Which assessments are used to analyze neuromuscular control after an anterior cruciate ligament injury to determine readiness to return to sports? A systematic review

Angela Blasimanna,b,, Irene Koeniga, Isabel Baertb, Heiner Baura, Dirk Vissersb

aBern University of Applied Sciences, Department of Health Professions, Division of Physiotherapy, Murtenstrasse 10, Bern CH-3008, Switzerland

bUniversity of Antwerp, Faculty of Medicine and Health Sciences, Department of Rehabilitation Sciences and Physiotherapy, Campus Drie Eiken, Universiteitsplein 1, Wilrijk B-2610, Belgium

E-Mail addresses: angela.blasimann@bfh.ch (A. Blasimann); irene.koenig@bfh.ch (I. Koenig); isabel.baert@uantwerpen.be (I. Baert); heiner.baur@bfh.ch (H. Baur); dirk.vissers@uantwerpen.be (D. Vissers)

*Corresponding author:

Bern University of Applied Sciences

Department of Health Professions

Angela Blasimann

Murtenstrasse 10

CH-3008 Bern

Phone: +41 31 848 45 27

E-Mail: angela.blasimann@bfh.ch

Registration number in PROSPERO: CRD42019122188

Link to preprint: https://medrxiv.org/cgi/content/short/2020.03.05.20031617v1

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Background: Adequate neuromuscular control of the knee could be one element to prevent secondary injuries after an anterior cruciate ligament (ACL) injury. However, it is unclear which measurements should be used for a safe return to sports (RTS). Therefore, we aimed to summarize assessments for neuromuscular control of the knee after an ACL injury to decide upon readiness for RTS.

Methods: The systematic review followed the guidelines of Preferred Reporting of Items for Systematic Reviews and Meta-analyses (PRISMA) and has been listed in PROSPERO. The search in MEDLINE/PubMed, EMBASE, CINAHL, Cochrane Library, Physiotherapy Evidence Database, SPORTDiscus and the Web of Science yielded to studies identifying assessments using electromyography (EMG) for neuromuscular control during dynamic activities in patients with an ACL injury. Risk of bias was assessed with a modified Downs and Black checklist.

Results: A total of 1178 records were identified through database search. After screening, 31 articles could be included for analysis. Another 6 articles could be included from hand search of reference lists of the included articles, resulting in a total of 37 articles. EMG was used in all studies as method to assess neuromuscular control. Risk of bias was medium to high due to an unclear description of participants and prior interventions, confounding factors and incompletely reported results.

Conclusion: Despite a wide range of EMG outcome measures for neuromuscular control, none was used to decide upon a safe RTS in ACL patients. Future studies should aim at finding valid and reliable assessments for RTS in ACL patients.

Keywords: knee, anterior cruciate ligament, electromyography, assessment, neuromuscular control, return to sports
Abbreviations: ACL = anterior cruciate ligament; ACL-R; anterior cruciate ligament reconstruction; EMG = electromyography; LSI = Limb Symmetry Index; RTS = return to sports; TAS = Tegner Activity Score
1. Introduction

Anterior cruciate ligament (ACL) injuries happen quite frequently and concern athletes (0.15 injuries per 1000 athletic exposures (AEs)) but also the active part of the general population [1,2]. Most ACL injuries are due to a non-contact, multiplane mechanism [3] and may lead to instability, secondary meniscal injury or even knee osteoarthritis in the long run [4]. Consequently, this injury means several weeks or even months of physical impairment with wide consequences for the patients concerning return to work, return to activity or return to sport (RTS). Overall, the recurrence rates even after successful surgery and subsequent rehabilitation are high (29.5% or 1.82/1000 AEs), with a tear of the ACL graft (9.0%), an ACL injury of the opposite leg (20.5%), muscle injuries on the ipsilateral side or even bilateral consequences [5,6].

Approximately 90% of patients with an ACL reconstruction (ACL-R) achieve successful surgical outcomes (impairment-based measures of knee function) and 85% show successful outcome in terms of activity-based measures [7]. More than 80% of these patients return to some form of sports, however, only 44% return to competition [7]. Other authors reported RTS values between 63 and 97% for elite athletes with an ACL-R [8]. Of these athletes, more than 5% sustained a re-rupture of the graft [8,9] in the ipsilateral knee. The risk for an ACL tear in the contralateral knee was as double as high (11.8%) five years or longer after an ACL-R [9]. It is known that returning to high-demanding sports (including jumping, pivoting and hard cutting) after ACL-R leads to a more than fourfold increase in reinjury rates over two years [10]. Considering simple decision rules such as RTS not before nine months postoperatively and achievement of symmetrical quadriceps strength was reported to substantially decrease reinjury rates [10].
Most elite athletes RTS on average within 12 months [8] – this population seems to return earlier than non-elite athletes [7]. However, it remains unclear whether this approach is safe [8]. To measure functional performance after ACL-R, mainly the single leg hop test for distance or a combination of several hop tests are used, and functional performance is expressed with the Lower Limb Symmetry Index (LSI) [11]. However, the LSI may overestimate the time point of RTS and therefore increase risk for secondary injury [12]. Furthermore, often used clinical impairment assessments for disability do not appear to be related to measured physical performance [13] and do not necessarily reflect readiness for RTS [14]. Moreover, no measure for assessing quality of functional performance after ACL-R has been reported so far [11,15].

Regarding the determination of RTS after ACL-R, there is some evidence for the use of functional performance tests: Multiple functional performance measures – a battery including strength and hop tests, quality of movement and psychological tests [15] - might be more useful for the determination of RTS than a single performance measure [16]. However, it is still unclear, which measures should be used to bring athletes safely back to RTS with a low risk of a second ACL injury [15].

It is known that patients with ACL-R show altered kinematics and kinetics [17] - these changes are referred to neuromuscular adaptations due to altered sensorimotor control [18]. These changes in sensorimotor control are caused by altered afferent inputs to the central nervous system due to the loss of the mechanoreceptors of the native (original) ACL [19]. Furthermore, patients with a deficient ACL show different neuromuscular strategies during walking [20], depending on the functional activity level and being copers or non-copers.
Neuromuscular control is defined and used in different ways: Biomechanical measures such as three-dimensional kinetics and kinematics are used to predict ACL injury risk [21] or physical performance test batteries (including strength tests, hop tests and measurement of quality of movement) are used to clear an athlete for RTS [15]. So far, physical performance tests including jumps and tests of muscle function [12] are often used in daily clinical practice to assess neuromuscular control. However, there is only limited evidence that passing RTS test batteries reduces the risk for a second ACL injury [22].

Three-dimensional kinetics and kinematics provide some data to judge upon quality of active knee stability (“dynamic valgus”), however, give only little insight in neuromuscular control. In addition, the currently suggested RTS criteria do not seem to be adequate to assess neuromuscular control of the knee joint to judge upon a safe RTS or even competition. Consequently, meaningful, reliable, valid and accurate diagnostic tools for patients with an ACL injury (either treated surgically or conservatively) are needed and may aid clinical decision-making to optimize sports participation following ACL-R [23]. Objective measurements of neuromuscular control should include electromyography (EMG) of involved muscles to judge upon quantity, quality and timing of voluntary activation and reflex activity [17,24,25]. So far, it is unclear which measurements for neuromuscular control are used in patients with an ACL injury to clear for RTS.

Therefore, the first aim of this systematic review was to summarize the scientific literature regarding assessments for neuromuscular control in patients with an ACL injury (either treated surgically or conservatively). The second aim was to analyze whether these assessments for neuromuscular control were used to decide upon readiness for RTS in these patients.
2. Material and methods

2.1. Design, protocol and registration

This systematic review was planned, conducted and analyzed according to the guidelines of Preferred Reporting of Items for Systematic Reviews and Meta-Analyses (PRISMA) [26] and followed the recommendations of Cochrane group [27]. The protocol for this systematic review was registered beforehand in the International prospective register of systematic reviews (PROSPERO) from the National Institute for Health Research (https://www.crd.york.ac.uk/PROSPERO/index.php#index.php) and got the registration number CRD42019122188.

2.2. Eligibility criteria

To define the relevant key words for the literature search, the PICOS strategy was used as follows (Table1):

Table 1: Overview of PICOS criteria for key word definitions

Insert Table 1 about here.

In addition, the following inclusion and exclusion criteria were applied: As inclusion criteria were used: Study participants have to be athletes or physically active people who participate in sports activities on a regular basis (as defined by each study, e.g. Tegner Activity Score (TAS) ≥ 3) to get data to decide upon RTS, assessments for neuromuscular control of lower limb muscles using EMG as method, original articles published in peer-reviewed, scientific journals in English, German, French, Italian or Dutch, without any restriction regarding publication date or year and available as full texts could be included. Exclusion criteria were studies with model-driven
approaches, animals, cadavers, comparisons of surgical techniques, passive or non-functional tasks (such as isokinetic measurements for strength and isometric muscle activity), editorials, conference abstracts, book chapters, theses, systematic reviews and meta-analyses.

2.3. Information sources

The search was effectuated in the electronic databases MEDLINE/PubMed, EMBASE, CINAHL, Cochrane Library, Physiotherapy Evidence Database (PEDro), SPORTDiscus and in the Web of Science. Furthermore, a hand search was done using the reference lists of included articles to identify additional and potentially eligible articles that had been missed in the electronic database search. To ensure new articles matching the search terms, e-mail alerts were established from each of the databases if possible [28]. The hits from these two additional sources were also screened for eligibility applying the same criteria as for the articles from the database search.

2.4. Search

The search was executed based on the inclusion and exclusion criteria in all 7 electronic sources mentioned above from inception until March 15th, 2019. In all sources, the advanced search mode was used if available. A search matrix combining relevant keywords (if possible MeSH-terms) with the Boolean operators AND and OR was used and customized for searches in all databases if necessary (see Appendix A): “anterior cruciate ligament/anterior cranial cruciate ligament/ACL”; “anterior cruciate ligament injuries/strains and sprains/rupture/tear/injury/deficiency”; “anterior ligament reconstruction/anterior cruciate ligament/surgery/reconstructive surgical procedures/orthopedic procedure/orthopedic procedure/tendon graft/tendon graft”.
transfer/conservative treatment/non-surgical/rehabilitation/physical therapy
modalities/physiotherapy/kinesiotherapy/exercise/instruction/resistance
training/neuromuscular training/postoperative care”; “neuromuscular
control/neuromuscular activity/sensorimotor control/muscle activity/active stability”;
“electromyography/EMG/electromyogram/amplitude/timing/mean activity/peak
activity/duration of activity/onset/offset/on-off-pattern/pre-activity/latency/reflex
response”.

2.5. Study selection

All hits obtained by the database searches were downloaded to the Rayyan
reference management platform (rayyan.qcri.org) and inserted into EndNote
(Clarivate Analytics, Philadelphia, USA). Prior to screening, duplicates were
removed. Two authors (AB and IK) screened title and abstract of the records, one by
using the software EndNote (Clarivate Analytics, Philadelphia, USA) and the other
with the help of the free software “rayyan” [29]. If in- or exclusion of the record was
unclear, the full text was read, and in-/exclusion criteria were applied. Two authors
(IK, AB) independently decided upon in- or exclusion of all studies; if their decisions
did not match, discussion took place until consensus was achieved. If consensus
would not have been achieved, a third author (IB or HB) would have finally decided
upon in- or exclusion of the record in question; however, this was not necessary.

2.6. Risk of bias across studies

The risk of bias of all the included articles was independently assessed by two raters
(AB, IK) by using the Downs and Black checklist [30] in a modified form [28,31]. For
this systematic review, studies with a total score of 17 or above out of 25 (more than
2/3 of the maximum total score) were considered as being of high methodological
quality, low risk of bias respectively [28]. Studies which reached 13 to 16 points (more than 50% of the maximum total score) were rated as being of medium quality, and total scores below 13 were rated as being of low methodological quality, high risk of bias respectively. As the aim of this systematic review was to summarize the applied measures for neuromuscular control, the methodological quality of the included studies was of secondary interest. Therefore, no study was excluded due to a low total score in the risk of bias assessment.

2.7. Data collection process

After final decision of all studies, data extraction for each eligible study was performed by the first author (AB) with predefined Microsoft® Excel (Microsoft Corporation, Redmond WA, USA) spreadsheet. As all included studies were available as full texts and the provided data were enough for the systematic review, no authors had to be contacted in order to obtain or confirm data. The first author (AB) extracted necessary information from each article describing the study design, groups measured and their characteristics, the tasks to be fulfilled by all participants, and all assessments or methods used to evaluate neuromuscular control. Furthermore, the chosen assessment for neuromuscular control were judged whether they were used to clear the participants for RTS. The second author (IK) controlled the extracted data at random.
3. Results

Initially, a total of 1178 records were identified through database search. After deduplication, 946 remaining articles were screened for title and abstract. Fifty-eight articles were fully read and assessed for eligibility. From the database search, a total of 31 articles, mainly cross-sectional, case-controlled studies, were included for qualitative analysis. Furthermore, a hand search in the reference lists of included articles yielded to another six hits which could be included. E-mail alerts provided five articles, however, none of them met the inclusion criteria. Reasons for exclusion were participants younger than 18 years, not able to achieve RTS, time since injury or surgery less than six months, static or non-functional task, study design (e.g. systematic review, study protocol), unclear or inadequate outcome, healthy participants or without ACL injury. Details about every step of the search are illustrated in the following flowchart (Fig.1).

3.1. Risk of bias assessment

Risk of bias of approximately half (18 studies, 48.6%) of the included studies was medium [17,32-48], six (16.2%) showed high methodological quality [49-54] and 13 studies (35.1%) were of low quality [55-67] (Table 2). The main reasons for a medium to low methodological quality were due to an unclear description of participants and prior interventions, confounding factors, and incompletely reported results.

Table 2: Risk of Bias assessment with the adapted Downs & Black checklist [28,30,31]
3.2. Characteristics of included studies

All included studies were case-control studies, except two which were case series [54] or a single-case study [67]. Two reported a retrospective or secondary data analysis [50,53] or provided a subgroup analysis from a larger trial [42,45-47,63-65]. Thirty-four studies compared the ACL participants with at least one control group (other ACL treatment, e.g. surgical versus conservative, or healthy controls), the remaining three studies made a comparison between the injured and the non-injured leg of the participants [40,43] or compared the pre-injury status with follow-up data from pre- and post-surgery [67].

The number of included, adult participants with ACL injury varied from N = 1 [67] to a maximum of N = 70 [60] with a wide range of described physical activity from “normal” [56], “regular” [62], “active in at least one sport” [59], TAS ≥ 3 [48], minimal 2h/week [32,33] to athletes at level I sports including jumping, pivoting and hard cutting [40,55,57], elite soccer players [34,36,65,67] or elite skiers [48].

Some authors restricted study participation to either males [32,33,35-37,42-44,56,58,65] or females [48,49,62-64,66,67], others measured females and males [17,34,38,39,45-47,50,52-55,57,59,60]. Three studies did not provide any data about the gender of their participants [40,51,61]. More patient characteristics of included studies can be found in Table B.1 (Appendix B).

All included studies used surface EMG as method to assess neuromuscular control and provided EMG-related variables such as peak and mean amplitudes, timing and peak of muscle activity, preparatory and reactive muscle activity, on- and offset of muscular activation, co-activation/co-contraction ratios, or asymmetry index. The outcome variables were expressed as percentage of maximum voluntary (isometric)
contraction (%MVIC or %MVC) or reported in microvolts or milliseconds according to
the variable chosen in amplitude or time domain.

The number of muscles assessed ranged from one [42,59] to ten [57]. Mainly muscle
activity of four muscles of the thigh, vastus lateralis, vastus medialis, biceps femoris
and semitendinosus, had been assessed. However, there were also studies
measuring the adductor longus [37,60], gluteus medius [37,63,64], gluteus maximus
[39,50,52,53,54,57,63,64], and calf muscles such as soleus, medial and lateral
gastrocnemius [45,46,47,52,53,54,57,58,61]. The tasks used were very diverse:
there were activities of daily life such as walking on even ground and downhill [32,45,
51,55,56,60,61,66], and stair climbing [17,47]. Other activities went more towards
sports such as running [42,43,58,65,66] and jumping
[35,37,38,39,40,46,48,49,50,52,53,54,57,59,63,64,66] where mainly the single-leg
jump for distance, drop jumps and countermovement jumps were used. Some
authors chose typical rehabilitation exercises such as forward lunges [33], Nordic
hamstrings or hamstrings curls [34] and squats [62]. At the other end of the scale,
more complex, highly demanding, sport-specific tasks such as an instep soccer kick
[36] or a sidecutting maneuver [67] were reported. Only few research groups used
perturbation platforms to simulate injury mechanisms during walking [51] or squatting
[44,62], or applied devices to stress the ACL in the posterior-anterior direction [48]. In
addition, two studies even investigated the influence of fatigue on neuromuscular
control [39,50].

Details regarding methodological aspects of all included studies can be found in
Table B.2 (Appendix B).

3.3. Decision for Return to Sports RTS
None of the included studies used the surface EMG measurements to decide upon readiness for RTS (Table B.2 Appendix B). However, the results from about a third of the studies (32.4%, 12 studies) could provide useful information by the choice of the assessed groups such as copers versus non-copers [32,33,45,46,47,55], intervention and control group from the same team or level/league [34,36,38], data from pre-injury/pre-surgery including post-surgical follow up [60,67] or participants with full RTS versus limited RTS [51]. In addition, two studies even investigated the influence of fatigue on neuromuscular control [39,50].
4. Discussion

The aim of this systematic review was to summarize the scientific literature regarding assessments for neuromuscular control in patients with an ACL injury (either treated surgically or conservatively). The second aim was to analyze whether these assessments for neuromuscular control were used to decide upon readiness for RTS in these patients.

There were a lot of factors in the study population which could have an influence on neuromuscular control:

Influence by type of comparison (intra- versus inter-subject)

The use of the contralateral, non-injured leg in intra-subject comparison, without a “real” control group [40,43] may lead to an overestimation of the physical performance in the ACL-reconstructed (ACL-R) or -injured leg. After ACL-R, functional performance is often expressed with the LSI [11]. As the non-affected limb may also have deteriorated, the LSI may overestimate the right time for a safe RTS, and therefore, the risk for secondary injury may be higher [12]. In acutely injured ACL patients, intra-individual comparison showed bilateral consequences during stair ascent and indicates an alteration in the motor program (“pre-programmed activity”) [68]. In addition, in case of a case-controlled study design, the subjects in the control group should be matched to the ACL participants regarding sex, age, body mass, height, activity level and leg dominance.

Influence by level of activity and fatigue

Some of the included studies used very challenging, sports-specific task to assess neuromuscular control, some even assessed neuromuscular control after fatiguing tasks. It is known that most of ACL tears are non-contact injuries happening at the
end of a training session or a play [69]. Therefore, the closer the task to the sports and injury-risky situation, the safer the decision towards full RTS or even return to competition will be. However, assessing performance-based tests or movement quality may be more difficult to standardize, require more complex equipment and large amounts of space. But if only impairments will be tested, there will be a lack of information regarding an “athlete’s capacity to cope with the physical and mental demands of playing sport” [70]. It is therefore recommended to search for a standardized assessment close to the injury mechanism.

Influence by sex

Not all included studies reported findings of mixed groups separately by gender. Some did not even state the sex of the participants. This could partly be explained by the date of publication as gender difference in ACL patients has not been in the focus of research 20 years before. But nowadays, a lot of facts concerning females are known: Female athletes are more likely to suffer from an ACL injury [21] than men: their increased risk is probably multifactorial. However, several studies indicate that hormonal factors play a role [3,71] contributing to an increased laxity of ligaments in the first half of the menstrual cycle. The higher risk for females to suffer from an ACL injury can be explained by motion and loading of the knee joint during performance [21]. The ligament dominance theory says that female athletes typically perform movements in sports with a greater knee valgus angle than men. Therefore, the amount of stress on the ACL in these situations is higher because there is a high activation of the quadriceps despite limited knee and hip flexion, greater hip adduction and a large knee adduction moment [72,73]. Moreover, females typically land with an internally or externally rotated tibia [74], leading to an increased knee valgus stress due to greater and more laterally orientated ground reaction forces [75].
Equal results in women and men were reported for outcomes such as anterior drawer, Pivot-Shift and Lachman test, hop tests, quadriceps or hamstring testing, International Knee Documentation Committee (IKDC) knee examination score and loss of range of motion [76]. However, female patients showed inferior, statistically significant subjective and functional outcomes such as laxity, revision rate, Lysholm score, TAS and incidence of not returning to sports.

Influence by treatment

The included studies reported different treatment options (ACL-R with different graft types, conservative treatment). Depending on the classification of the participants in copers and non-copers, the results in neuromuscular control may differ from a population of ACL-R participants. Therefore, all researchers who worked with copers and non-copers made intra- and inter-group comparisons without an ACL-R group. A Cochrane review revealed low evidence for no difference in young, active adults after two and five years after the injury, assessed with patient-reported outcomes. However, many participants with conservative treatments remain symptomatic (non-copers with unstable knee) and therefore, later opt for ACL surgery [77]. Furthermore, the choice of graft would influence the neuromuscular control of measured muscles due to the morbidity of the harvesting site of the graft (e.g. hamstrings).

EMG variables

The provided EMG-related variables were in accordance to the ones mentioned in a systematic review searching for knee muscle activity in ACL-deficient patients and healthy controls during gait [20]. Another study summarized and quantitatively analyzed muscle onset activity prior to landing in patients after ACL injury [24] and provided values in milliseconds and in percentage of gait cycle as some of the...
included studies did. However, some of the researchers only provided integrated
EMG values which would make it difficult to be compared to other studies using the
respective units (milliseconds, millivolts) or widely used percentage values (%MVIC,
%MVC).

If the researchers mentioned the procedures for collecting EMG data, they referred to
standardized applications and guidelines such as SENIAM [78].

Return to sports (RTS)

Regarding the determination of RTS after ACL-R, there is some evidence for the use
of functional performance tests, which had also been widely used in the included
studies. Multiple functional performance measures – a battery including strength and
hop tests, quality of movement and psychological tests [15] - might be more useful for
the determination of RTS than a single performance measure. However, it is still
unclear, which measures should be used to bring athletes safely back to RTS with a
low risk of a second ACL injury [15]. Currently used RTS criteria or assessments,
such as time, strength tests, hop tests, patient-reports, clinical examination, thigh
circumference, ligamentous stability, range of motion, effusion and performance-
based criteria, may be suboptimal at reducing the risk of a second ACL injury [70,79].

Recovery of neuromuscular function was mentioned to be important because of the
existing connection between the variables time since surgery and the risk for re-injury
of the knee joint; but adequate assessment procedures to assess neuromuscular
function are still a matter of debate [10].

4.1. Limitations

The sample size of all the studies was quite low, however, providing reasonable
sample size calculations and depending on the variable investigated, the results were
acceptable. Furthermore, the more restrictive the inclusion criteria for the
participants, the more homogeneous the intervention and the control groups were, but the more challenging the recruitment process was, leading to smaller groups to be investigated.

The used assessment for the risk of bias, the Downs and Black checklist [30] in a modified form [28,31] is designed for randomized and non-randomized controlled studies, however, the latter score lower in some items, get lower total scores and therefore a worse overall rating of the methodological quality. Despite this disadvantage, we decided to use the modified checklist as we could assess all studies with different designs included in this systematic review.

5. Conclusions

This systematic review summarized assessments with EMG variables for neuromuscular control of the knee in patients suffering from an ACL injury (either treated surgically or conservatively). Despite 37 articles providing a wide range of assessments for neuromuscular control, none was used to decide upon readiness towards a successful return to sports (RTS).

Therefore, additional studies are needed to define readiness towards RTS by assessing neuromuscular control in adult ACL patients. Future research should aim at finding reliable and valid, EMG-related variables to assess neuromuscular control close to the injury mechanism and as sport-specific as possible.

Moreover, clinicians should be aware of LSI problems (non-injured side is affected, probably not a good reference, pre-surgery/-injury scores would be perfect but not realistic in recreational athletes, probably in professional sports) and that physical performance batteries do not reflect neuromuscular control needed for a safe RTS.
Authors’ contributions
AB participated in the design of the study, contributed to data collection/reduction/analysis and interpretation of results; IK contributed to data collection/reduction/analysis; IB and DV participated in the design of the study; HB participated in the design of the study, contributed to data analysis and interpretation of results. All authors contributed to the manuscript writing, have read and approved the final version of the manuscript and agree with the order of authors as listed.

Declarations of interest
None

Role of funding source
This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. However, the Bern University of Applied Sciences provided working hours for AB as grant for non-tenured staff, but was not involved in study design, collection, analysis and interpretation of data, writing the report and in the decision to submit the article for publication.

Acknowledgments
This systematic review was mainly undertaken in the Bern University of Applied Sciences, but also in the library of the University of Bern (Institute for Sports...
Science). We would like to thank to all the following people for their assistance and contribution regarding this work:

- the librarians of the Bern University (Department of Health Professions) and the University of Bern (Institute for Sports Science) for their support before and during the literature search

- Mariyam Akter, former scientific assistant at the Bern University of Applied Sciences (Department of Health Professions, Division of Physiotherapy), for her support in extracting relevant key words and

- Aglaja Busch, former master student at the Bern University of Applied Sciences (Department of Health Professions, Division of Physiotherapy), for her critical review of the proposal and help to refine the search strategy.
References

[76] Tan SH, Lau BP, Khin LW, Lingaraj K. The importance of patient sex in the outcomes of anterior cruciate ligament reconstructions: a systematic review and

Web reference

Table 1: Overview of PICOS criteria for key word definitions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participants (P)</td>
<td>Adult people (age of 18 – 65 years) who sustained an ACL injury, either treated conservatively or surgically (repaired with an autograft)</td>
</tr>
<tr>
<td>Intervention (I)</td>
<td>Assessment of neuromuscular control, active knee stability, sensorimotor control, active stability of the lower limb or similar during dynamic activities</td>
</tr>
<tr>
<td>Control (C)</td>
<td>Uninjured limb / contralateral side or contralateral lower limb of the ACL-injured participant, or a healthy control group</td>
</tr>
<tr>
<td>Outcomes (O)</td>
<td>Any EMG-related outcome describing neuromuscular activity/control in domains of time, amplitude etc.; parameters describing EMG activity of lower limb muscles; related to EMG variables, such as amplitude, timing, mean or peak activity, duration of activity, onset and offset / on-off-pattern respectively, pre-activity, latency, reflex response according to Shanbehzadeh et al., 201720 and Theisen et al., 201624</td>
</tr>
<tr>
<td>Study design (S)</td>
<td>Any laboratory or interventional study, cross-sectional or longitudinal, randomized controlled trials, clinically controlled trials without randomization, laboratory/experimental controlled trials etc.</td>
</tr>
</tbody>
</table>
Table 2: Risk of Bias assessment with the adapted Downs & Black checklist [28,30,31]

<p>| Authors & Year | Design | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | Total | Rating |
|---------------------------------|--------|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|------|--------|
| Busch et al. (2019) [17] | CCS | 1 | 1 | 1 | 1 | 2 | 1 | 1 | X | 0 | 1 | X | X | 1 | X | 1 | X | X | X | X | X | X | X | 1 | 14 | medium |
| Alkjaer et al. (2003) [32] | CCS | 1 | 1 | 1 | 1 | 2 | 1 | 1 | X | 0 | 1 | X | X | 1 | X | 1 | X | X | X | X | X | X | 1 | 14 | medium |
| Alkjaer et al. (2002) [33] | CCS | 1 | 1 | 1 | 1 | 2 | 1 | 1 | X | 0 | 1 | X | X | 1 | X | 1 | X | X | X | X | X | X | 1 | 15 | medium |
| Arnason et al. (2014) [34] | CCS | 1 | 1 | 1 | 1 | 2 | 1 | 1 | X | 0 | 1 | X | X | 1 | X | 1 | 1 | 1 | X | X | X | 1 | 15 | medium |
| Bryant et al. (2009) [35] | CCS | 1 | 1 | 1 | 1 | 2 | 1 | 1 | X | 0 | 1 | X | X | 1 | 1 | 1 | 1 | 1 | X | X | X | 1 | 16 | medium |
| Cordeiro et al. (2015) [36] | CCS | 1 | 1 | 1 | 1 | 2 | 1 | 1 | X | 0 | 0 | X | X | 1 | X | 1 | 1 | 1 | X | X | X | X | X | 1 | 14 | medium |
| Dashti Rostami et al. (2019) [37]| CCS | 1 | 1 | 1 | 1 | 2 | 1 | 1 | X | 0 | 1 | X | X | 1 | 1 | 1 | 1 | X | X | X | X | X | X | 1 | 15 | medium |
| Jordan et al. (2016) [38] | CCS | 1 | 1 | 1 | 1 | 2 | 1 | 1 | X | 0 | 0 | X | X | 1 | X | 1 | 1 | 1 | X | X | X | X | X | 1 | 14 | medium |
| Lessi et al. (2017) [39] | CCS | 1 | 1 | 1 | 1 | 2 | 1 | 1 | X | 0 | 1 | X | X | 1 | X | 1 | 1 | X | X | X | X | 1 | 14 | medium |
| Oliver et al. (2018) [40] | P, CCS | 1 | 1 | 1 | 1 | 1 | 1 | 1 | X | 0 | 1 | X | X | 1 | 1 | 1 | 1 | IC | 1 | X | X | IC | X | 0 | 14 | medium |
| Ortiz et al. (2014) [41] | CCS | 1 | 1 | 1 | 1 | 2 | 1 | 1 | X | 0 | 1 | X | X | 1 | X | 1 | 1 | 1 | X | X | X | 0 | 1 | 15 | medium |
| Patras et al. (2010) [42] | CCS | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 0 | 0 | 0 | X | X | 1 | X | 1 | 1 | X | X | X | X | X | 1 | 13 | medium |
| Study | CCS | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | X | 0 | 0 | X | X | 1 | 0 | 1 | 1 | IC | X | X | X | IC | X | 0 | 12 | medium |
| Patras et al. (2009) [43] | CCS | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | X | 0 | 0 | X | X | 1 | 0 | 1 | 1 | IC | X | X | X | IC | X | 0 | 12 | medium |
| Pincheira et al. (2018) [44] | CCS | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 0 | 0 | 0 | 0 | X | X | 1 | X | 1 | 1 | 1 | X | X | X | X | X | X | 1 | 13 | medium |
| Rudolph et al. (2001) [45] | CCS | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | X | X | 1 | X | 1 | 1 | 1 | X | X | X | X | X | X | X | 1 | 15 | medium |
| Rudolph et al. (2000) [46] | CCS | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | X | X | 1 | X | 1 | 1 | 1 | X | X | X | X | X | X | X | 1 | 15 | medium |
| Rudolph & Snyder-Mackler (2004) [47] | CCS | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | X | X | 1 | X | 1 | 1 | 1 | X | X | X | X | X | X | X | 1 | 13 | medium |
| Swanik et al. (2004) [48] | CCS | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | X | 0 | 0 | X | X | 1 | X | 1 | 1 | 0 | X | X | X | X | X | X | X | 1 | 13 | medium |
| Briem et al. (2016) [49] | CCS | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 0 | 1 | X | X | 1 | X | 1 | 1 | 1 | 1 | X | X | 1 | X | 1 | 18 | low |
| Lessi et al. (2018) [50] | R, CCS | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | X | 0 | 1 | X | X | 1 | 1 | 1 | 1 | 1 | 0 | X | X | 1 | X | 1 | 17 | low |
| Lustosa et al. (2011) [51] | CCS | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | X | X | 1 | 1 | 1 | 1 | 1 | 1 | X | X | 1 | X | 0 | 17 | low |
| Nyland et al. (2010) [52] | CCS | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | X | X | 1 | 1 | 1 | 1 | 0 | 1 | X | X | 0 | X | 0 | 17 | low |
| Nyland et al. (2013) [53] | R, CCS | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 0 | 1 | X | X | 1 | 1 | 1 | 1 | 1 | 1 | X | X | 1 | X | 0 | 18 | low |
| Nyland et al. (2014) [54] | CS | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 0 | 1 | X | X | 1 | 1 | 1 | 1 | X | 1 | X | X | 1 | X | 0 | 17 | low |
| Boerboom et al. (2001) [55] | CCS | 1 | 1 | 1 | 1 | 2 | 1 | 0 | 0 | 0 | X | X | 1 | X | X | 1 | 0 | 1 | 0 | 0 | X | X | X | 1 | X | 0 | 11 | high |
| Bulgheroni et al. (1997) [56] | CCS | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | X | X | 1 | X | X | 1 | 0 | 1 | 1 | 0 | 0 | X | X | X | X | X | 0 | 9 | high |
| Gokeler et al. (2010) [57] | CCS | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | X | 0 | 1 | X | X | 1 | X | 1 | 1 | X | X | X | X | X | X | 0 | 12 | high |</p>
<table>
<thead>
<tr>
<th>Reference</th>
<th>Study Type</th>
<th>CCS</th>
<th>IC</th>
<th>P</th>
<th>R</th>
<th>RoB</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hansen et al. (2017) [58]</td>
<td>CCS</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>X</td>
</tr>
<tr>
<td>Klyne et al. (2012) [59]</td>
<td>CCS</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>X</td>
</tr>
<tr>
<td>Knoll et al. (2004) [60]</td>
<td>CCS</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>X</td>
</tr>
<tr>
<td>Kuster et al. (1995) [61]</td>
<td>CCS</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>X</td>
</tr>
<tr>
<td>Madhavan & Shields (2011) [62]</td>
<td>CCS</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>X</td>
</tr>
<tr>
<td>Ortiz et al. (2008) [63]</td>
<td>CCS</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>X</td>
</tr>
<tr>
<td>Ortiz et al. (2011) [64]</td>
<td>CCS</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>X</td>
</tr>
<tr>
<td>Patras et al. (2012) [65]</td>
<td>CCS</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>X</td>
</tr>
<tr>
<td>Swanik et al. (1999) [66]</td>
<td>CCS</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>X</td>
</tr>
<tr>
<td>Zebis et al. (2017) [67]</td>
<td>CS</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>X</td>
</tr>
</tbody>
</table>

Abbreviations: CCS = case-control study, CS = case study, IC = intrasubject comparison (injured leg versus healthy leg), P = prospective, R = retrospective (secondary analysis), RoB = risk of bias, X = not applicable or unclear.
N=1178 records identified through database searching
N=173 of additional records identified through other sources:
N=168 out of reference lists of included articles
N=5 from e-mail alerts
N=943 records after duplicates removed
N=1116 records screened (title and abstract)
N=1037 records excluded
N=79 full-texts assessed for eligibility
N=42 full-texts excluded with reasons:
 RTS not achieved (N=10)
 age < 18 yrs (N=7)
 time since injury/surgery (N=7)
 static/no functional task (N=8)
 study design (N=7)
 unclear/wrong outcome (N=2)
 no ACL injury/healthy (N=1)
N=37 studies included in qualitative synthesis