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As	 new	 cases	 of	 COVID-19	 are	 being	 confirmed	 pressure	 is	 mounting	 to	

increase	 understanding	 of	 the	 factors	 underlying	 the	 spread	 the	 disease.	

Using	data	on	local	transmissions	until	the	23rd	of	March	2020,	we	develop	

an	ensemble	of	200	ecological	niche	models	to	project	monthly	variation	in	

climate	 suitability	 for	 spread	 of	 SARS-CoV-2	 throughout	 a	 typical	

climatological	year.	Although	cases	of	COVID-19	are	reported	all	over	 the	

world,	most	outbreaks	display	a	pattern	of	clustering	in	relatively	cool	and	

dry	 areas.	 The	 predecessor	 SARS-CoV-1	 was	 linked	 to	 similar	 climate	

conditions.	 Should	 the	 spread	 of	 SARS	 CoV-2	 continue	 to	 follow	 current	

trends,	 asynchronous	 seasonal	 global	 outbreaks	 could	 be	 expected.	

According	 to	 the	 models,	 temperate	 warm	 and	 cold	 climates	 are	 more	

favorable	to	spread	of	the	virus,	whereas	arid	and	tropical	climates	are	less	

favorable.	However,	model	uncertainties	are	still	high	across	much	of	sub-

Saharan	 Africa,	 Latin	 America	 and	 South	 East	 Asia.	 While	 models	 of	

epidemic	 spread	 utilize	 human	 demography	 and	 mobility	 as	 predictors,	

climate	can	also	help	constrain	the	virus.	This	is	because	the	environment	

can	mediate	human-to-human	transmission	of	SARS-CoV-2,	and	unsuitable	

climates	 can	 cause	 the	 virus	 to	 destabilize	 quickly,	 hence	 reducing	 its	

capacity	to	become	epidemic.		
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Introduction	

Biogeography	studies	the	patterns	and	processes	underlying	the	distribution	of	

Life	 on	 earth.	 One	 generalization	 emerging	 from	 more	 than	 two	 hundreds	 of	

years	 of	 natural	 history	 observations	 is	 that	 all	 organisms	 have	 a	 degree	 of	

environmental	specialization.	That	is,	while	biomes	in	the	planet	have	a	range	of	

different	 types	 of	 organisms(1),	 individual	 types	 of	 organisms	 cannot	 occur	 in	

every	 biome	 even	 when,	 distant	 apart	 as	 they	 might	 be,	 they	 converge	 into	

playing	 the	 same	 ecological	 roles	 within	 ecosystems(2).	 Biogeographers	 and	

ecologists	 alike	 resort	 to	 the	 concept	 of	 ecological	 niche(3-5)	 to	 examine	 the	

relationship	between	 the	distributions	of	organisms	and	other	biotic	or	abiotic	

factors	controlling	them.	An	organism	is	said	to	be	within	its	ecological	niche	if	

death	rates	of	the	organism	are	lower	that	birth	rates(6,	7).	That	is,	an	organism	

cannot	 persist	 beyond	 its	 ecological	 niche,	 in	 a	 sink,	 unless	 there	 is	 a	 regular	

influx	of	individuals	from	source	populations.	Even	if	the	organisms	are	regularly	

reaching	a	sink	area,	as	one	might	expect	with	an	easily	dispersed	pathogen,	the	

spread	 and	 establishment	 of	 the	 organism	 will	 be	 limited	 by	 ecological	

constraints.	Although	biogeographic	concepts,	such	as	species	ecological	niches,	

are	commonly	used	and	applied	to	multicellular	organisms	(eukaryotes),	there	is	

an	increased	number	of	studies	utilizing	the	ecological	concepts	and	associated	

analytical	 tools	 to	 investigate	 relationships	 between	 the	 distributions	 of	

unicellular	organisms	(prokaryotic),	or	viruses,	and	a	range	of	biotic	and	abiotic	

environmental	factors(8-10).			

		

Building	on	 the	concept	of	ecological	niche,	we	develop	projections	of	monthly	

changes	 in	 the	 climate	 suitability	 for	 SARS-CoV-2	 outbreaks.	 Projections	 are	

obtained	 from	 an	 ensemble	 of	 10	 familiar	 machine	 learning	 ecological	 niche	

models(11),	each	with	20	replications	generated	by	repeating	four	times	a	5-fold	

cross	 validation	 that	 accounts	 for	 and	 enables	 the	 quantification	 of	 variability	

across	 initial	 conditions(12).	 Models	were	 trained	 using	 the	 distribution	 of	 all	

recorded	 local	 transmissions	 of	 SARS-CoV-2	 Coronavirus	 (excluding	 imported	

cases)	 with	 data	 compiled	 from	 John	 Hopkins	 University	 Mapping	 2019-nCoV	

portal(13).	 Predictors	 were	 monthly	 mean	 temperature,	 interaction	 term	

between	monthly	minimum	 temperature	 and	maximum	 temperature,	monthly	
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precipitation	 sum,	 downward	 surface	 shortwave	 radiation,	 and	 actual	

evapotranspiration.	 Climate	 data	 refer	 to	 a	 period	 including	 January,	 February	

and	March	2009–2018,	with	data	downloaded	from	the	updated	high-resolution	

global	 climatology	 database	 -	 TerraClimate(14).	 Models	 were	 then	 projected	

monthly	for	the	rest	of	the	year.		

	

Results	

Local	 transmissions	 of	 SARS-CoV-2	 Coronavirus	 were	 plotted	 against	 monthly	

values	 of	 climate	 predictors	 revealing	 aggregation	 within	 a	 relatively	 narrow	

range	of	 climatic	values	 (Figure	1).	Comparing	daily	 spread	of	 the	virus	across	

geographical	space	versus	climatic	space	reveals	stronger	aggregation	in	climate	

space	 than	 in	 geographical	 space.	 That	 is,	 while	 the	 virus	 is	 progressively	

colonizing	most	parts	of	the	world,	 thus	being	geographically	widespread,	 local	

infections	were	 still	 prevalent	within	 a	 relatively	 narrow	 set	 of	 environmental	

conditions	 (Figure	 2).	 The	 uneven	 colonization	 of	 geographic	 versus	 climatic	

space,	invites	the	interpretation	that	climate	is	acting	as	a	stronger	constraint	for	

the	spread	of	the	virus	than	geographical	distances	are.	Most	local	transmissions	

occur	 in	 regions	 exposed	 to	 cool	 and	 dry	 conditions—measured	 both	 through	

evapotranspiration	and	precipitation—,	and	near	the	lower	end	of	the	radiation	

gradient	(but	rho	with	temperature	=	0.78).		

	

The	 mean	 and	 interquartile	 range	 of	 average	 environmental	 temperatures	

associated	 with	 positive	 cases	 is	 5,81ºC	 (mean)	 and	 -3,44ºC	 to	 12,55ºC	 (95%	

range)	and	for	radiation	values	are	112,78	W/m²	(mean)	and	61,07	W/m²	and	

170,96	W/m²	(95%	range).	For	precipitation,	 the	values	are	54,73	mm	(mean)	

and	13,6	mm	to	115,33	mm	(95%	range)	while	for	evapotranspiration	values	are	

28,80	mm	(mean)	and	5,97	mm	and	48,44	mm	(95%	range).	These	values	 are	

estimated	 taking	 into	account	 total	numbers	of	positive	cases	 (i.e.,	 abundance),	

which	are	obviously	 strongly	determined	by	contingent	 factors	 linked	with	 the	

origin	of	the	SARS-CoV-2	Coronavirus	outbreak	(the	city	of	Wuhan	in	China)	and	

subsequent	pattern	of	spread.	While	 the	pattern	of	spread	 is	 likely	to	be	partly	

constrained	by	climate,	the	actual	numbers	of	positive	cases	are	affected	by	non-

climatic	 factors	 too(15),	 some	 of	 which	 might	 be	 stochastic.	 Less	 sensitive	
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measurements	 can	 be	 obtained	 by	 using	 the	 presence	 and	 absence	 of	 positive	

cases.	With	such	an	approach,	 the	mean	and	estimated	 interquartile	ranges	 for	

temperature	 are	 9,14ºC	 (mean)	 and	 -11,43ºC	 to	 27,15ºC	 (95%	 range),	 and	 for	

radiation	they	are	154,57	W/m²	(mean)	and	54,31	W/m²	and	255,43	W/m²	(95	

range).	 For	 precipitation	 they	 are	 71,65	 (mean)	 and	 3,19	 mm	 to	 236,50	 mm	

(95%	range),	while	being	39,84	mm	(mean)	and	0,00	mm	and	106,75	mm	(95%	

range)	for	evapotranspiration.		

	

Ecological	niche	models	were	used	to	estimate	the	combination	of	climate	values	

best	 explaining	 infections	with	 SARS-Cov-2.	While	 the	 exact	 response	 curve	 to	

each	one	of	the	predictor	variables	changes	slightly	with	the	modeling	technique	

and	 cross-validation	 repetition,	 they	 are	 generally	 consistent	 amongst	

themselves	(supplementary	Figure	S1)	and	with	the	raw	distribution	of	positive	

cases	across	gradients	(Figure	1).	Mean	temperature	and	evapotranspiration	(a	

surrogate	 of	 humidity)	 are	 the	 predictors	 best	 explaining	 the	 distribution	 of	

outbreaks	of	the	virus,	with	areas	either	too	cold	or	too	hot,	or	too	wet,	having	

lower	 exposure	 to	 outbreaks.	 These	 two	 climatic	 variables	 are	 followed	 in	

importance	 by	 the	 interaction	 between	 minimum	 temperature	 and	 maximum	

temperature	and	radiation	(supplementary	Figure	S2).			

	

Projections	by	models	reveal	the	existence	of	likely	seasonal	changes	in	climate	

suitability	for	SARS-CoV-2	(Figure	3).	From	April	 to	September,	much	of	higher	

latitude	 regions	 of	 the	 southern	 hemisphere	 are	 projected	 to	 face	 increases	 in	

climate	suitability	for	outbreaks	of	SARS-CoV-2.	That	includes	much	of	southern	

America,	 southern	Africa	and	Southern	Australia.	Models	also	project	 that	high	

latitude	regions	of	 the	northern	hemisphere	might	be	badly	hit	by	 the	virus	as	

temperatures	 rise	 during	 the	 summer	 period.	 Areas	 exposed	 to	 increases	 in	

climate	 suitability	 for	 the	 virus	 include	 Canada	 and	 Russia,	 but	 also	 the	

Scandinavian	 countries.	 High	 elevation	 areas	 in	 the	 Andes	 and	 the	 Himalayas	

share	the	same	prospects.	Concurrently,	areas	that,	as	we	speak,	are	of	extreme	

concern	 in	 the	northern	hemisphere	 (chiefly	 Italy,	 Spain,	France,	Germany,	UK,	

and	USA)	could	witness	a	reduction	in	climate	suitability	for	spread	of	SARS-CoV-

2	 between	 June	 and	 September.	 Beyond	 September	 and	 until	 the	 end	 of	 May,	
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beginning	 of	 June,	 climate	 conditions	 are	 projected	 to	 be	 suitable	 for	 renewed	

outbreaks	 in	much	 of	 the	warm	 temperate	 regions	 of	 Asia,	 Europe	 and	 North	

America.		

	

Projections	of	 seasonal	 changes	 in	 climate	 suitability	 can	be	 aggregated	 across	

the	classic	Köppen–Geiger	climate	zones(16)	of	the	world	to	summarize	patterns	

of	 climate	 suitability	 for	 the	 virus	 (Figure	4).	 The	 analysis	 reveals	 that	 climate	

suitability	 for	 SARS-CoV-2	 is	 greater	 across	 warm	 temperate	 climates	 from	

October	 to	April.	From	April	 to	September	cold	 temperate	regions	are	exposed	

highly	suitable	climate	conditions	 for	spread	of	 the	Coronavirus	with	a	peak	of	

suitability	 in	polar	 climates	between	 June	and	August.	Arid	environments	have	

moderate	 suitability	 for	 the	 virus,	 with	 slight	 increases	 from	 March	 to	 April,	

while	the	tropics	are	also	moderately	suitable	with	increased	climate	suitability	

between	June	and	August.		

	

Metrics	 of	model	 performance	 on	 the	 test	 data	were	 generally	 high	 (mean/SD	

AUC=0,76/0,03,	 see	 supplementary	 Figure	 S4).	 However,	 models	 with	 high	

performance	 in	 the	 test	 data	 can	 still	 generate	 projections	 that	 are	 uncertain	

when	used	for	forecasting(17).	While	improvements	in	the	data	and	the	models	

can	reduce	uncertainties,	an	issue	we	are	now	exploring	at	 light	of	the	recently	

published	 standards	 for	 applied	 ENMs(18),	 characterizing	 the	 uncertainty	 of	

existing	 models	 is	 a	 first	 step	 towards	 understanding	 the	 limitations	 of	

projections	 and	 highlighting	 areas	 of	 concern.	 We	 generated	 200	 models	 by	

varying	 the	 initial	 conditions	 and	 model	 classes.	 As	 such,	 we	 were	 able	 to	

quantify	 and	 map	 some	 of	 the	 methodological	 uncertainties	 associated	 with	

projections	 (Figure	 5).	 Using	 this	 approach,	we	 show	 that	 variation	 associated	

with	 changing	 initial	 conditions	 is	 negligible,	 which	 is	 unsurprising	 given	 that	

splits	 are	 randomly	 performed.	 In	 contrast,	 consistently	with	 previous	 studies	

addressing	 climate	 change	 forecasts(19),	 uncertainty	 associated	 with	 use	 of	

different	modeling	techniques	 is	high(20,	21).	Models	are	considerably	variable	

in	 areas	projected	 to	have	 low	 seasonal	 variability	 in	 climate	 suitability	 across	

much	of	Latin	America,	sub-Saharan	Africa	and	South	East	Asia.	Specific	areas	in	

India,	China,	Western	and	Central	Europe,	Coastal	Australia,	and	Central	USA	also	
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have	high	levels	of	model	variability.	Such	variability	is	probably	a	consequence	

of	 the	 sparse	 nature	 of	 the	 positive	 cases	 of	 COVID-19	 in	 those	 areas,	 causing	

different	 models	 to	 adjust	 differently	 to	 the	 data.	 In	 contrast,	 inter-model	

variability	 across	 northern	 higher	 latitudes	 is	 lower	 and	 this	 is	 likely	 because	

most	 records	 between	 January	 and	March	 are	 found	 there.	 Such	 areas	 of	 low	

inter-model	 variability	 coincide	 with	 areas	 where	 seasonal	 variation	 is	 also	

greater.			

	

Discussion	

Seasonal	variation	in	climate	is	ubiquitous	and	it	can	exert	strong	pressures	on	

spatial	 and	 temporal	 dynamics	 of	 virus-transmitted	diseases(8).	Of	 course,	 not	

all	 viruses	 are	 climate	 determined.	 HIV/AIDS,	 for	 example,	 is	 not	 affected	 by	

external	 climatic	 factors.	 The	 virus	 is	 transmitted	 by	 sexual	 intercourse,	 blood	

transfusions,	 or	 from	 mother	 to	 child	 during	 pregnancy,	 delivery	 or	

breastfeeding,	so	it	never	leaves	the	host’s	internal	environmental	conditions.	In	

contrast,	 SARS-CoV-2,	 like	 other	 respiratory	 viruses,	 namely	 its	 predecessor	

SARS-CoV-1,	 involves	 aerial	 transmissions	 of	 respiratory	 droplets	 or	 fomites,	

exposing	the	virus	to	external	environmental	conditions	in	which	transmissions	

take	place.		

	

SARS-CoV-2	 has	 already	 set	 foot	 in	 most	 parts	 of	 the	 world,	 but	 virulent	

outbreaks	of	COVID-19,	with	large	numbers	of	local	infections,	are	still	clustered	

in	 areas	 with	 relatively	 well-defined	 climate	 conditions	 (Figure	 2).	 Starting	 in	

Wuhan,	 China(22),	 the	 virus	 quickly	 became	 epidemic	 in	 several	 parts	 of	 the	

northern	 hemisphere,	 chiefly	 China,	 the	 Middle	 East,	 Europe,	 and	 the	 USA.	

Arguably,	 being	 China	well	 connected	 to	 the	World,	 the	 virus	would	 have	 had	

equal	 probability	 to	 spread	 and	 become	 epidemic	 everywhere.	 But	 this	 is	 not	

what	 data	 show.	 The	 pattern	 of	 spread,	 far	 from	 being	 random,	 was	 tightly	

associated	with	 the	 climate	 conditions	 of	 the	 temperate	 and	 arid	 zones	during	

the	winter.	Even	the	USA	that	imposed	an	early	ban	on	flights	from	China	faced	

an	escalation	of	cases	of	COVID-19	by	the	end	of	March.	Our	models	fitted	on	the	

existing	pattern	of	 spread	between	 January	and	March	2020,	 support	 the	view	

that	 incidence	 of	 the	 virus	 could	 follow	 a	 seasonal	 climate	 pattern	 with	
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outbreaks	generally	being	favored	by	cool	and	dry	weather,	while	being	slowed	

down	by	extreme	conditions	of	both	cold	and	heat	as	well	as	moist.	Prevalence	of	

respiratory	disease	outbreaks,	such	as	influenza,	during	wintering	conditions	is	

common(23,	24).	But	the	similarity	of	climate	determination	of	SARS-CoV-2	with	

its	 predecessor	 SARS-CoV-1	 and	 even	 MERS-CoV	 is	 noteworthy,	 raising	

reasonable	 expectations	 that	 fundamental	 traits	 shared	 by	 at	 least	 these	 three	

Coronavirus	might	be	conserved.		

	 	

Previous	analyses	of	SARS-CoV-1	outbreaks	in	relation	to	meteorology	revealed	

significant	 correlations	 between	 the	 incidence	 of	 positive	 cases	 and	 aspects	 of	

the	 weather.	 For	 example,	 an	 initial	 investigation	 linking	 SARS	 outbreaks	 and	

temperature	 in	 Hong	 Kong,	 Guangzhou,	 Beijing,	 and	 Taiyuan(25),	 revealed	

significant	correlations	between	SARS-CoV-1	incidences	and	temperature	seven	

days	(the	known	period	of	incubation	of	SARS-CoV-1)	before	the	outbreak,	with	

environmental	 temperatures	 associated	 with	 positive	 cases	 of	 SARS-CoV-1	

ranging	between	16ºC	to	28ºC.	They	also	found	that	incidence	of	the	Coronavirus	

was	inversely	related	to	humidity.	Another	study	conducted	between	11	March	

and	22	May	2003	in	Hong	Kong(26)	showed	that	SARS-CoV-1	incidences	sharply	

decreased	as	temperature	increased	from	15ºC	to	29ºC,	after	which	it	practically	

disappeared.	In	this	study,	incidences	under	the	cooler	end	of	the	gradient	were	

18-fold	higher	than	under	the	opposite	warmer	end	of	the	gradient.		

	

The	 mechanism	 underlying	 these	 patterns	 of	 climate	 determination	 is	 likely	

linked	with	the	ability	of	the	virus	to	survive	external	environmental	conditions	

prior	to	reaching	a	host.	For	example,	a	recent	study	examined	survival	of	dried	

SARS-CoV-1	Coronavirus	on	smooth	surfaces	and	 found	that	 it	would	be	viable	

for	over	5	days	at	temperatures	ranging	between	11-25ºC	and	relative	humidity	

of	 40-50%,	 drastically	 loosing	 viability	 as	 temperatures	 and	 humidity	

increased(27).	Likewise,	an	experiment	examining	the	stability	of	MERS-CoV	on	

plastic	 and	 steel	 surfaces,	 under	 three	 environmental	 treatments	 (20ºC	 –	 40%	

relative	humidity,	30ºC-	30%	RH,	30ºC	–	80%	RH),	revealed	that	 the	virus	was	

more	 stable	 in	 20ºC	 and	 40%	RH	 treatment,	 decaying	 gradually	 in	 the	 second	

and	third	treatments(28).	
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Heat	intolerance	of	the	Corona	viruses	is	probably	related	to	them	being	covered	

by	 a	 lipid	 bilayer(29,	 30),	 which	 could	 breakdown	 easily	 as	 temperatures	

increase.	 Humidity	 in	 the	 air	 is	 also	 expected	 to	 affect	 the	 transmissibility	 of	

respiratory	viruses.	Once	the	pathogens	have	been	expelled	from	the	respiratory	

tract	by	sneezing,	they	literally	float	in	the	air	and	they	do	so	for	a	longer	period	

when	the	humidity	is	reduced.	

	

Detailed	observational	and	controlled	experiments	examining	the	relationship	of	

SARS-CoV-2	 outbreak	 relationships	 with	 weather	 events	 are	 still	 limited,	 but	

there	is	experimental	evidence	that	SARS	CoV-1	and	CoV-2	have	similar	patterns	

of	 stability,	 being	 viable	 in	 aerosols	 and	 on	 surfaces	 for	 similar	 amounts	 of	

time(31).	A	recent	observational	study	conducted	across	100	cities	in	China	also	

found	 that	 high	 temperatures	 and	 high	 relative	 humidity	 was	 significantly	

associated	with	 reductions	 in	 reports	 of	 COVID-19	 cases(32).	 They	 found	 their	

results	to	be	maintained	after	controlling	for	population	density	and	GDP	(gross	

domestic	product),	concluding	that	the	arrival	of	the	summer	and	rainy	season	in	

the	northern	hemisphere	could	help	reduce	the	spread	of	SARS-CoV-2.	Another	

study	examined	transmission	rates	of	SARS-CoV-2	in	the	Hubei	Province	against	

measurements	 of	 absolute	 humidity(33).	 They	 found	 no	 support	 for	 the	

hypothesis	that	high	humidity	would	limit	survival	and	transmission	of	the	virus,	

but	 the	 interaction	 of	 temperature	 and	 humidity	 on	 SARS-CoV-2	 was	 not	

examined.	

	

As	the	virus	spreads	and	additional	climate	regions	witness	outbreaks	of	COVID-

19,	 it	 is	 possible	 that	 the	 climate	 signal	might	 be	weakened	 or	 even	 lost.	 This	

could	happen	as	consequence	of	varying	approaches	 to	 the	management	of	 the	

epidemics	 across	 political	 units:	 for	 example,	 whether	 a	 country	 choses	

mitigation	 versus	 suppression	 should	 effect	 height	 and	 width	 of	 the	 epidemic	

curve(34),	hence	the	frequency	distribution	of	COVID-19	cases	in	space	and	time.	

Likewise,	measured	 relationships	 between	 outbreaks	 of	 COVID-19	 and	 climate	

could	be	contaminated	by	data	with	substantially	different	quality,	as	it	might	be	

the	case	when	comparing	regions	spending	vast	amounts	of	resources	in	testing	
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for	 cases	 and	 regions	 practically	 not	 any	 conducting	 any	 tests.	 Countries	 like	

Brazil,	 for	 example,	with	 a	 combination	of	 high	human	population	density	 and	

absence	 of	 proactive	 political	 response	 to	 COVID-19(35),	 could	 face	 epidemic	

outbreaks	even	under	moderate	climate	suitability.		

	

Although	climate	 is	one	of	many	factors	 likely	affecting	the	spread	of	 the	virus,	

there	 is	 no	 doubt	 that	 the	 host	 behavior(36)	 and	 density(37)	 are	 powerful	

predictors	of	 the	capacity	of	 the	virus	 to	 spread.	 Indeed,	projections	of	 climate	

suitability	 for	 the	 virus	 are	 relevant	 insofar	 transmissions	 are	made	 outdoors.	

Indoor	transmissions,	under	acclimatized	environments,	can	be	predominant	in	

certain	 cultures.	 That	 infected	 humans	 can	 be	 asymptomatic	 and	 transmit	 the	

virus	to	other	humans,	generates	substantial	uncertainties	regarding	the	overall	

risk	of	epidemic	outbreak	of	COVID-19	under	a	variety	of	different	ecological	and	

social	settings(38).	 In	China,	 for	example,	 indoor	 transmissions	were	estimated	

to	 account	 for	 nearly	 80%	of	 the	 total	 transmissions	 but	 this	 value	 is	 likely	 to	

change	 in	 different	 cultural	 and	 socio-economic	 contexts.	 Unfortunately,	 data	

regarding	 the	 context	 in	 which	 transmissions	 took	 place	 are	 not	 readily	

available.	

	

Understanding	the	underlying	factors	involved	in	the	successful	spread	of	SARS-

CoV-2	 is	 critical	 to	 manage	 the	 timing	 and	 scale	 of	 the	 social,	 economic,	 and	

political	 reactions	 to	 it.	 Our	 results	 are	 qualitatively	 similar	with	 those	 of	 two	

other	 independent	 large-scale	 investigations	 of	 the	 relationship	 of	 COVID-19	

with	 geographical	 and	 climate	 factors(39,	40).	We	 expect	 that	 the	 SARS-CoV-2	

Coronavirus	 should	 continue	 to	 spread	 owing	 to	 seasonal	 changes	 of	 climate	

suitability	and	increased	abundance	of	the	viral	pool.	However,	it	is	unlikely	that	

outbreaks	will	happen	everywhere	with	the	same	intensity.	Not	 just	because	of	

seasonality	 in	 climate,	 but	 also	 because	 of	 the	 interactions	with	 initial	 date	 of	

outbreak,	which	varies	from	country	to	country,	and	the	varying	responses	to	it.		

	

Our	results	will	hopefully	contribute	to	anticipating	the	timing	and	magnitude	of	

public	interventions	needed	to	mitigate	the	adverse	consequences	of	the	COVID-

19	on	public	health.	However,	they	do	not	substitute	traditional	epidemiological	
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modeling	 and	 management	 of	 the	 disease	 that	 focus	 on	 host	 behavior	

management	as	a	strategy	to	minimize	overall	risk	of	spread.	
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Figures		
	
Figure	1	|	Frequency	distribution	of	COVID-19	positive	cases	plotted	against	the	
world	gradient	of	mean	temperature	(A),	interaction	of	minimum	temperature	*	
maximum	 temperature	 (B),	 downward	 surface	 shortwave	 radiation	 (C),	
precipitation	 (D),	 and	 actual	 evapotranspiration	 (E)	 in	 a	 typical	 climatological	
series	between	January	and	March.		
	
Figure	2	|	COVID-19	cases	in	geographical	and	climate	niche	space	from	the	22nd	
of	January	to	the	23rd	of	March	2020.	(A)	Weighted	average	consensus	modeled	
climate	suitability	across	mean	 temperature	and	actual	evapotranspiration.	 (B)	
Variation	 of	 daily	 convex-hull-polygon	 area	 of	 COVID-19	 cases	 in	 geographical	
and	climatic	space	(see	methods):	 the	greater	area	of	polygons,	 the	greater	 the	
spread.	 Black	 lines	 represent	mean	 values,	 boxes	 the	 2nd	 and	 3rd	 interquartile	
range,	lines	the	1st	and	4th	interquartile	range,	and	dots	are	outliers.		A	dynamic	
visualization	 of	 the	 daily	 spread	 of	 SARS-CoV-2	 Coronavirus	 is	 available	 here:	
http://www.maraujolab.com/wp-content/uploads/2020/03/corona_niche_aet-
temperature_23march.gif		
	
Figure	 3	 |	 Projected	 relative	 climate	 suitability	 for	 SARS-CoV-2	 Coronavirus	
outbreaks	 across	 the	 5	 Köppen–Geiger	 climate	 zones	 of	 the	 world(16).	 (A)	
Distribution	 of	 coarse	 Köppen–Geiger	 climate	 zones.	 (B)	 Monthly	 changes	 in	
relative	 climate	 suitability	 for	 the	 Coronavirus	 per	 climate	 zone.	 A	 dynamic	
visualization	of	 the	monthly	geographical	spread	of	modeled	climate	suitability	
from	 January	 to	 December	 is	 available	 here:	 http://www.maraujolab.com/wp-
content/uploads/2020/03/corona_risk_23march.gif	
	
Figure	4	|	Projected	climate	suitability	for	SARS-CoV-2	Coronavirus	outbreaks	in	
a	 typical	 January-March	 (A),	 April-June	 (B),	 July-September	 (C),	 and	 October-
December	(D).		
	
Figure	 5	 |	 Variation	 in	model	 projections	measured	 as	 proportion	 of	 the	 total	
sum	of	squares	accounted	for	by	ENM	methods	(A),	Cross-Validation	replications	
(B),	Monthly	seasonal	variation	(C),	and	interactions	between	ENM	methods	and	
seasonal	monthly	variation	(D).	
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Methods	
	
SAR-CoV-2	Coronavirus	data	
We	downloaded	the	geo-referenced	coordinates	of	COVID-19	cases	from	the	data	
repository	operated	by	the	Johns	Hopkins	University	Center	for	Systems	Science	
and	 Engineering	 with	 support	 from	 ESRI	 Living	 Atlas	 Team	 and	 the	 Johns	
Hopkins	 University	 Applied	 Physics	 Laboratory	
(https://github.com/CSSEGISandData/COVID-19/blob/master/README.md).	
The	data	were	downloaded	on	23/03/2020.	Classification	of	positive	cases	into	
local	 transmissions	 and	 imported	 cases	 were	 obtained	 from	 World	 Health	
Organization	Covid-19	Situation	Report(41).	
	
Climate	data	
We	 downloaded	 updated	 temperature	 (mean,	 maximum,	 minimum),	
precipitation	(accumulated),	actual	evapotranspiration,	and	shortwave	radiation	
from	 “Terra	 Climate”	 (a	 high-resolution	 global	 dataset	 of	monthly	 climate	 and	
climatic	 water	 balance;	 http://www.climatologylab.org/terraclimate.html)(14).	
This	is	a	high-resolution	(1/24°,	~4-km)	climate	and	water	balance	data	set	for	
global	terrestrial	surfaces.	The	data	we	downloaded	covers	the	period	starting	in	
January	2009	until	December	2018,	thus	covering	the	recent	period	of	warming	
that	would	not	be	captured	by	longer	climatological	time	series.	The	time	series	
data	were	then	averaged,	so	to	provide	values	for	a	typical	climatological	month	
in	the	recent	past.		
	
SARS-CoV2-	spread	across	geographic	and	climate	space	
This	 analysis	 refers	 to	 Figure	 2B.	 We	 used	 daily	 data	 on	 reported	 COVID-19	
positive	cases	to	calculate	a	daily	convex	hull	polygon	around	the	coordinates	of	
the	 positive	 cases	 recorded	 in	 both	 geographic	 and	 climate	 space	 (based	 on	
mean	temperature	and	evapotranspiration).	To	make	coordinates	comparable	in	
geographic	and	climate	space,	coordinate	values	were	re-scaled	to	a	range	of	0	to	
1.	 Then,	 we	 calculated	 the	 area	 of	 the	 polygon	 in	 the	 two	 spaces	 each	 day	
between	the	22nd	of	January	until	the	23rd	of	March:	the	greater	the	area	of	the	
polygon,	 the	 greater	 the	 spread	 of	 the	 virus	 across	 available	 geographic	 and	
climate	space.		
	
Ecological	niche	models	
The	 spatial	 distribution	 of	 SAR-CoV-2	 Coronavirus	 records	 were	 linked	 to	 the	
corresponding	monthly	climate	data.	We	used	sdm-R	platform(11)	for	ensemble	
ecological	 niche	 modeling(12)	 (or	 species	 distributions	 modeling(42)),	 to	
characterize	 climate	 conditions	 associated	 with	 outbreaks	 of	 SARS-CoV-2	
between	January	and	March	2020.	We	used	10	commonly	used	machine	learning	
methods	 including	Generalized	Linear	Models	 (GLM)(43),	 Generalized	Additive	
Models	 (GAM)(44),	 Classification	 and	 Regression	 Trees	 (CART)(45),	 Boosted	
Regression	 Trees	 (BRT)(46),	 Random	 Forests	 (RF)(47),	 Multiple	 Discriminant	
Analysis	 (MDA)(48),	 Multi-Layer	 Perceptron	 Neural	 Networks	 (MLP)(49),	
Maximum	 Entropy	 (Maxent)(50),	 Likelihood-Based	 Estimator	 Adopted	 for	
Presence-Only	Data	(Maxlike)(51),	and	Multivariate		Adaptive	Regression	Splines	
(MARS)(52).	 Models	 were	 parameterized	 using	 default	 options	 of	 sdm-R	 as	
detailed	in	the	Supplementary	Material.		
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We	 used	 a	 5-fold	 cross-validation(53),	 repeated	 4	 times,	 resulting	 in	 20	
replications	 per	 method.	 We	 then	 fitted	 ecological	 niche	 models	 for	 each	
replication	 using	 the	 four	 random	 cross-validation	 splits	 as	 training	 set	 and	
evaluated	them	against	the	fifth	withheld	data	split.		
	
We	used	the	area	under	curve	(AUC)	of	receiver	operating	characteristic	(ROC)	
plot	and	 the	 true	skill	 statistic	 (TSS)	 to	measure	 the	predictive	performance	of	
models(54).	A	ROC	curve	plots	sensitivity	values	(true	positive	fraction)	on	the	y-
axis	against	 ‘1	–	specificity’	values	(false	positive	 fraction)	 for	all	 thresholds	on	
the	 x-axis.	 AUC	 is	 a	 threshold-independent	metric	 that	 varies	 from	 0	 to	 1	 and	
provides	a	single	measure	of	model	performance.	AUC	values	under	0.5	indicate	
discrimination	worse	 than	 expected	 by	 chance;	 a	 score	 of	 0.5	 implies	 random	
predictive	discrimination;	and	a	score	of	1	indicates	perfect	discrimination.	TSS	
is	calculated	as	“sensitivity	+	specificity	-1”	and	ranges	from	-1	to	+1,	where	+1	
indicates	perfect	agreement,	a	value	of	0	implies	agreement	expected	by	chance,	
and	a	value	of	 less	 than	0	 indicates	agreement	 lower	 than	expected	by	chance.	
We	then	used	the	ensemble	of	200	models	to	calculate	and	project	a	consensus	
distribution	of	climate	suitability	for	the	spread	of	SARS-CoV-2,	for	each	month,	
across	the	globe.	Consensus	was	achieved	through	AUC-weighted	mean	across	all	
models(21).	The	assessments	of	model	performance	on	cross-validated	samples	
are	reported	in	Supplementary	Figure	S3.	
	
Predictor	variables	importance	
Variable	 importance(55)	 and	 response	 curves(56)	 were	 estimated	 to	 infer	 the	
explanatory	power	and	 shape	of	 the	 relationship	 for	 each	one	of	 the	predictor	
variables	 used	 and	 the	 distribution	 of	 positive	 cases	 of	 SARS-CoV-2.	 Response	
curves	 are	 generated	with	 the	 evaluation	 strip	 procedure(56),	 implemented	 in	
sdm-R(11).	 For	 each	 climate	 variable,	 the	 method	 generates	 the	 predicted	
probability	of	occurrence	over	all	values	 in	 the	gradient	of	 the	climate	variable	
while	the	other	climate	variables	are	kept	at	their	mean	values.	Then,	visualizing	
the	predicted	values	against	the	climate	gradient	represents	the	response	of	the	
species	to	the	climate	variable.	
	
Additional	 model-independent	 techniques	 were	 also	 implemented	 to	 evaluate	
the	 relative	 variable	 importance.	 We	 assessed	 the	 relative	 contribution	 of	
variables	to	explain	the	distributions	of	positive	cases	of	SARS-CoV-2	in	models	
using	 the	 variable	 importance	 (VI)	 analysis	 in	 sdm-R(11).	 This	 method	 is	 a	
randomization	procedure	 that	measures	 the	 correlation	between	 the	predicted	
values	 of	 a	 model	 given	 the	 original	 predictors,	 and	 predictions	 of	 the	 same	
model	but	given	the	perturbed	dataset	in	which	the	variable	under	investigation	
is	 randomly	permutated.	 If	 the	 contribution	of	 a	 variable	 to	 the	model	 is	 high,	
then	 it	 is	 expected	 that	 the	 permutation	 would	 affect	 the	 prediction,	 and	
consequently,	 the	 correlation	 is	 low.	 Using	 this	 approach,	 ‘1	 –	 correlation’	 is	
considered	as	a	measure	of	variable	importance(57).	
	
We	assessed	the	relative	contribution	of	variables	to	explain	the	distributions	of	
positive	 cases	 of	 SARS-CoV-2	 in	 models	 using	 the	 variable	 importance	 (VI)	
analysis	in.	This	is	a	permutation	method	that	measures	the	relative	importance	
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of	 each	predictor	 variable.	This	method	quantifies	 the	 correlation	between	 the	
predicted	 values	 and	 predictions	 where	 the	 variable	 under	 investigation	 is	
randomly	 permutated(11).	 If	 the	 contribution	 of	 a	 variable	 to	 an	 SDM	 is	 high,	
then	the	permutation	would	affect	 the	prediction	values,	and	consequently,	 the	
correlation	 coefficient	 would	 be	 low.	 Therefore,	 ‘1	 –	 correlation’	 can	 be	
considered	as	a	measure	of	variable	importance.	
	
Decomposition	of	sources	of	variation	
We	used	a	3-way	ANOVA	to	decompose	variation	in	model	projections	from	the	
10	 different	 modeling	 techniques	 used	 and	 20	 replications	 of	 the	 initial	
conditions	(data	on	SARS-CoV-2	cases).	We	compared	variation	arising	from	data	
and	models	with	variation	associated	with	projected	seasonal	changes	in	climate	
suitability.	 The	 latter	 is	 the	 desired	 projection,	 rather	 than	 a	 methodological	
uncertainty.	 However,	 comparison	 of	 seasonal	 projected	 variation	 in	 climate	
suitability	 with	 variation	 arising	 from	 different	 partitions	 of	 data	 and	 model	
classes	provides	a	benchmark	against	which	to	compare	model	variability.	If	data	
and	 model	 variability	 was	 greater	 than	 projected	 seasonal	 variability,	 then	
reliance	 on	 the	models	 could	 be	 questioned.	 	 The	 analysis	 involved	 running	 a	
three-way	 Analysis	 of	 Variance	 (ANOVA)	 without	 replication(58,	 59)	 for	 each	
cell,	using	climate	suitability	for	SARS-CoV-2	as	response	variable	and	ecological	
niche	models	(ENM),	bootstrapped	samples	(BS),	and	months	(M)	as	factors.	We	
then	obtained	the	sum	of	squares	to	each	of	these	sources	and	their	interaction	
(ENM	 x	 BS,	 ENM	 x	 M,	 BS	 x	 M,	 ENM	 x	 BS	 x	 M).	 We	 estimated	 the	 variance	
components	as	 the	proportions	of	 the	sums	of	squares	 for	 the	 three	sources	of	
variation	 (and	 their	 interaction)	with	 regards	 to	 the	 total	 sum	 of	 squares(20).	
Analyses	were	performed	 for	 each	 cell	 in	 the	world	 grid	 and	we	mapped	 each	
variance	component	separately	(interaction	term	was	not	significant,	hence	not	
reported).	Monthly	variation	in	climate	suitability	is	the	expected	outcome	of	the	
models.	 Variability	 associated	 with	 ENM	 and	 BS	 is	 expected	 to	 represent	 the	
variability	 associated	 with	 changing	 initial	 conditions	 (BS)	 and	 model	 classes	
(ENM).	 They	 are	 interpreted	 as	 uncertainty	 estimates	 and	 should	 ideally	 be	
much	proportionally	smaller	than	monthly	variation.	
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Figure	 S1	 |	 Mean	 response	 curves	 across	 the	 200	 ecological	 niche	 models	 of	
COVID-19	 to	 precipitation,	 mean	 temperature,	 actual	 evapotranspiration,	
downward	 surface	 shortwave	 radiation,	 and	 interaction	 between	 minimum	
temperature	 and	 maximum	 temperature.	 Shaded	 areas	 represents	 the	 95%	
confidence	interval.	See	methods.		
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Figure	 S2	 |	 Model-independent	 estimated	 relative	 variable	 importance	 of	
COVID-19	cases.	See	methods.		
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Figure	 S3	 |	 Metrics	 of	 performance	 on	 test	 data	 obtained	 by	 5-fold	 cross-
validation	 repeated	 4	 times:	 AUC;	 Sensitivity;	 and	 Specificity.	 Black	 lines	
represent	mean	values,	boxes	the	2nd	and	3rd	interquartile	range,	lines	the	1st	and	
4th	interquartile	range,	and	dots	are	outliers.		
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