAD (among 

men), and moderately negatively associated with mortality due to pancreatic cancer (among 

men). The PRS for triglycerides was strongly negatively associated with mortality from stroke 

among men. The PRS for alcohol consumption was moderately positively associated with 

mortality due to CAD, primarily among men.  

 

We found that several PRS were modestly associated with all-cause mortality, with some 

differences between men and women (Figure 2). The PRS for BMI was modestly associated 

with risk of all-cause mortality for both women (HR per SD: 1.07 (1.04, 1.10)) and men (1.08 

(1.05, 1.10)). In addition, the PRS for smoking status, Alzheimer’s disease, LDL cholesterol, and 

lung cancer were modestly associated with all-cause mortality in both sexes. The PRS for 

breast cancer and prostate cancer were modestly associated with all-cause mortality in women 

and men, respectively. Among men, the PRS for CAD, cirrhosis, DBP, HDL cholesterol, SBP, 

stroke, total cholesterol, triglycerides, type 2 diabetes, and alcohol consumption were modestly 

associated with all-cause mortality; notably, the PRS for HDL cholesterol and triglycerides were 
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both negatively associated with all-cause mortality. In general, the estimated associations 

tended to be stronger in men than in women.  

 

Constructing and Evaluating the Composite PRS in the UK Biobank 

 

The main analysis evaluated the joint relationship between the 25 trait-specific PRS and all-

cause mortality (see Methods). We fit Cox proportional hazards models with all 25 PRS in the 

training data (2/3 of the cohort). We used the resulting estimated log HRs to combine the PRS 

into sex-specific “composite PRS” (cPRS). We then evaluated the relationship between the 

cPRS and all-cause mortality in the test data (remaining 1/3 of the cohort). The training data 

included 224,756 participants, among them 120,719 women and 104,037 men (Table 1). There 

were 9,106 deaths in the training data with 3,530 in women and 5,576 in men. Correspondingly, 

the test data included 112,382 individuals (60,308 women and 52,074 men) and 4,504 deaths 

(1,720 among women and 2,784 among men).  

 

The cPRS were moderately associated with all-cause mortality in the test data (HR per SD: 1.10 

(1.05, 1.16) in women, 1.15 (1.10, 1.19) in men; see Table 2 and Supplementary Figure 5). 

However, the cPRS were able to identify substantial fractions of the population that have 

meaningfully elevated and reduced mortality risk, particularly among men (Table 2 and Figure 

3). The estimated difference in life expectancy between the top and bottom 5% of the cPRS 

distribution was 4.79 (1.76, 7.81) years in women and 6.75 (4.16, 9.35) years in men. The 

overall discriminatory capacity of the cPRS, measured by Harrell’s C-index (29), was small: 

0.525 in women and 0.536 in men. These are comparable to the values for several strong risk 

factors for mortality, including BMI (0.532 in women, 0.530 in men), smoking status (0.562 in 

women, 0.574 in men), and alcohol consumption (0.509 in women, 0.547 in men).  
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When we evaluated the cPRS in the “healthy” subset of the test data (i.e., the test data set after 

removing individuals with any of the diseases included as a top cause of death at baseline), the 

estimated associations between the cPRS and all-cause mortality were fairly similar to the 

results from the main analysis (Supplementary Table 4). Separately, when we adjusted for the 

mortality risk factors measured at baseline, the association between the cPRS and all-cause 

mortality was markedly attenuated for both sexes (Table 2; see Methods). These results 

indicate that a substantial fraction (40.7% for women and 32.5% for men) of the association 

between the cPRS and all-cause mortality was accounted for by these risk factors, which are (to 

varying degrees) heritable traits. After controlling for the measured risk factors, the difference in 

life expectancy between the top 5% and the bottom 5% of the cPRS distribution was estimated 

to be 2.99 (-1.28, 7.26) years in women and 5.39 (2.18, 8.60) years in men.  

 

Finally, we evaluated the relationship between two major modifiable risk factors, BMI and 

smoking status, and absolute risk of mortality for individuals at different levels of polygenic risk 

(Figure 4). We observe that the estimated 10-year absolute risk of mortality for a 60-year-old 

woman in the top 20% of the cPRS distribution who is obese is 0.044. This is 38% higher than 

the estimated risk for a woman in the top 20% of the cPRS distribution who is not obese. 

Similarly, the estimated risk for a 60-year-old woman in the top 20% of the cPRS distribution 

who is a current or former is 64% higher than for a woman who has never smoked (0.046 vs. 

0.028). Likewise, for a 60-year-old man, the estimated 10-year risk of mortality is 24% higher if 

the man is obese as opposed to normal weight (0.087 vs. 0.070) and the estimated risk is 81% 

higher if the man is a current or former smoker relative to a man who has never smoked (0.087 

vs. 0.048). These differences highlight the potential importance of lifestyle modification even 

among those at high genetic risk. Furthermore, in most of these examples, the estimated risk for 

an individual who is in the top 20% of the cPRS distribution but who has a favorable risk factor 
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profile is below the estimated risk for an individual in the middle 20% of the cPRS distribution, 

i.e., someone at moderate genetic risk (0.032 in women and 0.059 in men).  

 

DISCUSSION 

 

Analyses using a large dataset from the UK Biobank indicate that sex-specific composite PRS 

(cPRS) for all-cause mortality have fairly modest predictive capacity overall. However, there is 

evidence that the cPRS could identify substantial fractions of the population with notably 

elevated and reduced risk of all-cause mortality due to the genetic risk accumulated across 

many variants. Importantly, our results also show that a substantial proportion of the association 

between the cPRS and mortality was accounted for by mortality risk factors measured in middle 

age. These findings suggest that those individuals at high genetic risk of mortality may derive 

substantial benefit from modification of lifestyle factors; in particular, the cPRS could be useful in 

counseling individuals at high genetic risk on possible lifestyle choices that are associated with 

lower mortality risk.  

 

A previous study evaluated the utility of 707 SNPs identified from GWAS of 125 diseases and 

risk factors for estimating mortality risk (30). This study developed a PRS directly from the 

individual SNPs, counting only the number of detrimental or protective alleles across the 

variants (i.e., without weighting the SNPs by the strength of association). In a combined analysis 

of men and women from two studies of northern European populations, the study reported a 

10% higher risk of mortality between individuals in the 4th versus 1st quartile of the resulting 

PRS. In contrast, in the current study, we focus on a limited number of the most important 

causes of and risk factors for mortality, and build cPRS for mortality based on the underlying 

PRS. Our cPRS, although evaluated in a different population, appears to provide greater 

mortality risk stratification (HR for 4th vs. 1st quartile = 1.29 (1.13, 1.48) in women; 1.38 (1.24, 
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1.53) in men). These differences may be due to the incorporation of a larger number of SNPs 

emerging from more recent GWAS as well as the weighting of individual SNPs to account for 

their association with the individual diseases and risk factors in our analysis.  

 

Several recent studies (26,31–34) have investigated the association of individual genetic 

variants and PRS with parental lifespans due to the increased power of these analyses relative 

to analyses of lifespan in genotyped individuals. Two large GWAS of parental lifespan, both 

including data from the UK Biobank, identified a total of only 18 loci (26–28), highlighting major 

challenges in finding individual variants related to lifespan. We constructed a lifespan PRS 

based on 17 of these variants (one was excluded as it was a palindromic SNP whose direction 

could not be resolved) and found modest associations with all-cause mortality (HR per SD: 1.02 

(0.99, 1.05) in women and 1.04 (1.02, 1.06) in men). We further constructed a new cPRS, which 

included the 25 disease and risk factor PRS constructed for our analysis as well as the lifespan 

PRS; the associations of this new cPRS with all-cause mortality were nearly identical to that of 

the original cPRS (HR per SD of the new cPRS: 1.10 (1.05, 1.15) in women and 1.14 (1.10, 

1.19) in men).  

 

An important limitation of previous studies is the lack of adjustment for known mortality risk 

factors in characterizing the potential utility of PRS for estimating mortality risk. In our analysis, 

the association between the cPRS and mortality was attenuated by over 30% after adjusting for 

the mortality risk factors under study. These results suggest that while genetic variants 

associated with complex traits in GWAS could provide some mortality risk stratification early in 

life, their utility later in life, when other risk factors for mortality can be measured, is diminished.  

 

Most GWAS are case-control studies of disease risk as opposed to prognosis, i.e., 

aggressiveness and/or progression of the disease leading to death. When we examined the 
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association of the disease PRS with the corresponding cause-specific mortality among 

individuals with prevalent disease in the UK Biobank (Supplementary Figure 2), only the PRS 

for CAD and COPD were (at least moderately) associated; in other words, for most PRS, there 

was little to no evidence of an association with prognosis or disease survival. Although such 

analyses may be influenced by selection associated with survivorship and poor health, in 

general, there is little evidence of association between disease risk SNPs (and thus disease 

PRS) and survival following disease onset. While future GWAS focusing on genetic 

determinants of aggressiveness and disease progression are needed, finding associations may 

be challenging due to available sample sizes and heterogeneity as a result of various factors 

such as treatment. 

 

Our analysis of the relationship between the individual PRS and all-cause mortality revealed 

some important patterns (Figure 2). The strongest positive associations (HR per SD of 1.05 or 

greater) were seen for the PRS for BMI, breast cancer (in women), CAD (in men), smoking 

status (particularly in men), and alcohol consumption (in men). In addition, weaker associations 

with all-cause mortality were seen for the PRS for Alzheimer’s disease, lung cancer, and LDL 

cholesterol in both sexes and, among men, associations were seen for the PRS for stroke, 

cirrhosis, total and HDL cholesterol, prostate cancer, triglycerides, SBP, DBP, and type 2 

diabetes. The negative association observed among men for the triglycerides PRS appears to 

be driven by a strong negative association between the triglycerides PRS and stroke-specific 

mortality (Supplementary Figure 4), which is consistent with the “triglycerides paradox” reported 

by others (35–38).  

 

Given that the associations of the CAD PRS with CAD-specific mortality were similar for men 

and women, the differences in the associations with all-cause mortality may be due to lower 

rates of CAD in women during the relatively short follow-up period of the UK Biobank. 
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Differential event rates for some diseases for which alcohol consumption is a risk factor (e.g., 

CAD) could also partially explain the differences observed in the association of the alcohol 

consumption PRS with all-cause mortality by sex. We note that the sex differences observed in 

our results more generally are supported by other studies, which have similarly found 

indications of differences between men and women in the mechanisms governing lifespan and 

longevity (26,27,32,33,39–41).   

 

Our results are generally consistent with a recent paper looking at PRS for many clinical risk 

factors and mortality across the UK Biobank, a Finnish biobank (FinnGen), and Biobank Japan 

(42). In this multi-ethnic study, several modest associations were observed, including for the 

PRS for SBP, DBP, and BMI (HRs of around 1.03-1.04 per SD in the trans-ethnic meta-

analysis). Interestingly, the results from this analysis varied by ethnicity: for instance, within the 

UK Biobank, the association between the PRS for BMI and mortality reported in Sakaue et al. 

(42) was stronger than was observed in the trans-ethnic meta-analysis (HR of approximately 

1.07 per SD in the UK Biobank versus 1.04 in the meta-analysis). This highlights the importance 

of multi-ethnic analyses.  

 

We evaluated the broad utility of PRS in terms of their combined ability to predict mortality. In 

the future, other broad measures of health outcomes and expenditures, such as disability-

adjusted life years (DALYs), should also be considered. The framework we have created for 

combining individual PRS could be used to a create composite PRS for DALYs or other 

measures. Given that PRS are known to be strongly associated with incidence of many 

debilitating diseases, one would anticipate such a composite PRS will have greater utility for 

predicting DALYs than for mortality. However, analysis of DALYs in a cohort study with limited 

follow-up, like the UK Biobank, is challenging. 
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Our analysis has several strengths. We used data from the UK Biobank, a large cohort study, to 

carry out a comprehensive analysis of PRS for complex traits and mortality, both overall and 

cause-specific. We used a novel approach to derive composite PRS across many diseases and 

risk factors to evaluate their combined utility for predicting overall mortality. Under the 

assumption that common genetic variants identified through recent GWAS influence mortality 

risk through the outcomes underlying the GWAS, the composite PRS approach provides a more 

parsimonious and powerful approach to building models for predicting composite outcomes than 

building models based on individual SNPs. The weights of individual SNPs in a PRS account for 

the strength and direction of association of each SNP with the corresponding outcome and the 

weights for the individual PRS in the cPRS reflect (in part) the relative contribution of the 

individual diseases and risk factors to mortality. Further, we conducted an unbiased evaluation 

of the performance of the cPRS for predicting mortality by building it in a training dataset and 

evaluating it in an independent test dataset.    

 

As the UK Biobank participants are volunteers, there is evidence that this cohort differs from the 

general UK population in important ways, including being less likely to be obese, smoke, or 

drink alcohol (43). Selection bias (43), which contributes to such differences, could influence the 

generalizability of our results (45). Additionally, while our cPRS include germline mutations and 

so could potentially be evaluated at birth, the UK Biobank is comprised of individuals who have 

survived to at least middle age. Consequently, the results may not be fully generalizable to 

younger individuals and must be validated in other populations. Furthermore, the analysis of the 

cPRS with adjustment for the mortality risk factors required excluding observations in the test 

data with missing values for any of these risk factors. These observations constituted a 

substantial portion of the test data (40.3% in women, 30.3% in men). However, as the 

missingness mechanism for at least some risk factors is expected to be not random (e.g., 

individuals choosing not to answer questions regarding smoking status or alcohol consumption 
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due to the social stigma surrounding these behaviors), imputation is not appropriate. Thus, 

some caution is warranted in interpreting these results.  

 

As our analysis involved the evaluation of a large number of associations, issues related to 

multiple comparisons are a potential concern. However, our main analysis of the cPRS was 

carefully defined a priori and performed in independent test data. The other analyses we 

performed were intended to check the validity of the PRS we developed and to better 

understand the results of the main analysis of the cPRS. Additionally, we emphasize the 

strength of association rather than statistical significance in interpreting the results throughout. 

Another potential limitation of this analysis was our use of the GWAS Catalog to identify SNPs 

for inclusion in the disease PRS. As the GWAS Catalog is not an exhaustive listing of SNPs 

associated with every trait, we may have missed some associated SNPs. However, we believe 

that our approach, which allowed us to apply a uniform procedure for SNP selection to all 

diseases, captured most of the genetic susceptibility for each disease, and any differences in 

the PRS would be minor. Even if our PRS included all susceptibility SNPs identified by GWAS, 

the ability of the trait-specific PRS to predict all-cause mortality is related to both the power of 

the GWAS as well as the genetic correlation between the trait studied in the GWAS and all-

cause mortality (46). Consequently, as GWAS continue to increase in power, we may find that 

trait-specific PRS are more strongly associated with all-cause mortality. In addition, further 

research on the genetic determinants of disease prognosis and survival may increase the utility 

of PRS in understanding mortality risk. 

 

In conclusion, our results suggest that by combining knowledge gained from GWAS of complex 

traits, it may be possible to identify individuals who are expected to live substantially longer or 

shorter. In light of the ethical repercussions of using genetics to make predictions regarding an 

individual’s life course at birth, we argue that the cPRS may be most useful for counselling 
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individuals about their genetic risk. In particular, the results of our analysis highlight the 

importance of considering genetic risk in the context of clinical risk factors measured in 

adulthood; thus, the cPRS may be useful in advising patients on the importance of certain 

lifestyle choices associated with mortality risk. Using the cPRS in this way would require 

validation of the cPRS outside of the UK Biobank.  
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METHODS 

 

Causes of Death and Mortality Risk Factors 

 

We used the Centers for Disease Control (CDC) Wide-ranging ONline Data for Epidemiologic 

Research (WONDER) database to identify the top causes of death (organized by the 

International Classification of Diseases (ICD)-10 113 Causes List) in terms of the number of 

deaths among non-Hispanic whites in the United States over the age of 40 in 2017, separately 

for men and women (47). We then determined the top 10 causes of death with some genetic 

basis, i.e., causes for which there is evidence of an association between one or more genetic 

variants and disease risk (Supplementary Table 5). These causes accounted for 70.3% and 

71.8% of deaths among women and men, respectively, in the CDC data.  

 

Several of these causes were very general categories of disease (e.g., “diseases of heart”), 

making it difficult to identify relevant trait-specific GWAS. Thus, we identified the specific cause 

within these categories associated with the highest number of deaths (with the exception of 

“malignant neoplasms”; here, we identified the top four cancers for each sex in terms of the 

number of deaths). The final list of diseases was: CAD, COPD, Alzheimer’s disease, stroke, 

type 2 diabetes, CKD, hypertension, alcoholic liver cirrhosis, Parkinson’s disease, pancreatic 

cancer, colorectal cancer, lung cancer, breast cancer (women only), and prostate cancer (men 

only) (Supplementary Table 5). These causes of death captured 44.4% and 44.9% of deaths 

among women and men, respectively, in the CDC data. The difference between these figures 

and those cited above (70.3% and 71.8% for women and men, respectively) are driven largely 

by deaths from non-CAD diseases of the heart and deaths from malignant neoplasms not 

included in our list of cancers. As our analysis involves UK Biobank data, we also used Office of 
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National Statistics mortality data (48) to determine the top causes of death in the UK; these 

were nearly identical to those identified using the CDC data (Supplementary Table 5).  

 

Based on government statistics from the UK (49), we further identified major mortality risk 

factors that are known to have some genetic component (30,41). We included smoking status, 

alcohol consumption, SBP, BMI, total cholesterol, fasting plasma glucose, and eGFR. Beyond 

the risk factors highlighted by the UK government statistics, we included LDL cholesterol, HDL 

cholesterol, triglycerides, DBP, and sleep duration. In particular, sleep duration was included on 

the basis of several studies showing clear links between sleep duration and all-cause mortality 

(50–52). 

 

Extraction of SNP Information from the GWAS Catalog and Publicly Available GWAS  

 

To generate a PRS for each disease included in the top causes of death, we used results 

published in the NHGRI-EBI GWAS Catalog (53) to identify SNPs associated with the disease. 

We downloaded the GWAS Catalog results on March 15, 2019, and selected autosomal 

genome-wide significant SNPs (p-value ≤ 5 x 10-8). For each disease, we identified one or more 

search terms based on the trait names used by the GWAS Catalog, and selected the SNPs 

corresponding to these search terms. We then checked several fields of the GWAS Catalog, 

such as the source of the data, the study title, and the description of the trait studied, to ensure 

that we retained relevant SNPs; in particular, we sought to include results from analyses of 

Europeans (or multi-ethnic populations including Europeans) and to exclude studies of 

pleiotropic or composite outcomes, studies not of disease susceptibility, studies of children or 

pregnant women, studies of a secondary condition in individuals with a primary condition (e.g., 

myocardial infarction in individuals with coronary heart disease), studies of haplotypes or multi-

SNP analyses, and studies of subpopulations (e.g., carriers of a specific genetic mutation; the 
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only exceptions to this were studies of cirrhosis among alcohol drinkers and studies of COPD 

among smokers) or SNP-environment interactions. Importantly, these exclusions mean we 

included only GWAS of disease status, rather than GWAS of particular outcomes among 

individuals with a given disease, e.g., disease-associated mortality. In the resulting list of SNPs, 

there were several cases where the same SNP appeared multiple times for the same disease 

trait. In these situations, we kept the result from the largest study (in terms of the number of 

cases). The same SNP may appear for multiple traits. 

 

For our analysis, it was important to extract the effect allele, effect size, and effect allele 

frequency for each SNP. The effect allele and effect size were used to construct the PRS in the 

UK Biobank, and the effect allele and effect allele frequency were used to check whether the 

SNP in the UK Biobank was the same as the SNP reported on the GWAS Catalog. For many 

SNPs on the list we created, some or all of this information was missing in the GWAS Catalog. 

We sought to fill in this information by consulting the original paper and its supplementary 

materials, as well as the Ensembl database (54). In situations where we were not able to 

discern the effect allele, the effect allele frequency, or the effect size of a particular SNP, the 

SNP was removed from our list.  

 

We applied the same approach for identifying SNPs for each cause of death except for stroke. 

This is because there are several types of stroke and different studies included in the GWAS 

Catalog employed definitions of stroke with varying specificity. Thus, we used a recently 

published stroke PRS (55) instead of using the results available from the GWAS Catalog.  

 

Our approach to identifying SNPs for inclusion in the mortality risk factor PRS differed from the 

approach described above. In particular, we found that the risk factor phenotypes were typically 

defined and/or analyzed differently across studies. For instance, smoking behavior could be 
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defined as ever-use of cigarettes (never vs. former/current) or more granularly, incorporating 

cigarettes per day and duration among ever smokers. As another example, body mass index 

could be analyzed as a raw measurement, or it could first be rank-transformed. In light of these 

complications, instead of using the results included in the GWAS Catalog, we used the results 

from the most recent, largest trait-specific GWAS for which summary data were available (56–

61). As above, we selected autosomal genome-wide significant SNPs (p � 5 x 10-8) and 

removed SNPs for which the effect allele, effect size, or effect allele frequency were 

unavailable. In addition, as variant identifiers (RS IDs) were the primary way of querying the UK 

Biobank genotype data (described below), SNPs without RS IDs were removed (this was not an 

issue for the GWAS Catalog results).  

 

UK Biobank: Disease and Mortality Data 

 

The UK Biobank is a large cohort study of over 500,000 individuals in the UK (62). The study 

enrolled individuals aged 40-69 years between 2006 and 2010 and has followed them since 

enrollment. A vast array of information has been collected from these individuals, including 

genotype data, anthropometric measurements, and information on lifestyle factors and personal 

and family history of disease. Additionally, data from national death and cancer registries are 

linked to the UK Biobank data.  

 

We retrieved data on mortality, incident and prevalent disease for the top causes of death, and 

mortality risk factor measurements at baseline. The death registry data were available through 

November 30, 2016, for the centers in Scotland and January 31, 2018, for the centers in 

England and Wales. We determined whether an individual died of a particular disease by 

considering the ICD-10 code listed as the primary cause of death (see Supplementary Table 5 

for the codes used). We used several sources of data to identify incident and prevalent cases of 
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disease for the top causes of death. In particular, we used cancer registry data (available 

through October 31, 2015, in Scotland and March 31, 2016, in England and Wales) to determine 

whether participants had or experienced the cancers in our list of diseases before (prevalent 

case) or after (incident case) study baseline on the basis of ICD-9 and ICD-10 codes 

(Supplementary Table 6). For the non-cancer diseases, we used questionnaire/interview data, 

hospital episode data (available through March 31, 2017, in England, October 31, 2016, in 

Scotland, and February 29, 2016, in Wales), and death registry data to identify prevalent and 

incident cases of disease (Supplementary Table 6). The exception to this was incident and 

prevalent diabetes, which were defined based on the algorithm presented in (63). For SBP and 

DBP at baseline, two measurements were made for each; when both of these were non-

missing, the average was used. Self-reported intake of different forms of alcohol was converted 

into grams of alcohol per day (Supplementary Table 7).  

 

In all analyses, unless otherwise specified, we adjusted for the first ten genetic principal 

components, which were provided by the UK Biobank, in order to account for population 

stratification. In addition, all survival models accounted for left truncation by starting the follow-

up interval at study entry. Throughout, we restricted our attention to unrelated participants (third 

degree relatives or closer were removed) of white British ancestry, in order to minimize the 

influence of population stratification and avoid issues related to clustering of individuals in 

families. We further removed individuals who had withdrawn their consent to participate. 

Unrelated participants were identified as those who were used by the UK Biobank to compute 

the principal components and ancestry was determined by the UK Biobank based on self-report 

and principal component analysis. The UK Biobank was approved by the North West Multi-

centre Research Ethics Committee. This research was conducted using the UK Biobank 

Resource under Application Number 17712.  
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Evaluating PRS in the UK Biobank 

 

Imputed genotype data (in the form of allele dosage, i.e., between 0 and 2) for the SNPs 

identified above were extracted from the UK Biobank, matching on RS ID if possible and on 

chromosome and position otherwise. Non-biallelic SNPs and ambiguous palindromic SNPs (A/T 

or C/G SNPs with allele frequencies between 0.4 and 0.6) were removed. To ensure the SNPs 

from the UK Biobank were the same as those on our curated list of trait-associated SNPs, the 

alleles and allele frequencies were compared (allowing for the possibility of strand flips). SNPs 

that did not match the UK Biobank data, i.e., SNPs for which the reported allele frequency and 

the allele frequency in the UK Biobank differed by more than 0.15, were removed. Finally, SNPs 

in LD were removed via LD clumping, implemented using PLINK with an r2 cutoff of 0.1 and 

based on the reported p-values (from the GWAS Catalog or the publicly available summary 

statistics) and the 1000 Genomes European reference panel (64,65). This was done separately 

for each disease and risk factor, yielding a list of independent SNPs for each trait. The one 

exception was stroke: the SNP list was not pruned because the estimated association 

coefficients provided were based on a joint SNP model. The number of SNPs included in each 

PRS varied widely, between two SNPs for cirrhosis and 1,458 for BMI (Supplementary Table 3). 

In total, our analysis included 3,941 unique SNPs. 

 

Next, a PRS for each trait was constructed for each participant by weighting the SNP dosage by 

the reported log odds ratio (for binary traits) or linear regression coefficient (for continuous 

traits):  

����,� ����,���,�
��

���
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where ����,� is the PRS value for the ith individual and the jth trait, 
� is the number of SNPs 

included in the PRS for the jth trait, ��,� is the genotype dosage for the ith individual and the kth 

SNP, and ��,� is the log odds ratio or linear regression coefficient for the kth SNP and the jth trait. 

 

Statistical Analysis 

 

All analyses were sex-specific and the PRS were standardized to have unit variance. We first 

evaluated the association between each derived PRS and the corresponding trait (i.e., prevalent 

disease and incident disease for the disease trait, and measurement at baseline for the mortality 

risk factors). For the disease traits, we evaluated the association with incident and prevalent 

disease status separately. To evaluate the relationship between each disease PRS and 

prevalent disease, we fit a logistic regression model for each disease. We used Poisson models 

with robust variance estimation (66) to evaluate the association between each disease PRS and 

incident disease among individuals without prevalent disease. For the mortality risk factors, we 

used linear regression with robust variance estimation to model the relationship between each 

mortality risk factor PRS and the risk factor measurement at baseline. The one exception was 

smoking status; since the smoking status PRS was developed based on a GWAS of ever-use of 

cigarettes, we defined the smoking status risk factor as ever-use of cigarettes. As this is a 

binary variable, we used logistic regression to model the relationship between the smoking 

status PRS and ever-use of cigarettes. Since eGFR was not directly available in the UK 

Biobank, we calculated eGFR at baseline using the Modification of Diet in Renal 

Disease (MDRD) Study equation (67); this mirrors the definition of eGFR used in the GWAS 

upon which our eGFR PRS was based (61). All models included adjustment for age at entry, in 

addition to the first ten principal components. 
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We also investigated cause-specific mortality for the diseases included in our top causes of 

death. We used Cox proportional hazards models to study the relationship between each 

disease PRS and age at death from that disease. Deaths from other causes were treated as 

censoring events. We performed these analyses in the full cohort and also among individuals 

with and without the disease corresponding to the cause of death being modeled at baseline. 

We also evaluated the relationship between each mortality risk factor PRS and mortality due to 

each of the causes of death. For all of the analyses related to cause-specific mortality, when 

there were not enough deaths to yield stable estimates, estimates are not provided. 

 

Our main analysis involved studying the joint relationship between the 25 PRS and all-cause 

mortality. First, we split the data into training (2/3) and test (1/3) sets. Then, in the training data, 

all PRS (with the exception of prostate cancer and breast cancer for the female- and male-

specific models, respectively) were included in Cox proportional hazards models of age at 

death: 

��|����, … , ����	 , �� � �
�� exp������� ��� ��	����	 �����. 
 
In this formula, ��|���� , … , ����	� denotes the hazard at age  given ���� , … , ����	, �
�� 
denotes the baseline hazard at age , and � is a vector of the first ten principal components. 

Each model yielded a weighted combination of the individual PRS where the weights were the 

estimated log HRs from the Cox model, ������� ��� ���	����	; we refer to these sex-specific 

weighted combinations as the “composite PRS” (cPRS). These cPRS were then applied to the 

test data. In particular, we used a Cox model to evaluate the HR for all-cause mortality per 

standard deviation of the cPRS. In addition, we estimated the HR comparing individuals in the 

top 5% of the cPRS distribution to those in the middle 20% and the HR comparing individuals in 

the bottom 5% to those in the middle 20% in the test data. This was based on quantiles 

estimated in the training data. To aid in the interpretation of these results, the estimated HRs 

were converted into approximate years of life difference, as done in other studies of survival 
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(26,41). In addition, we used Harrell’s C-index to quantify the discriminatory ability of the cPRS 

(29); note that this evaluation did not adjust for principal components. 

 

We undertook a series of additional analyses. First, we evaluated the association between the 

cPRS and all-cause mortality in the “healthy” subset of the test data, that is, the test set after 

removing individuals with any of the diseases included as a top cause of death at baseline (i.e., 

prevalent cases). We also re-evaluated the association between the cPRS and all-cause 

mortality in the test data, adjusting for the mortality risk factors measured at baseline (that is, 

BMI, smoking status, alcohol consumption, SBP, DBP, eGFR, total cholesterol, LDL cholesterol, 

HDL cholesterol, triglycerides, blood glucose, and sleep duration), removing individuals in the 

test data that were missing any of these measurements. All risk factors were included as 

continuous variables, with the exception of smoking status, which was included as a binary 

variable (ever vs. never use).  

 

All analyses were conducted using R (68), including the rms (69), survival (70), ggplot2 (71), 

and sandwich (72,73) packages. We report 95% confidence intervals throughout.   
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FIGURE LEGENDS 

Figure 1: Association of each disease PRS with cause-specific mortality in the full 
cohort. For each disease, we evaluated the association between the disease PRS and mortality 
from the disease based on sex-specific Cox proportional hazards models of age at death. 
Deaths from other causes were treated as censoring events. Some causes did not have enough 
deaths to yield stable estimates (< 6 deaths); in these cases, estimates are not provided. Each 
PRS was standardized to have unit variance so the estimates correspond to the HR per SD of 
the PRS. The horizontal lines indicate 95% confidence intervals. CAD: coronary artery disease; 
COPD: chronic obstructive pulmonary disease; HR: hazard ratio; SD: standard deviation; PRS: 
polygenic risk score.   
 
Figure 2: Association of each trait-specific PRS with all-cause mortality in the full cohort. 
We evaluated the association between each PRS and all-cause mortality based on sex-specific 
Cox proportional hazards models of age at death in the full cohort. Each Cox model included 
one PRS. Each PRS was standardized to have unit variance so the estimates correspond to the 
HR per SD of the PRS. The horizontal lines indicate 95% confidence intervals. BMI: body mass 
index; CAD: coronary artery disease; COPD: chronic obstructive pulmonary disease; DBP: 
diastolic blood pressure; eGFR: estimated glomerular filtration rate; HDL: high-density 
lipoprotein; LDL: low-density lipoprotein; SBP: systolic blood pressure; HR: hazard ratio; SD: 
standard deviation; PRS: polygenic risk score.  
 
Figure 3: Kaplan-Meier survival curves by quantile of the cPRS. These plots display the 
sex-specific Kaplan-Meier curves for all-cause mortality by quantile of the cPRS in the test data. 
The Kaplan-Meier curves do not include adjustment for principal components. cPRS: composite 
polygenic risk score. 
 
Figure 4: Estimates of absolute risk of mortality in different strata of the cPRS for 
specific categories of BMI and smoking status. We generated estimates of 10-year absolute 
risk of all-cause mortality for a 60-year-old in different strata of the cPRS for specific values of 
two mortality risk factors, BMI and smoking status, in women (panels A and B) and men (panels 
C and D). The estimates of risk for the two BMI categories (panels A and C) are based on sex-
specific Cox proportional hazards models with quintiles of the cPRS and BMI categories (� 18.5 
kg/m2, (18.5-25 kg/m2], (25-30 km/m2], > 30 kg/m2), both modeled as categorical variables, fit in 
the test data. We provide estimates for the obese (> 30 kg/m2) and the normal weight ((18.5-25 
kg/m2]) categories. Estimates of risk for never smokers and ever smokers (panels B and D) are 
based on sex-specific Cox proportional hazards models with quintiles of the cPRS, modeled as 
a categorical variable, and an indicator of ever-use of cigarettes, fit in the test data. These 
models did not include principal components. The horizontal line in each plot corresponds to an 
estimate of 10-year absolute risk of all-cause mortality for a 60-year-old in the middle quintile of 
the cPRS, based on sex-specific Cox proportional hazards models with quintiles of the cPRS, 
modeled as a categorical variable, fit in the test data. BMI: body mass index; cPRS: composite 
polygenic risk score.  
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TABLES 

 Full cohort Training data Test data 
Women Men Women Men Women Men 

Sample size 181,027 156,111 120,719 104,037 60,308 52,074 
Age at study entry 
(years; mean (SD)) 

57.2 (7.9) 57.6 (8.1) 57.2 (7.9) 57.6 (8.1) 57.2 (7.9) 57.6 (8.1) 

Follow-up (years; 
mean (SD)) 

8.8 (1.1) 8.7 (1.3) 8.8 (1.1) 8.7 (1.3) 8.8 (1.0) 8.7 (1.3) 

Number of deaths 5,250 8,360 3,530 5,576 1,720 2,784 
Table 1: Descriptive statistics for the full cohort used for the analysis (after removing individuals 
who were related, were not of British ancestry, or had withdrawn their consent to participate), 
the training data (2/3 of the full cohort), and the test data (1/3 of the full cohort). SD: standard 
deviation.  
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 Women Men 
Without adjustment for mortality risk factors 
Population (deaths) in test data: N 
Total population 
Top 5% of cPRS 
Middle 20% of cPRS 
Bottom 5% of cPRS 

 
60,308 (1,720) 
3,060 (107) 
12,005 (342) 
3,096 (69) 

 
52,074 (2,784) 
2,454 (159) 
10,387 (539) 
2,526 (89) 

cPRS: HR (95% CI)   
Per SD of cPRS 1.10 (1.05, 1.16) 1.15 (1.10, 1.19) 
Top 5% vs. middle 20% of cPRS 1.24 (1.00, 1.54) 1.27 (1.07, 1.52) 
Bottom 5% vs. middle 20% of cPRS 0.77 (0.59, 1.00) 0.65 (0.52, 0.81) 
Top 5% vs. bottom 5% of cPRS 1.61 (1.19, 2.18) 1.96 (1.52, 2.55) 
cPRS: years of life lost (95% CI)   
Per SD of cPRS 0.97 (0.50, 1.44) 1.36 (0.98, 1.73) 
Top 5% vs. middle 20% of cPRS 2.17 (0.00, 4.34) 2.42 (0.65, 4.19) 
Bottom 5% vs. middle 20% of cPRS -2.61 (-5.20, -0.03) -4.33 (-6.58, -2.09) 
Top 5% vs. bottom 5% of cPRS 4.79 (1.76, 7.81) 6.75 (4.16, 9.35) 
With adjustment for mortality risk factors 
Population (deaths) in test data: N 
Total population 
Top 5% of cPRS 
Middle 20% of cPRS 
Bottom 5% of cPRS 

 
36,008 (855) 
1,799 (51) 
7,143 (168) 
1,907 (37) 

 
36,283 (1,730) 
1,689 (102) 
7,240 (329) 
1,804 (60) 

cPRS: HR (95% CI)   
Per SD of cPRS 1.06 (0.99, 1.13) 1.10 (1.04, 1.15) 
Top 5% vs. middle 20% of cPRS 1.19 (0.87, 1.63) 1.25 (1.00, 1.56) 
Bottom 5% vs. middle 20% of cPRS 0.88 (0.62, 1.26) 0.73 (0.55, 0.96) 
Top 5% vs. bottom 5% of cPRS 1.35 (0.88, 2.07) 1.71 (1.24, 2.36) 
cPRS: years of life lost (95% CI)   
Per SD of cPRS 0.58 (-0.11, 1.26) 0.92 (0.43, 1.40) 
Top 5% vs. middle 20% of cPRS 1.72 (-1.43, 4.86) 2.20 (-0.03, 4.43) 
Bottom 5% vs. middle 20% of cPRS -1.27 (-4.85, 2.30) -3.19 (-5.95, -0.43) 
Top 5% vs. bottom 5% of cPRS 2.99 (-1.28, 7.26) 5.39 (2.18, 8.60) 
Table 2: The results of the main analysis of all-cause mortality and the cPRS, with and without 
adjustment for mortality risk factors. The cPRS were constructed in the training data and 
evaluated by fitting sex-specific Cox proportional hazards models of the association between 
the cPRS and age at death from all causes in the test data. Both the continuous cPRS and 
categorical cPRS were modeled. The estimated HRs and CIs were converted to estimated 
years of life lost. The analysis adjusting for mortality risk factors included adjustment for the risk 
factors measured at baseline (BMI, smoking status, alcohol consumption, SBP, DBP, eGFR, 
total cholesterol, LDL cholesterol, HDL cholesterol, triglycerides, blood glucose, and sleep 
duration); individuals missing any of these measurements were excluded. BMI: body mass 
index; CI: confidence interval; cPRS: composite polygenic risk score; DBP: diastolic blood 
pressure; eGFR: estimated glomerular filtration rate; HDL: high-density lipoprotein; HR: hazard 
ratio; LDL: low-density lipoprotein; SBP: systolic blood pressure; SD: standard deviation.  
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