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Abstract

Background: Estimating key infectious disease parameters from the COVID-19

outbreak is quintessential for modelling studies and guiding intervention strategies.

Whereas different estimates for the incubation period distribution and the serial

interval distribution have been reported, estimates of the generation interval for

COVID-19 have not been provided.

Methods: We used outbreak data from clusters in Singapore and Tianjin,

China to estimate the generation interval from symptom onset data while

acknowledging uncertainty about the incubation period distribution and the

underlying transmission network. From those estimates we obtained the proportions

pre-symptomatic transmission and reproduction numbers.

Results: The mean generation interval was 5.20 (95%CI 3.78-6.78) days for

Singapore and 3.95 (95%CI 3.01-4.91) days for Tianjin, China when relying on

a previously reported incubation period with mean 5.2 and SD 2.8 days. The

proportion of pre-symptomatic transmission was 48% (95%CI 32-67%) for Singapore

and 62% (95%CI 50-76%) for Tianjin, China. Estimates of the reproduction number

based on the generation interval distribution were slightly higher than those based

on the serial interval distribution.

Conclusions: Estimating generation and serial interval distributions from outbreak
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data requires careful investigation of the underlying transmission network. Detailed

contact tracing information is essential for correctly estimating these quantities.

Keywords: COVID-19; generation interval; serial interval; incubation period;

reproduction number

1 Introduction

In order to plan intervention strategies aimed at bringing disease outbreaks such as

the COVID-19 outbreak under control as well as to monitor disease outbreaks, public

health officials depend on insights about key disease transmission parameters which

are typically obtained from mathematical or statistical modelling. Examples of key

parameters include the reproduction number (average number of infections caused by an

infectious individual) and distributions of the generation interval (time between infection

events in an infector-infectee pair), serial interval (time between symptom onsets in an

infector-infectee pair), and incubation period (time between moment of infection and

symptom onset) [1]. Estimates of the reproduction number together with the generation

interval distribution can provide insight into the speed with which a disease will spread.

On the other hand, estimates of the incubation period distribution can help guide

determining appropriate quarantine periods.

As soon as line lists were made available, statistical and mathematical modelling was

used to quantify these key epidemiological parameters. Li et al. [2] estimated the basic

reproduction number (using a renewal equation) to be 2.2 (95% CI 1.4-3.9), the serial

interval distribution to have a mean of 7.5 days (95% CI 5.5-19) based on 6 observations,

and the incubation period distribution to have a mean of 5.2 days (95% CI 4.1-7.0)

based on 10 observations. Other studies estimated the incubation period distribution

to have a mean of 6.4 days (95% CI 5.6-7.7) [3], median of 5 days (95% CI 4.0-5.8)

[4], mean of 5.2 days (range 1.8-12.4 days) [5], and a mean of 4.8 days (range 2-11 days) [6].

When the incubation period does not change over the course of the epidemic, the

expected values of the serial and generation interval distributions are expected to be

equal but their variances to be different [7]. It has recently been shown that ignoring the

difference between the serial and generation interval can lead to biased estimates of the

reproduction number. More specifically, when the serial interval distribution has larger

variance than the generation interval distribution, using the serial interval as a proxy for

2

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 8, 2020. ; https://doi.org/10.1101/2020.03.05.20031815doi: medRxiv preprint 

https://doi.org/10.1101/2020.03.05.20031815
http://creativecommons.org/licenses/by-nc-nd/4.0/


the generation interval will lead to an underestimation of the basic reproduction number

R. When R is underestimated, this may lead to prevention policies that are insufficient

to stop disease spread [7].

The most well-known method to estimate the serial interval distribution from line list data

is the likelihood-based estimation method proposed by Wallinga and Teunis [8]. In 2012,

Hens et al. [9] proposed using the Expectation-Maximisation (EM) algorithm to estimate

the generation interval distribution from incomplete line list data based on the method by

[8] and allowing for auxiliary information to be used in assigning potential infector-infectee

pairs. Te Beest et al [10] used a Markov chain Monte Carlo (MCMC) approach as an

alternative to the EM-algorithm, to facilitate taking into account uncertainty related to

the dates of symptom onset. In this paper, we use an MCMC approach to estimate, next

to the serial interval distribution, the generation interval distribution upon specification

of the incubation period distribution. We compare the impact of differences amongst

previous estimates of the incubation period distribution for COVID-19 and analyse data

on clusters of confirmed cases from Singapore (January 21 to February 26) and Tianjin,

China (January 14 to February 27).

2 Methods

2.1 Data

The data used in this paper consist of symptom onset dates and cluster information for

confirmed cases in Singapore and Tianjin, China.

As of February 26th, 91 confirmed COVID-19 cases had been reported in Singapore.

Detailed information on age, sex, known travel history, time of symptom onset, and

known contacts is available for 54 of these cases (link: https://www.moh.gov.sg/news-

highlights/, last accessed February 26th). For cases with no infector information

available, it is assumed that they could have been infected by any other case within the

same cluster. Cases known to be Chinese/Wuhan nationals or known to have been in

close contact with a Chinese/Wuhan national are labeled as index cases. All other cases

are assumed to have been infected locally.

As of February 27th, 135 confirmed cases had been reported by the Tianjin municipal
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health commission. Data on these cases are available in official daily reports (link:

http://wsjk.tj.gov.cn/col/col87/index.html, last accessed February 27th) and include age,

sex, relationship to other known cases, and travel history to risk areas in and outside

Hubei province, China. In these data, 114 cases can be traced to one of 16 clusters. The

largest cluster consisting of 45 cases can be traced to a shopping mall in Baodi district.

Through contact investigations, potential transmission links were identified for cases who

had close contacts. Travel history information was used to identify some individuals as

import cases. For cases with no infector information available, it is assumed that they

could have been infected by any other case within the same cluster.

2.2 Model

For i = 2, . . . , n, denote ti the time of infection for individual i, tv(i) the time of infection

for the infector of individual i, δi the incubation period for individual i, and δv(i) the

incubation period for the infector of individual i. The serial interval (Zi) for case i is

a linear combination of latent variables, i.e., Zi = (ti + δi) − (tv(i) + δv(i)). Assuming

the incubation period is independent of the infection time, Zi can be rewritten as a

convolution of the generation interval for individual i and the difference between the

incubation period of individual i and the incubation period of its infector v(i) [7], i.e.,

Zi = (ti + δi)− (tv(i) + δv(i))

= (ti − tv(i)) + (δi − δv(i))

= Xi + Yi. (1)

The random variables Xi and δi are positive and are both assumed to be independent

and identically distributed, i.e., Xi ∼ f(x; Θ1) and δi ∼ k(δ; Θ2), so that Yi ∼ g(yi; Θ2).

Equation (1) implies that both the generation interval and serial interval distributions

have the same mean and that the latter has a larger variance and can be negative.

The observed serial interval, zi, can be expressed in terms of the latent variables as

zi = xi + yi, which implies that, zi ∼ h(zi; Θ1,Θ2). The density function h(.) is given by

[11],

h(z; Θ1,Θ2) =

∫ ∞
−∞

f(z − y; Θ1)g(y; Θ2)dy. (2)

In general, h(z; Θ1,Θ2) and g(y; Θ2) have no closed form for arbitrary choices of f(x; Θ1)
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and k(δ; Θ2). Monte Carlo methods [12] can be used to estimate h(z; Θ1,Θ2) as follows,

h(z; Θ1,Θ2) =

∫ ∞
−∞

f(z − y; Θ1)g(y; Θ2)dy (3)

= EY
(
f(z − y; Θ1)

)
(4)

=
1

J

J∑
j=1

f(z − yj ; Θ1), (5)

where yj is the jth Monte Carlo sample drawn from g(y; Θ2). When all infector-infectee

pairs are observed, the likelihood function is given by,

L
(

Θ|zi, v(i)
)

=
n∏
i=2

1

J

J∑
j=1

f(zi − yj |Θ), (6)

where Θ = {Θ1,Θ2} [8]. To account for uncertainty in the transmission links we resort to

a Bayesian framework in which missing links are imputed [10] (see Subsection 2.3). The

likelihood function is then given by L
(
Θ, v(i)missing|zi, v(i)

)
.

2.3 Estimation

We use the Bayesian method described in te Beest et al. [10] for parameter estimation.

This method proceeds in two steps. The first step updates the missing links v(i)missing and

the second step updates the parameter vector Θ1, i.e., the parameters of the generation

interval distribution. We assume that both the generation interval and the incubation

period are gamma distributed, i.e., f(x; Θ1) ≡ Γ(α1, β1) and k(δ; Θ2) ≡ Γ(α2, β2).

The parameter vector Θ2 is fixed to (α2 = 3.45, β2 = 0.66), corresponding to an

incubation period with a mean of 5.2 and standard deviation (SD) of 2.8 days [5].

Minimally informative uniform priors are assigned to the parameters of the generation

interval distribution, i.e., α1 ∼ U(0, 30) and β1 ∼ U(0, 20). For cases with multiple

potential infectors, the possible links v(i)missing are assigned equal prior probabilities. The

missing links are updated using an independence sampler, whereas Θ1 is updated using

a random-walk Metropolis-Hastings algorithm with a uniform proposal distribution[12].

We evaluate the posterior distribution using 3 000 000 iterations of which the first 500

000 are discarded as burn-in. Thinning is applied by taking every 200th iteration. The

serial interval distribution is obtained by simulating 1 000 000 draws from h(z; Θ̂1, Θ̂2).

All analyses were performed using R, datasets and code are available on GitHub

(https://github.com/cecilekremer/COVID19).
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2.3.1 Implications

The proportion of pre-symptomatic transmission is calculated as p = P (Xi < δv(i)), i.e.,

pre-symptomatic transmission occurs when the generation interval is shorter than the

incubation period of the infector. This proportion was obtained by simulating values

from the estimated generation interval and incubation period distributions (assuming a

mean incubation time of 5.2 days [5]).

The reproduction number is calculated as R = erµ−
1
2 r

2σ2

, where r denotes the exponential

growth rate estimated from the initial phase of the outbreak, and µ and σ2 are the mean

and variance of the generation or serial interval distribution [13].

Confidence intervals for p and R are calculated by evaluating p and R at each iteration

of the converged MCMC chain, i.e., at each mean/variance pair of the posterior

generation/serial interval distribution. The 95% confidence intervals are given by the

2.5% and 97.5% quantiles of the resulting distributions.

2.3.2 Sensitivity analyses

As sensitivity analyses, we investigate the robustness of our estimates of the generation

interval distribution to the choice of different incubation period distributions. In

particular, we fix Θ2 to (α2 = 7.74, β2 = 1.21) and (α2 = 4.36, β2 = 0.91), corresponding

to an incubation period with mean and SD (6.4, 2.3) days [3] and (4.8, 2.6) days [6],

respectively.

In our main (i.e., baseline) analyses, missing serial intervals were only allowed to be

positive, i.e., the symptom onset time of the infector has to occur before that of the

infectee. However, given that pre-symptomatic transmission is possible, this can be

deemed an unrealistic assumption. Therefore, we assess the impact of allowing for

negative serial intervals on our estimates of the generation interval distribution.

To further assess the robustness of the estimated generation interval distribution, for

each dataset, we fit the model to data from the largest cluster. In the Tianjin dataset,

the largest cluster is the shopping mall cluster consisting of 45 cases. In the Singapore

dataset this is the Grace Assembly of God cluster consisting of 25 cases.
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3 Results

3.1 Estimates of key epidemiological parameters

Table 1 shows parameter estimates of the generation and serial interval distributions for

each dataset, assuming an incubation period with mean 5.2 and SD 2.8 days. The mean

generation time is estimated to be 5.2 days (95%CI, 3.78 - 6.78) for the Singapore data,

and 3.95 days (95%CI, 3.01 - 4.91) for the Tianjin data. As expected, the estimated

means of the generation interval and serial interval distributions are approximately equal

but the latter has a larger variance.

Table 1: Parameter estimates and credible intervals of generation and serial interval

distributions for Singapore and Tianjin datasets. The estimates are obtained using

reported information on infector-infectee pairs and assuming an incubation period with

mean 5.2 and SD 2.8 days. GI: generation interval; SI: serial interval.

Data Scenario Interval
Estimate (95% credible interval)

Mean Standard deviation

Singapore Baseline
GI 5.20 (3.78, 6.78) 1.72 (0.91, 3.93)

SI 5.21 (-3.35, 13.94) 4.32 (4.06, 5.58)

Tianjin

(China)
Baseline

GI 3.95 (3.01, 4.91) 1.51 (0.74, 2.97)

SI 3.95 (-4.47, 12.51) 4.24 (4.03, 4.95)

3.2 Sensitivity analyses

Table 2 shows parameter estimates of the generation and serial interval distributions for

each dataset, assuming incubation periods with mean and SD (6.4, 2.3) days and (4.8,

2.6) days. The parameter estimates are fairly robust to the specified incubation period

distribution, with mean generation times about 5 days for Singapore and 4 days for

Tianjin.
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Table 2: Parameter estimates and credible intervals of generation and serial interval

distributions for Singapore and Tianjin datasets. The estimates are obtained under

different assumptions for the incubation period, under the baseline scenario where missing

SI are only allowed to be positive. GI: generation interval; SI: serial interval

Data Incubation period Interval
Estimate (95% credible interval)

Mean Standard deviation

Singapore

Mean 6.4 SD 2.3
GI 5.29 (3.89, 6.77) 2.08 (0.97, 4.07)

SI 5.29 (-2.13, 13.16) 3.86 (3.40, 5.21)

Mean 4.8 SD 2.6
GI 5.19 (3.82, 6.74) 1.77 (0.91, 4.11)

SI 5.19 (-2.86, 13.45) 4.08 (3.79, 5.51)

Tianjin

(China)

Mean 6.4 SD 2.3
GI 4.02 (3.11, 5.00) 2.29 (1.02, 3.80)

SI 4.02 (-4.83, 13.45) 3.98 (3.41, 5.00)

Mean 4.8 SD 2.6
GI 3.95 (3.05, 4.93) 1.75 (0.77, 3.35)

SI 3.95 (-4.60, 12.73) 4.07 (3.76, 4.97)

Table 3 shows parameter estimates of the generation and serial interval distributions

obtained when allowing for negative serial intervals in case there is no known infector.

Compared to baseline analyses (Table 1), estimates of the mean generation time are

smaller when allowing for negative serial intervals. The mean generation time is 3.86

days for Singapore and 2.90 days for Tianjin.

Table 3: Parameter estimates and credible intervals of generation and serial interval

distributions for Singapore and Tianjin datasets when allowing serial intervals to be

negative and assuming an incubation period with mean 5.2 and SD 2.8 days. GI:

generation interval; SI: serial interval

Data Scenario Interval
Estimate (95% credible interval)

Mean Standard deviation

Singapore
Allowing for all

possible negative SI

GI 3.86 (2.22, 5.60) 2.65 (0.87, 5.43)

SI 3.86 (-5.15, 13.88) 4.76 (4.05, 6.72)

Tianjin

(China)

Allowing for all

possible negative SI

GI 2.90 (1.85, 4.12) 2.86 (1.37, 5.04)

SI 2.90 (-6.12, 13.47) 4.88 (4.19, 6.41)

Table 4 shows parameter estimates obtained when we fit the model to data from the

largest cluster. We only show results for the Tianjin dataset, as for the Singapore data

there were too few cases (n=25) and the MCMC chain did not converge. When allowing

only positive serial intervals for cases with no known infector, the mean generation time is

estimated to be 3.50 days. On the other hand, when allowing for negative serial intervals,
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it is estimated to be 2.57 days.

Table 4: Parameter estimates and credible intervals of generation and serial interval

distributions for the largest cluster in the Tianjin dataset. The estimates are obtained

under different scenarios for the serial interval, assuming an incubation period with mean

5.2 and SD 2.8 days. GI: generation interval; SI: serial interval

Data Scenario Interval
Estimate (95% credible interval)

Mean Standard deviation

Tianjin

(China)

Baseline
GI 3.50 (2.10, 5.03) 1.70 (0.65, 4.10)

SI 3.50 (-5.02, 12.25) 4.31 (4.01, 5.70)

Allowing for all

possible negative SI

GI 2.57 (1.14, 4.30) 2.58 (0.68, 6.11)

SI 2.57 (-6.28, 12.70) 4.72 (4.02, 7.28)

3.3 Implications

Table 5 shows the proportions of pre-symptomatic transmission and reproduction numbers

for each dataset. Pre-symptomatic transmission is higher when allowing for negative

serial intervals for cases with no known infector. The reproduction number is lower when

estimated using the serial interval compared to when using the generation interval.

Table 5: Proportion of pre-symptomatic transmission (p) and reproduction number R

estimated using GI or SI, assuming an incubation period with mean 5.2 and SD 2.8 days.

GI: generation interval; SI: serial interval

Data Scenario Interval
Estimate (95% credible interval)

p R

Singapore

Baseline
GI 0.48 (0.32, 0.67) 1.27 (1.19, 1.36)

SI - 1.25 (1.17, 1.34)

Allowing for all

possible negative SI

GI 0.66 (0.45, 0.84) 1.19 (1.10, 1.28)

SI - 1.17 (1.08, 1.26)

Tianjin

(China)

Baseline
GI 0.62 (0.50, 0.76) 1.59 (1.42, 1.78)

SI - 1.41 (1.26, 1.58)

Allowing for all

possible negative SI

GI 0.77 (0.65, 0.87) 1.32 (1.18, 1.51)

SI - 1.17 (1.05, 1.34)

4 Discussion

We estimated the generation time to have a mean of 5.20 (95%CI 3.78-6.78) days and a

standard deviation of 1.72 (95%CI 0.91-3.93) days for the Singapore data, and a mean
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of 3.95 (95%CI 3.01-4.91) days with a standard deviation of 1.51 (95%CI 0.74-2.97)

days for the Tianjin data. These mean estimates increase only slightly when increasing

the mean incubation period. For the Singapore data, allowing the serial interval to be

negative decreases the estimated mean generation time from 5.20 days, when restricting

missing serial intervals to be positive, to 3.86 (95%CI 2.22-5.60) days when allowing

them to be negative. For the Tianjin data, the baseline estimate of the mean generation

time (3.95 days) is about the same than when allowing serial intervals to be negative

in the Singapore data. However, in the Tianjin data there were already some negative

serial intervals among the reported links, which may explain this lower estimate. When

allowing for negative serial intervals in the Tianjin data, the mean generation time

decreased to 2.90 (1.85-4.12) days. These are the first estimates of the generation

interval for COVID-19. Sensitivity analyses show that the assumptions made about

the incubation period have only moderate impact on the results. On the other hand,

assumptions made about the underlying transmission network (e.g. acknowledging

possibly negative serial intervals) have a large impact on our results.

As expected, the proportion of pre-symptomatic transmission increases from 48% (95%CI

32-67%) in the baseline scenario to 66% (95%CI 45-84%) when allowing for negative

serial intervals, for the Singapore data, and from 62% (95%CI 50-76%) to 77% (95%CI

65-87%) for the Tianjin data. Hence, a substantial proportion of transmission appears

to occur before symptom onset, which is an important point to consider when planning

intervention strategies. We also estimated R0, solely to illustrate the bias that occurs

when using the serial interval as a proxy for the generation interval [7]. Whereas the

impact was limited for our analyses, estimates based on the generation interval are

larger and should be preferred to inform intervention policies. Indeed, as expected, the

reproduction number was underestimated when using the serial interval distribution

which is more variable than the generation interval distribution.

Tindale et al. [14] recently estimated the mean serial interval for COVID-19 to be 4.56

(95%CI 2.69 - 6.42) days for Singapore and 4.22 (95%CI 3.43 - 5.01) days for Tianjin.

Although these estimates are different from the ones we report, they fall within the

uncertainty ranges we obtained. An important advantage of our method is that we are

able to infer the generation interval distribution while allowing serial intervals to be

negative. Our estimates of R are smaller than the ones reported by Tindale et al. [14],

because we use a different estimate of the growth rate r (0.04 for Singapore and 0.12 for
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Tianjin as obtained from the initial exponential growth phase in each dataset, compared

to 0.15 used by [14]).

Another advantage of our method is that we can derive a proper variance estimate for

the generation interval, in contrast to using a too large variance estimate that is obtained

when using the serial interval as a proxy for the generation interval. Furthermore, in

theory we do not need to condition on the order of symptom onset times. However, when

the data does not provide sufficient information on directionality of transmission, this

lack of auxiliary information may cause problems for estimation.

This study does have some limitations. First, we rely on previous estimates for the

incubation period. However, sensitivity analyses show that changing the incubation

period distribution does not have a big impact on our estimates of the generation interval

distribution. Second, we do not account for incomplete or possible changes in reporting

over the course of the epidemic. Third, we do not acknowledge changes in contact

processes and thus behavioral change, which could shape realised generation interval

distributions as well as serial interval distributions (unpublished work). Fourth, we do

not account for contraction of the generation interval because of depletion of susceptibles.

Future work should take into account these shortcomings.

Infection control for the COVID-19 epidemic relies on case-based measures such as finding

cases and tracing contacts. A variable that determines how effective these case-based

measures are is the proportion of pre-symptomatic transmission. Our estimates of this

proportion are high, ranging from 0.48 to 0.77. This implies that the effectiveness of

case finding and contact tracing in preventing COVID-19 infections will be considerably

smaller compared to the effectiveness in preventing SARS or MERS infections, where pre-

symptomatic transmission did not play an important role (see e.g. [15]). It is unlikely

that these measures alone will suffice to control the COVID-19 epidemic. Additional

measures, such as social distancing, are required.
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