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As	new	 cases	 of	 SARS	CoV-2	 (aka	 2019-nCoV)	 Coronavirus	 are	 confirmed	

throughout	the	world	and	millions	of	people	are	being	put	into	quarantine,	

few	doubt	the	virus	will	reach	pandemic	state.	Some	worry	 it	could	badly	

hit	the	developing	world,	such	as	sub-Saharan	Africa,	potentially	leading	to	

a	 global	 human	 calamity.	 It	 is	 still	 early	 days,	 but	 using	 existing	 data	we	

develop	a	 large	ensemble	of	ecological	niche	models	that	project	monthly	

variation	 in	 climate	 suitability	 of	 SARS-CoV-2	 Coronavirus	 throughout	 a	

typical	climatological	year.	The	current	spread	suggests	a	degree	of	climate	

determination	 with	 Coronavirus	 displaying	 preference	 for	 cool	 and	 dry	

conditions.	 The	 predecessor	 SARS-CoV	 was	 linked	 to	 similar	 climate	

conditions.	 Should	 the	 spread	 of	 SARS	 CoV-2	 continue	 to	 follow	 current	

trends,	 a	 worst-case	 scenario	 of	 synchronous	 global	 pandemic	 is	

improbable.	 More	 probable	 is	 the	 emergence	 of	 asynchronous	 seasonal	

global	 outbreaks	 much	 like	 other	 respiratory	 diseases.	 People	 in	

temperate	 warm	 and	 cold	 climates	 are	 more	 vulnerable.	 Those	 in	 arid	

climates	 follow	 next	 in	 vulnerability,	 while	 the	 disease	 will	 likely	

marginally	 affect	 the	 tropics.	 Our	 projections	 minimize	 uncertainties	

related	 with	 spread	 of	 SARS	 CoV-2,	 providing	 critical	 information	 for	

anticipating	the	adequate	social,	economic	and	political	responses.		
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Introduction	

Biogeography	studies	the	patterns	and	processes	underlying	the	distribution	of	

Life	 on	 earth.	 One	 generalization	 emerging	 from	 hundreds	 of	 years	 of	 natural	

history	 observations	 is	 that	 all	 organisms	 have	 a	 degree	 of	 environmental	

specialization.	That	is,	while	biomes	in	the	planet	have	a	range	of	different	types	

of	organisms1,	 individual	 types	of	organisms	cannot	occur	 in	every	biome	even	

when,	 distant	 apart	 as	 they	 might	 be,	 they	 converge	 into	 playing	 the	 same	

ecological	 roles	within	ecosystems2.	Biogeographers	and	ecologists	alike	 resort	

to	 the	 concept	 of	 ecological	 niche3-5	 to	 examine	 the	 relationship	 between	 the	

distributions	 of	 organisms	 and	other	 biotic	 or	 abiotic	 factors	 controlling	 them.	

An	 organism	 is	 said	 to	 be	 within	 its	 ecological	 niche	 if	 death	 rates	 of	 the	

organism	 are	 lower	 that	 birth	 rates6,7.	 That	 is,	 an	 organism	 cannot	 persist	

beyond	 its	 ecological	 niche,	 in	 a	 sink,	 unless	 there	 is	 a	 regular	 influx	 of	

individuals	from	source	populations.	Even	if	organisms	are	regularly	reaching	a	

sink	area,	as	one	might	expect	with	an	easily	dispersed	pathogen,	the	spread	and	

establishment	of	the	organism	will	be	limited	by	ecological	constraints.	Although	

biogeographic	 concepts,	 such	 as	 the	 species	 ecological	 niches,	 are	 commonly	

used	and	applied	to	multicellular	organisms	(eukaryotes),	there	is	an	increased	

number	 of	 studies	 utilizing	 the	 ecological	 niche	 concepts	 and	 associated	

analytical	 tools	 to	 investigate	 relationships	 between	 the	 distributions	 of	

unicellular	 organisms	 (prokaryotic),	 or	 viruses,	 and	 a	 range	 of	 environmental	

factors8.			

		

Building	on	 the	concept	of	ecological	niche,	we	develop	projections	of	monthly	

changes	in	the	likelihood	of	SARS-CoV-2	Coronavirus	outbreaks.	Projections	are	

obtained	 from	 an	 ensemble	 of	 10	 familiar	 machine	 learning	 and	 statistical	

ecological	niche	models9,	 each	with	20	 copies	generated	with	bootstrapping	 to	

account	for	and	enable	the	quantification	of	intra-model	variability	to	the	initial	

conditions10,11.	Models	were	trained	using	the	distribution	of	all	recorded	SARS-

CoV-2	 Coronavirus	 cases	 by	 the	 10/03/2020	 with	 data	 compiled	 and	 made	

available	 to	 the	 John	Hopkins	University	Mapping	2019-nCoV	portal12.	Regions	

with	 fewer	 than	5	positive	cases	were	not	 included	 in	 the	models.	Exclusion	of	

such	sites	was	based	on	the	working	assumption	that	sites	with	small	numbers	
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of	positive	cases	are	likely	imported	from	infected	regions,	thus	failing	to	provide	

evidence	that	the	SARS-CoV-2	Coronavirus	is	being	transmitted	locally	within	its	

ecological	niche.	Predictors	were	temperature	and	precipitation	values	expected	

between	 January	 and	 March	 using	 1979–2013	 as	 reference,	 and	 with	 data	

downloaded	 from	the	high-resolution	climatology	database	 for	 the	earth’s	 land	

surface13.	Models	were	then	projected	monthly	for	the	rest	of	the	year.		

	

Results	

Analysis	of	all	positive	cases	of	SARS-CoV-2	Coronavirus	plotted	against	monthly	

temperature	 and	 precipitation	 values	 reveals	 that	 the	 interquartile	 range	 of	

average	 environmental	 temperatures	 associated	 with	 positive	 cases	 so	 far	 is	

between	-4,01ºC	to	15,58ºC	(99%	range)	and	-2,04ºC	to	9,49ºC	(95%	range).	For	

precipitation,	the	interquartile	range	ranges	from	4,68	mm	to	116,06	mm	(99%	

range)	 and	 19,75	 mm	 to	 94,43	 mm	 (95%	 range).	 These	 values	 are	 estimated	

taking	into	account	total	numbers	of	positive	cases,	which	are	obviously	strongly	

determined	 by	 contingent	 factors	 linked	 with	 the	 origin	 of	 the	 SARS-CoV-2	

Coronavirus	 outbreak	 (the	 city	 of	Wuhan	 in	 China)	 and	 subsequent	 pattern	 of	

spread.	 While	 the	 pattern	 of	 spread	 is,	 as	 it	 seems	 based	 on	 our	 analysis,	

constrained	by	climate,	the	actual	numbers	of	positive	cases	are	affected	by	non-

climatic	 factors14,	 some	 of	 which	 might	 be	 stochastic.	 Less	 sensitive	

measurements	can	be	obtained	by	using	presence	absence	of	positive	cases.	With	

such	an	approach,	the	estimated	interquartile	ranges	for	temperature	is	-18,10ºC	

to	28,64ºC	(99%	range)	and	-8,81ºC	to	25,65ºC	(95%	range).	For	precipitation	it	

is	1,00	mm	to	345,55	mm	range	(99%	range)	and	2,16	mm	to	151,31	mm	(95%	

range).	Regardless	of	the	approach	used	to	quantify	the	climate	envelope	of	the	

SARS-CoV-2	Coronavirus,	we	are	not	characterizing	the	exact	local	temperature	

and	 precipitation	 conditions	 constraining	 the	 virus	 spread	 but	 rather	

determining	the	type	of	macro-climate	conditions	in	the	places	where	spreading	

is	 occurring.	 Nevertheless,	 regardless	 of	 whether	 we	 calculate	 environmental	

preferences	 of	 the	 SARS-CoV-2	 Coronavirus	 using	 the	 total	 numbers	 of	

incidences	 or	 their	 presence	 and	 absence,	 it	 appears	 the	 virus	 favors	 cool	 and	

dry	conditions	being	largely	absent	under	extremely	cold	and	very	hot	and	wet	

conditions	(Figure	1).		
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We	summarized	projections	by	ensembles	of	ecological	niche	models	by	climate	

zones15.	 The	 analysis	 reveals	 that	 SARS-CoV-2	 strives	 in	 warm	 temperate	

climates	between	October	to	May	and	cold	temperate	climates	between	April	and	

September	 (Figure	 2).	 Arid	 environments	 follow	 the	 temperate	warm	 trend	 of	

seasonal	 probability	 of	 contracting	 the	 SARS-CoV-2	 Coronavirus	 but	 with	

generally	more	moderate	 levels.	Much	of	 the	 tropics	have	 low	 levels	of	 climate	

suitability	 for	 spread	 of	 SARS-CoV-2	 Coronavirus	 owing	 to	 their	 high	

temperatures	and	precipitation	(used	here	as	a	surrogate	for	humidity),	followed	

by	 polar	 climates,	 where	 conditions	 of	 extreme	 cold	 temperatures	 seem	 to	 be	

beyond	the	virus	critical	minimum	tolerance	values.	In	most	of	such	low	climate	

suitability	areas,	human	populations	will	likely	be	spared	from	outbreaks	arising	

from	local	transmissions	(Figure	2).	

	

The	 analysis	 of	 risk	 provided	 at	 the	 climate	 zone	 level	 (Figure	 2),	 masks	 the	

sharp	 seasonality	 and	 the	 fine-grained	 regional	 variation	 in	 risk	 that	 emerges	

when	 analyzing	 the	 patterns	 in	 geographical	 space	 (Figure	 3).	 From	 June	 to	

September,	 much	 of	 higher	 latitude	 regions	 of	 the	 southern	 hemisphere,	 like	

Argentina,	Australia,	Brazil,	 Chile,	New	Zealand,	 and	Southern	Africa	will	 likely	

be	become	exposed	to	new	outbreaks	of	SARS-CoV-2.	Models	also	project	highest	

latitude	regions	of	 the	northern	hemisphere	to	be	badly	hit	by	the	Coronavirus	

during	 this	 period,	 including	 Canada	 and	 Russia,	 but	 also	 the	 Scandinavian	

countries.	High	elevation	areas	 in	the	Andes	and	the	Himalayas	share	the	same	

prospects.	Concurrently,	areas	 that,	as	we	speak,	are	of	extreme	concern	 in	 the	

northern	hemisphere	(chiefly	Italy,	Spain,	France,	Germany,	UK,	and	USA)	should	

witness	 a	 reduction	 in	 the	 incidence	 of	 new	 positive	 cases	 SARS-CoV-2	

Coronavirus.	 Beyond	 September	 and	 until	 the	 end	 of	 May,	 conditions	 will	 be	

suitable	 for	 renewed	outbreaks	 in	much	 of	warmer	 temperate	 regions	 of	Asia,	

Europe	and	North	America.		
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Discussion	

Not	all	viruses	are	climate	determined.	HIV/AIDS,	for	example,	is	not	affected	by	

external	 environmental	 factors.	The	virus	 is	 transmitted	by	 sexual	 intercourse,	

blood	 transfusions,	 or	 from	 mother	 to	 child	 during	 pregnancy,	 delivery	 or	

breastfeeding,	so	it	never	leaves	the	host’s	internal	environmental	conditions.	In	

contrast,	 SARS-CoV-2,	 like	 other	 respiratory	 viruses,	 namely	 its	 predecessor	

SARS-CoV,	 involves	 aerial	 transmissions	 of	 respiratory	 droplets	 or	 fomites,	

exposing	the	virus	to	external	environmental	conditions.		

	

SARS-CoV-2	 Coronavirus	 has	 already	 set	 foot	 in	 most	 parts	 of	 the	 world,	 but	

virulent	 outbreaks	 with	 large	 numbers	 of	 local	 infections	 are	 still	 not	 global.	

Instead,	 outbreaks	 concentrate	 in	 the	 northern	 hemisphere,	 chiefly	 Asia,	 the	

Middle	 East,	 Central,	 Southern	 and	Western	 Europe,	 and	 the	 USA.	 Our	models	

support	 the	 view	 that	 the	 incidence	 of	 the	 virus	will	 follow	a	 seasonal	 pattern	

with	outbreaks	being	favored	by	cool	and	dry	weather,	while	being	slowed	down	

by	 extreme	 conditions	 of	 cold	 and	 heat	 as	 well	 as	 moist.	 Prevalence	 of	

respiratory	disease	outbreaks,	such	as	influenza,	during	wintering	conditions	is	

common16,17.	But	the	similarity	of	climate	determination	of	SARS-CoV-2	with	its	

predecessor	SARS-CoV	is	noteworthy	given	hope	that	fundamental	traits	shared	

by	the	two	Coronavirus	might	be	conserved.		

	

Analyses	 of	 SARS-CoV	 outbreaks	 in	 relation	 to	 meteorology	 reveal	 significant	

correlations	between	the	incidence	of	positive	cases	and	aspects	of	weather.	For	

example,	 an	 initial	 investigation	 linking	 SARS	 outbreaks	 and	 temperature	 in	

Hong	Kong,	Guangzhou,	Beijing,	and	Taiyuan18,	revealed	significant	correlations	

between	SARS-CoV	incidences	and	temperature	seven	days	(the	known	period	of	

incubation	of	SARS-CoV)	before	the	outbreak,	with	environmental	temperatures	

associated	with	positive	cases	of	SARS-CoV	ranging	between	16ºC	to	28ºC.	They	

also	found	that	 incidence	of	the	Coronavirus	was	 inversely	related	to	humidity.	

Another	study	conducted	between	11	March	and	22	May	2003	 in	Hong	Kong19	

showed	 that	 SARS-CoV	 incidences	 sharply	decreased	as	 temperature	 increased	

from	 15ºC	 to	 29ºC,	 after	 which	 it	 practically	 disappeared.	 In	 this	 study,	
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incidences	under	the	cooler	end	of	the	gradient	were	18-fold	higher	than	under	

the	opposite	warmer	end	of	the	gradient.		

	

The	mechanism	underlying	these	patterns	climate	determination	is	likely	linked	

with	the	ability	of	the	virus	to	survive	external	environmental	conditions	prior	to	

reaching	a	host.	 For	 example,	 a	 recent	 study	examined	 survival	 of	dried	SARS-

CoV	Coronavirus	on	smooth	surfaces	and	found	that	it	would	be	viable	for	over	5	

days	at	temperatures	ranging	between	11-25ºC	and	relative	humidity	of	40-50%,	

drastically	 loosing	 viability	 as	 temperatures	 and	 humidity	 increased20.	 Heat	

intolerance	of	the	Corona	viruses	is	probably	related	to	their	being	covered	by	a	

lipid	 bilayer21,22,	 which	 could	 breakdown	 easily	 as	 temperatures	 increase.	

Humidity	 in	 the	air	 is	also	expected	 to	affect	 the	 transmissibility	of	 respiratory	

viruses.	 Once	 the	 pathogens	 have	 been	 expelled	 from	 the	 respiratory	 tract	 by	

sneezing,	 they	 literally	 float	 in	 the	air	and	they	do	so	 for	a	 longer	period	when	

the	humidity	is	greater.	

	

More	detailed	examination	of	SARS-CoV-2	outbreak	relationships	with	weather	

events	 will	 only	 be	 possible	 once	 the	 spread	 of	 the	 virus	 has	 stabilized.	 The	

current	macroecological-level	analysis	enables	 inferences	that	would	otherwise	

not	 be	 possible	 with	 high-resolution	 data	 for	 specific	 case	 studies.	 That	 is,	

substitute	the	familiar	analysis	of	meteorological	variation	at	site	levels	matched	

with	 specific	 SARS-CoV-2	 cases	 by	 examination	 of	 all	 known	 positive	 cases	

worldwide	 against	 an	 analysis	 of	 large-scale	 climatological	 variation.	 It	 is,	

obviously,	 possible	 that,	 as	 the	 virus	 spreads	 and	 additional	 climate	 regions	

witness	outbreaks	of	positive	cases,	inferences	made	herein	are	altered.	We	are	

skeptical	this	will	happen	for	two	reasons.	Firstly,	there	is	little	reason	to	suspect	

that	 out-of-China	 contaminations	 would	 have	 occurred	 only,	 or	 mainly,	 with	

trade	partners	in	the	northern	hemisphere14.	China	is	a	big	world	player,	having	

key	 commercial	 partnerships	 with	 Africa	 and	 Latin	 America.	 Yet	 there	 is	 not	

indication	 that	 meaningful	 local	 infections	 have	 taken	 place	 in	 these	 areas	

despite	 the	 global	 reporting	 of	 Coronavirus	 cases	 generally	 attributed	 to	

travellers	coming	from	infected	regions.	Secondly,	the	climatic	discrimination	of	

the	 outbreaks	 is	 such	 that	 is	 seems	 unlikely	 to	 be	 a	 consequence	 of	 random	
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chance,	 trade	preferences	with	China,	 or	 just	 the	outcome	of	poorly	developed	

public	policies.	On	the	contrary,	the	SARS-CoV-2	Coronavirus,	although	being	still	

expanding,	seems	to	have	followed	closely	the	expected	(given	what	we	know	of	

SARS-CoV)	 pattern	 of	 climate	 suitability.	 This	 suggests	 the	 Coronavirus	 might	

have	 reached	 equilibrium	 with	 climate23,24,	 which,	 if	 true,	 would	 have	

contributed	 to	 significantly	 reduce	 the	 unaccounted	 for	 data	 biases	 and	

uncertainties	entering	our	ecological	niche	models25.			

	

Understanding	the	underlying	factors	involved	in	the	successful	spread	of	SARS-

CoV-2	 Coronavirus	 is	 critical	 to	 manage	 the	 timing	 and	 scale	 of	 the	 social,	

economic,	and	political	reactions	to	it.	While	the	Coronavirus	is	likely	to	spread	

much	 more	 widely	 than	 at	 present,	 owing	 to	 the	 seasonal	 changes	 of	 climate	

suitability,	 it	 is	 unlikely	 to	 do	 so	with	 the	 same	 intensity,	 simultaneously.	 Our	

results	will	 allow	 anticipate	 the	 timing	 and	 the	magnitude	 of	 the	 likely	 public	

interventions	to	mitigate	the	adverse	consequences	of	the	Coronavirus	on	public	

health.	 Only	 with	 adequate	 planning	 will	 unnecessary	 collateral	 damages	 be	

imposed	on	individuals	and	the	global	economy.	

	
References	
1	 Holt,	B.	G.	et	al.	An	Update	of	Wallace's	Zoogeographic	Regions	of	the	

World.	Science	339,	74-78,	(2013).	
2	 Mendoza,	M.	&	Araújo,	M.	B.	Climate	shapes	mammal	community	trophic	

structures	and	humans	simplify	them.	Nature	Communications	10,	5197,	
(2019).	

3	 Peterson,	A.	T.	et	al.	Ecological	Niches	and	Geographical	Distributions.		
(Princeton	University	Press,	2011).	

4	 Soberón,	J.	&	Nakamura,	M.	Niches	and	distributional	areas:	concepts,	
methods,	and	assumptions.	Proceedings	of	the	National	Academy	of	
Sciences	USA	106,	19644-19650,	(2009).	

5	 Chase,	J.	M.	&	Leibold,	M.	A.	Ecological	niches	-	Linking	classical	and	
contemporary	approaches.		(The	University	of	Chicago	Press,	2003).	

6	 Hutchinson,	G.	E.	Concluding	remarks.	Cold	Spring	Harbor	Symposia	on	
Quantitative	Biology	22,	145-159,	(1957).	

7	 Pulliam,	H.	R.	On	the	relationship	between	niche	and	distribution.	Ecology	
Letters	3,	349-361,	(2000).	

8	 Murray,	K.	A.,	Olivero,	J.,	Roche,	B.,	Tiedt,	S.	&	Guégan,	J.-F.	
Pathogeography:	leveraging	the	biogeography	of	human	infectious	
diseases	for	global	health	management.	Ecography	41,	1411-1427,	
(2018).	

9	 Naimi,	B.	&	Araújo,	M.	B.	sdm:	a	reproducible	and	extensible	R	platform	
for	species	distribution	modelling.	Ecography	39,	368-375,	(2016).	

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 16, 2020. ; https://doi.org/10.1101/2020.03.12.20034728doi: medRxiv preprint 

https://doi.org/10.1101/2020.03.12.20034728
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 8	

10	 Araújo,	M.	B.	&	New,	M.	Ensemble	forecasting	of	species	distributions.	
Trends	in	Ecology	and	Evolution	22,	42-47	(2007).	

11	 Araújo,	M.	B.	et	al.	Standards	for	distribution	models	in	biodiversity	
assessments.	Science	Advances	5,	eaat4858,	(2019).	

12	 Dong,	E.,	Du,	H.	&	Gardner,	L.	An	interactive	web-based	dashboard	to	
track	COVID-19	in	real	time.	The	Lancet	Infectious	Diseases.	

13	 Karger,	D.	N.	et	al.	Climatologies	at	high	resolution	for	the	earth’s	land	
surface	areas.	Scientific	Data	4,	170122,	(2017).	

14	 Chinazzi,	M.	et	al.	The	effect	of	travel	restrictions	on	the	spread	of	the	
2019	novel	coronavirus	(COVID-19)	outbreak.	Science,	eaba9757,	(2020).	

15	 Peel,	M.	C.,	Finlayson,	B.	L.	&	McMahon,	T.	A.	Updated	world	map	of	the	
Köppen-Geiger	climate	classification.	Hydrol.	Earth	Syst.	Sci.	11,	1633-
1644,	(2007).	

16	 Lowen,	A.	C.,	Mubareka,	S.,	Steel,	J.	&	Palese,	P.	Influenza	Virus	
Transmission	Is	Dependent	on	Relative	Humidity	and	Temperature.	PLOS	
Pathogens	3,	e151,	(2007).	

17	 Tamerius,	J.	D.	et	al.	Environmental	Predictors	of	Seasonal	Influenza	
Epidemics	across	Temperate	and	Tropical	Climates.	PLOS	Pathogens	9,	
e1003194,	(2013).	

18	 Tan,	J.	et	al.	An	initial	investigation	of	the	association	between	the	SARS	
outbreak	and	weather:	with	the	view	of	the	environmental	temperature	
and	its	variation.	Journal	of	Epidemiology	and	Community	Health	59,	186,	
(2005).	

19	 Lin,	K.,	Yee-Tak	Fong,	D.,	Zhu,	B.	&	Karlberg,	J.	Environmental	factors	on	
the	SARS	epidemic:	air	temperature,	passage	of	time	and	multiplicative	
effect	of	hospital	infection.	Epidemiol	Infect	134,	223-230,	(2006).	

20	 Chan,	K.	H.	et	al.	The	Effects	of	Temperature	and	Relative	Humidity	on	the	
Viability	of	the	SARS	Coronavirus.	Advances	in	Virology	2011,	7,	(2011).	

21	 Raamsman,	M.	J.	B.	et	al.	Characterization	of	the	Coronavirus	Mouse	
Hepatitis	Virus	Strain	A59	Small	Membrane	Protein	E.	Journal	of	Virology	
74,	2333,	(2000).	

22	 Schoeman,	D.	&	Fielding,	B.	C.	Coronavirus	envelope	protein:	current	
knowledge.	Virology	Journal	16,	69,	(2019).	

23	 Svenning,	J.-C.	&	Skov,	F.	Limited	filling	of	the	potential	range	in	European	
tree	species.	Ecology	Letters	7,	565-573,	(2004).	

24	 Araújo,	M.	B.	&	Pearson,	R.	G.	Equilibrium	of	species'	distributions	with	
climate.	Ecography	28,	693-695,	(2005).	

25	 Araújo,	M.	B.	&	Peterson,	A.	T.	Uses	and	misuses	of	bioclimatic	envelope	
modeling.	Ecology	93,	1527-1539,	(2012).	

26	 McCullagh,	P.	&	Nelder,	J.	A.	Generalized	Linear	Models.	2nd	edition	edn,		
(Chapman	and	Hall,	1989).	

27	 Hastie,	T.	J.	&	Tibshirani,	R.	Generalized	additive	models.		(Chapman	and	
Hall,	1990).	

28	 Breiman,	L.,	Friedman,	J.	H.,	Olshen,	R.	A.	&	Stone,	C.	J.	Classification	and	
regression	trees.		(Chapman	and	Hall,	1984).	

29	 Friedman,	J.	H.	Greedy	Function	Approximation:	A	Gradient	Boosting	
Machine.	The	Annals	of	Statistics	29,	1189-1232,	(2001).	

30	 Breiman,	L.	Random	forest.	Machine	Learning	45,	5-32,	(2001).	

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 16, 2020. ; https://doi.org/10.1101/2020.03.12.20034728doi: medRxiv preprint 

https://doi.org/10.1101/2020.03.12.20034728
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 9	

31	 Hastie,	T.	&	Tibshirani,	R.	Discriminant	Analysis	by	Gaussian	Mixtures.	
Journal	of	the	Royal	Statistical	Society.	Series	B	(Methodological)	58,	155-
176,	(1996).	

32	 Guo,	Q.,	Kelly,	M.	&	Graham,	C.	H.	Support	vector	machines	for	predicting	
distribution	of	Sudden	Oak	Death	in	California.	Ecological	Modelling	182,	
75-90,	(2005).	

33	 Rosenblatt,	F.	The	perceptron:	A	probabilistic	model	for	information	
storage	and	organization	in	the	brain.	Psychological	Review	65,	386-408,	
(1958).	

34	 Phillips,	S.	J.,	Anderson,	R.	P.	&	Schapire,	R.	E.	Maximum	entropy	modeling	
of	species	geographic	distributions.	Ecological	Modelling	190,	231-259,	
(2006).	

35	 Friedman,	J.	H.	Multivariate	Adaptive	Regression	Splines.	Annals	of	
Statistics	19,	1-67,	(1991).	

36	 Hastie,	T.,	Tibshirani,	R.	&	Friedman,	J.	H.	The	Elements	of	Statistical	
Learning:	Data	Mining,	Inference,	and	Prediction.		(Springer,	2001).	

37	 Fielding,	A.	H.	&	Bell,	J.	F.	A	review	of	methods	for	the	assessment	of	
prediction	errors	in	conservation	presence/absence	models.	
Environmental	Conservation	24,	38-49,	(1997).	

38	 Garcia,	R.	A.,	Burgess,	N.	D.,	Cabeza,	M.,	Rahbek,	C.	&	Araújo,	M.	B.	
Exploring	consensus	in	21st	century	projections	of	climatically	suitable	
areas	for	African	vertebrates.	Global	Change	Biology	18,	1253-1269,	
(2012).	

	
	
	
	
	

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 16, 2020. ; https://doi.org/10.1101/2020.03.12.20034728doi: medRxiv preprint 

https://doi.org/10.1101/2020.03.12.20034728
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 10	

	
Figures		
	
Figure	1	 |	 Frequency	distribution	of	 SARS-CoV-2	positive	 cases	plotted	 against	
the	world	 gradient	 of	mean	 temperature	 (A)	 and	 precipitation	 (B)	 in	 a	 typical	
climatological	series	between	January	and	March.		
	
Figure	 2	 |	 Projected	 relative	 climate	 suitability	 for	 SARS-CoV-2	 Coronavirus	
outbreaks	 across	 the	 5	 Köppen–Geiger	 climate	 zones	 of	 the	 world15.	 (A)	
Distribution	 of	 coarse	 Köppen–Geiger	 climate	 zones.	 (B)	 Monthly	 changes	 in	
relative	climate	suitability	for	the	Coronavirus	per	climate	zone.	
	
Figure	3	|	Projected	climate	suitability	for	SARS-CoV-2	Coronavirus	outbreaks	in	
a	 typical	 January-March	 (A),	 April-June	 (B),	 July-September	 (C),	 and	 October-
December	 (D).	 A	 gif	 with	 the	 monthly	 projections	 is	 available	 at	
http://www.maraujolab.com/wp-content/uploads/2020/03/corona_risk.gif	
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Methods	
	
SAR-CoV-2	Coronavirus	data	
We	downloaded	the	geo-referenced	coordinates	of	SAR-CoV-2	Coronavirus	cases	
from	 the	 data	 repository	 (https://github.com/CSSEGISandData/COVID-
19/blob/master/README.md)	operated	by	the	Johns	Hopkins	University	Center	
for	Systems	Science	and	Engineering	with	support	from	ESRI	Living	Atlas	Team	
and	 the	 Johns	 Hopkins	 University	 Applied	 Physics	 Lab.	 The	 data	 was	
downloaded	on	08/03/2020.	
	
Climate	data	
We	 downloaded	 temperature	 (mean,	 maximum,	 minimum)	 and	 precipitation	
(accumulated)	 from	 CHELSA	 (Climatologies	 at	 high	 resolution	 for	 the	 earth’s	
land	surface	areas;	http://chelsa-climate.org)13.	This	is	a	high-resolution	(30	arc	
sec)	 climate	 data	 set	 for	 the	 earth	 land	 surface	 hosted	 by	 the	 Swiss	 Federal	
Institute	 for	 Forest,	 Snow	 and	 Landscape	 Research	 WSL.	 It	 provides	 monthly	
summaries	 covering	 the	period	 starting	 in	 January	1979	until	December	2013.	
The	 time	 series	 data	 were	 then	 aggregated	 monthly	 though	 averaging	 so	 to	
provide	expected	values	for	a	typical	climatological	month	in	the	recent	past.		
	
Ecological	niche	models	
The	spatial	distribution	of	incidence	SAR-CoV-2	Coronavirus	records	were	linked	
to	 the	 corresponding	 monthly	 climate	 data.	 We	 used	 SDM-R	 platform9	 for	
ensemble	 ecological	 niche	modeling10	 (or	 species	 distributions	modeling25),	 to	
characterize	 climate	 conditions	 associated	 with	 outbreaks	 of	 SARS-CoV-2	
between	January	and	March	2020.	We	used	10	commonly	used	machine	learning	
methods	including	generalized	linear	model	(GLM)26,	generalized	additive	model	
(GAM)27,	 classification	 and	 regression	 trees	 (CART)28,	 boosted	 regression	 trees	
(BRT)29,	random	forests	(RF)30,	multiple	discriminant	analysis	(MDA)31,	support	
vector	 machine	 (SVM)32,	 multi-layer	 perceptron	 neural	 networks	 (MLP)33,	
maximum	 entropy	 (Maxent)34,	 and	 multivariate	 adaptive	 regression	 splines	
(MARS)35.	 We	 used	 a	 bootstrapping	 resampling	 procedure36,	 with	 20	
replications,	 to	 generate	 the	 training	 and	 test	 datasets.	 We	 then	 fitted	 the	
ecological	 niche	 models	 for	 each	 replication	 using	 the	 training	 dataset	 and	
evaluated	 them	 for	 their	performance	using	 the	 test	dataset.	We	used	 the	area	
under	curve	 (AUC)	of	 receiver	operating	characteristic	 (ROC)	plot	and	 the	 true	
skill	 statistic	 (TSS)	 to	measure	 the	 predictive	 performance	 of	models37.	 A	ROC	
curve	plots	 sensitivity	 values	 (true	positive	 fraction)	 on	 the	 y-axis	 against	 ‘1	 –	
specificity’	values	(false	positive	fraction)	for	all	thresholds	on	the	x-axis.	AUC	is	
a	 threshold-independent	metric	 that	 varies	 from	 0	 to	 1	 and	 provides	 a	 single	
measure	 of	 model	 performance.	 AUC	 values	 under	 0.5	 indicate	 discrimination	
worse	than	chance;	a	score	of	0.5	implies	random	predictive	discrimination;	and	
a	 score	of	1	 indicates	perfect	discrimination.	TSS	 is	 calculated	 as	 “sensitivity	+	
specificity	-1”	and	ranges	from	-1	to	+1,	where	+1	indicates	perfect	agreement,	a	
value	 of	 0	 implies	 agreement	 expected	 by	 chance,	 and	 a	 value	 of	 less	 than	 0	
indicates	 agreement	 worse	 than	 chance.	 We	 then	 used	 the	 ensemble	 of	 200	
models	 to	 calculate	 and	 project	 a	 consensus	 distribution	 of	 spreading	 risk	 for	
each	month	 across	 the	 globe.	 Consensus	 was	 achieved	 through	 AUC-weighted	
mean	across	all	models38.	
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