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Abstract

We develop a health informatics toolbox that enables public health workers to timely analyze
and evaluate the time-course dynamics of the novel coronavirus (COVID-19) infection using the
public available data from the China CDC. This toolbox is built upon a hierarchical epidemi-
ological model in which two observed time series of daily proportions of infected and removed
cases are emitted from the underlying infection dynamics governed by a Markov SIR infectious
disease process. We extend the SIR model to incorporate various types of time-varying quaran-
tine protocols, including government-level macro isolation policies and community-level micro
inspection measures. We develop a calibration procedure for under-reported infected cases. This
toolbox provides forecast, in both online and offline forms, of turning points of interest, includ-
ing the time when daily infected proportion becomes smaller than the previous ones and the
time when daily infected proportions becomes smaller than that of daily removed proportion,
as well as the ending time of the epidemic. An R software is made available for the public,
and examples on the use of this software are illustrated. Some possible extensions of our novel
epidemiological models are discussed.

Key Words: Coronavirus; infectious disease; MCMC; prediction; Ronge-Kutta approximation;
SIR model; turning point; under-reporting.

1 Introduction

The outbreak of the coronavirus disease or COVID-19, originated in Wuhan, the capital city of
Hubei province, spreads out quickly in Hubei and then in China, South Korea, Japan, Iran and
Italy, as well as many other cities across the world. Being one of the great epidemics in the 21st
century, till February 25, 2020, in China it has caused a total of 78,195 confirmed infections, 2,718
deaths and 30,078 recovered cases, and 2,491 suspected cases still remained to be tested. Since the
outbreak of the epidemic, many clinical papers [15, 3, 37, 38, 12, 6, 20, 5, 11, 8, 7, 28, 10, 42, 34]
have been published to unveil limited but important knowledge of COVID-19, including that (i)
COVID-19 is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS
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coronavirus (SARS-CoV) [20, 5, 32]; (ii) it can surely spread from person to person [11, 8]; (iii) it
has a high person-to-person transmission rate, especially in the case with close contact, resulting in
a large number of infected cases in Hubei province; (iv) the median incubation time is 3 days, which
can be as long as 24 days [7]; and (v) asymptomatic person carrying SARS-CoV-2 is contagious
[28]. This epidemic has been concerning not only in China but also in the rest of the world given
the currently fast growing number of infected cases in South Korea, Japan, Iran, and Italy.

In addition to vaccination, quarantine or medical isolation is the human wisdom that has been
proved to be one of the most effective ways to stop the spreading of infectious diseases such as
SARS [35, 29, 22] and plague [4] in the human history. The basic idea of quarantine is to separate
infected cases from susceptible population and vice versa. Since mid-January 2020, the Chinese
government has implemented all kinds of very strict in-home isolation protocols nationwide, which
have been elevated day by day through various government enforced quarantine and societally
organized inspections to control the spread of COVID-19 in Hubei and other regions in China. In
the meantime, the Chinese government has quickly increased the capacity of hospitals or as such
that took symptomatic patients to be quarantined and treated by medical doctors and nurses, most
of whom were dispatched from hospitals outside of Hubei province.

The question of the most importance, which draws most attention, concerns when the spread
of COVID-19 will end. This question has to be answered by a prediction model using the daily
most-updated data from the China CDC. Unfortunately, it is extremely difficult to make right and
precise prediction due to the limited amount of available data, which are thought to be inaccurate
due to the issue of under-reporting. Many prediction models [33, 18, 9, 27, 24, 40, 19] have already
been proposed to provide good fitting results for the publicly available data that may be potentially
under-reported. Each of these models may result in different predictions of turning points, such as
the dates when the daily increased or the total number of infections begin to decrease. Since such
forecasting needs to extrapolate a fitted model to a relatively distance future time after the last
date with observed data, whichever the chosen model is used, the model itself will dictate prediction
results. Many tuning methods have been developed by data scientists to tune a prediction model,
producing only point predictions with no quantification of prediction uncertainty. In addition, data
accuracy, in particular the issue of under-reporting, may cause bias in prediction, and ignoring this
issue would lead to an optimistic prediction of early turning points. The issue of under-reporting
may be attributed to the unsatisfactory sensitivity of the RNA test for SARS-CoV-2 or to the
lack of enough kits for testing at the beginning of the outbreak among other logistic and political
reasons. The Chinese government tried to correct these issues by using a new diagnostic protocol
based on clinical symptoms starting at the first week of February. However, it undermines the
quality of data collected in the early phase of the epidemic.

All the above points illustrate the complexity of human interventions on the spread of COVID-
19, including but not limited to in-home quarantine, hospitalization, community enforcement of
wearing masks, minimizing outdoor activities, and changed diagnostic criteria by the government.
The prediction model must take such features into account in order to provide meaningful analyses
and hopefully reasonable predictions. However, most existing prediction models do not have the
capacity to incorporate changing interventions in reality, and with no such critical component of
time-varying intervention in the model, predicted turning points would be untrustworthy. Our new
model and analytic toolbox aim to fill in this significant gap.

We develop a health informatics toolbox, with an R package eSIR [1, 26], that helps accomplish
the following specific aims:

AIM 1 : Utilize and calibrate publicly available data to understand the epidemiological trend of
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COVID-19 spread in Hubei province and the other regions of China.

AIM 2 : Incorporate time-varying quarantine protocols in the model of COVID-19 infection dynamics
via an extension of the classical epidemiological SIR model. This dynamic infection system
necessitates the forecast of the future trend of COVID-19 spread.

AIM 3 : Provide an R software package to health workers who can conveniently perform their own
analyses using their substantive knowledge and perhaps better quality data from provinces
in China or from other countries.

By no means the toolbox developed by us would give an accurate prediction of turning points, but
rather we hope to provide a data analytic toolbox to people who may have better domain-specific
knowledge and experience as well as high quality data to carry out independent predictions.

Our informatics toolbox is built upon a state-space model [41, 13, 31, 14] shown in Figure 1 with
an extended Markov SIR model [16], which has the following key features: (i) Our model is specified
with the temporally varying prevalence of susceptible, infected and removed (recovered and death)
compartments, not directly on time series of respective counts; (ii) estimation and inference are
carried out and implemented by the Markov Chain Monte Carlo (MCMC) algorithm; (iii) it outputs
various sample draws from the posteriors of the model parameters (e.g. transmission and removal
rates) and the underlying prevalence of susceptible, infected and removed compartments, as well as
their credible intervals. The latter is of extreme importance to quantify prediction uncertainty. In
addition, this toolbox provides predicted turning points, including (i) the date when daily increased
number of infections begins to decrease or the time at which the second order derivative of the
prevalence of infected compartment is zero (i.e. the turning point of infection acceleration to
deceleration); and (ii) the date when daily number of removed cases is larger than that of infected
cases, or the time at which the first derivative of the prevalence of infected compartment is zero (i.e.
the turning point of zero infection speed). As a byproduct, the method also provides a predicted
time when the COVID-19 epidemic ends.

The R package eSIR is available at https://github.com/lilywang1988/eSIR. This paper is
organized as follows. Section 2 presents our new epidemiological forecast model incorporating time-
varying quarantine protocols. Section 3 concerns the algorithmic implementation via Markov Chain
Monte Carlo and a deliverable R software. Section 4 is devoted to the analysis of COVID-19 data
within and outside Hubei, where a calibration of under-reporting is proposed. Section 5 gives some
concluding remarks, and some technical details are included in the appendices.

2 State-space SIR Epidemiological Model

2.1 Basic model of coronavirus infection

We begin with a basic epidemiological model in the framework of state-space SIR models with
no consideration of quarantine protocols. This framework was proposed by [23] with only one-
dimensional time series of infected proportions. Refer to Chapter 9-12 of [30] for an introduction to
state-space models. Here we consider two time series of proportions of infected and removed cases,
denoted by Y I

t and Y R
t at time t, respectively, where the compartment of removed R is a sum of

the proportions of recovered cases and deaths at time t. We assume that the 2-dimensional time
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series of pY I
t , Y

R
t q

J follows a state-space model with the beta distributions at time t:

Y I
t |θt, τ „ BetapλIθIt , λ

Ip1´ θIt qq, (1)

Y R
t |θt, τ „ BetapλRθIt , λ

Rp1´ θIt qq, (2)

where θIt and θRt are the respective prevalence of infection and removal at time t, and λI and λR

are the parameters controlling the respective variances of the observed proportions.

Figure 1: A conceptual framework of the proposed epidemiological state-space SIR model.

As shown in Figure 1, these observed time series are emitted from the underlying latent dynam-
ics of COVID-19 infection characterized by the latent Markov process θt. It is easy to see that the
expected proportions in both models (1) and (2) are equal to the prevalence of infection and the
probability of removal at time t, namely EpY I

t |θtq “ θIt and EpY R
t |θtq “ θRt . See Appendix B. More-

over, the latent population prevalence θt “ pθ
S
t , θ

I
t , θ

R
t q
J is a three-dimensional Markov process, in

which θSt is the probability of a person being susceptible or at risk at time t, θIt is the probability
of a person being infected at time t, and θRt is the probability of a person being removed from the
infectious system (either recovered or dead) at time t. Obviously, θSt ` θIt ` θRt “ 1. We assume
that this 3-dimensional prevalence process θt is governed by the following Markov model:

θt|θt´1, τ „ Dirichletpκfpθt´1, β, γqq, (3)

where parameter κ scales the variance of the Dirichlet distribution and function fp¨q is a 3-
dimensional vector that determines the mean of the Dirichlet distribution. The function f is
the engine of the infection dynamics, which operates according to the classical infectious disease
SIR model of the form:

dθSt
dt

“ ´βθSt θ
I
t ,

dθIt
dt

“ βθSt θ
I
t ´ γθ

I
t , and

dθRt
dt

“ γθIt . (4)

Note that the explicit solution to the above system (4) of ordinary differential equations is unavail-
able. Following [23], we invoke the fourth-order Runge–Kutta(RK4) approximation, resulting in
an approximate of fpθt´1, β, γq as follows:

fpθt´1, β, γq “

¨

˝

θSt´1 ` 1{6rkS1
t´1 ` 2kS2

t´1 ` 2kS3
t´1 ` k

S4
t´1s

θIt´1 ` 1{6rkI1t´1 ` 2kI2t´1 ` 2kI3t´1 ` k
I4
t´1s

θRt´1 ` 1{6rkR1
t´1 ` 2kR2

t´1 ` 2kR3
t´1 ` k

R4
t´1s

˛

‚,
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where all these kt terms are given in the appendix A. Denote the set of model parameters by
τ “ pβ, γ,θ0, λ, κq

J, which will be estimated using the MCMC method [2].

2.2 Epidemiological model with time-varying transmission rate

The basic epidemiological model with both constant transmission and removal rates in SIR model
(4) does not reflect the reality in China, where all levels of quarantines have been enforced. Many
forms of human interventions that are altering the transmission rate over time include (i) individual-
level protective measures such as wearing masks and safety glasses, using hygiene, and taking in-
home isolation, and (ii) community-level quarantines such as hospitalization for infected cases, city
blockade, traffic control and restricted social activities, and so on. In addition, the virus itself may
mutate to evolve, so to increase the potential rate of false negative in the disease diagnosis. As
a result, some individual virus carriers are not contained. Thus, the transmission rate β indeed
varies over time, which should be accounted in the modeling.

Figure 2: An extended SIR model with time-varying transmission rates.

One extension to the above basic epidemiological model is to allow a time-varying probability
that a susceptible person meets an infected person or vice versa. Suppose at a time t, qSptq P r0, 1s
is the chance of an at-risk person being in-home isolation, and qIptq P r0, 1s is the chance of an
infected person being in-hospital quarantine. Thus, the chance of disease transmission when an
at-risk person meets an infected person is modified as:

βt1´ qSptquθSt t1´ q
IptquθIt :“ βπptqθSt θ

I
t ,

with πptq :“ t1´ qSptqut1´ qIptqu P r0, 1s. In effect, this πptq modifies the chance of a susceptible
person meeting with an infected person or vice versa, which is termed as a transmission modifier
due to quarantine in this paper. Obviously, with no quarantine in place, πptq ” 1 for all time. See
Figure 2. This results in a new SIR model with a time-varying transmission rate modifier:

dθSt
dt

“ ´βπptqθSt θ
I
t ,

dθIt
dt

“ βπptqθSt θ
I
t ´ γθ

I
t , and

dθRt
dt

“ γθIt , (5)

where the product term βπptq defines a realistic transmission rate reflective to the currently enforced
quarantine measures of all levels in China. Note that the above extended SIR model assumes
primarily that both population-level chance of being susceptible and population-level chance of
being infected remain the same, but the chance of a susceptible person meeting with an infected
person is reduced by πptq.

The transmission rate modifier πptq needs to be specified according to actual quarantine proto-
cols in a given region. A possible choice of πptq may be a step function that reflects government-
initiated macro isolation measures in Wuhan, Hubei province:

πptq “

$

’

’

&

’

’

%

π01, if t ď Jan 23, no concrete quarantine protocols;
π02, if t P pJan 23,Feb 4s, city blockade;
π03, if t P pFeb 4,Feb 8s, enhanced quarantine;
π04, if t ą Feb 8, opening of new hospitals.
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When π0 “ pπ01, π02, π03, π04q are chosen with different values, as shown in Figure 3, we obtain
different types of transmission rate modifiers aligned with different quarantine protocols.

Figure 3: Transmission rate modifier takes different forms of step functions under different macro
quarantine measures over time. Subfigures from A to C indicate π0 “ pπ01, π02, π03, π04q equal to
p1, 1, 1, 1q, p1, 0.9, 0.8, 0.5q and p1, 0.9, 0.5, 0.1q with change time points at (Jan 23, Feb 4, Feb 8)
respectively.

Alternatively, the modifier πptq may be specified as a continuous function that reflects steadily
increased community-level awareness and responsibility of voluntary quarantine and preventive
measures, which may be regarded as a kind of micro isolation measure initiated by individuals or
local self-organized inspections. For example, as shown in Figure 4, we may choose the following
exponential functions:

πptq “ expp´λ0tq or πptq “ expt´pλ0tq
νu, λ0 ą 0, ν ą 0.

Figure 4: Transmission rate modifier takes continuous functions under difference micro quarantine
measures over time. Subfigures from A to C are exponential survival functions with λ0 “ 0.01,λ0 “
0.05 and λ0 “ 0.1 respectively.

Technically, the RK’s approximate of f function in Appendix A may be easily obtained by
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replacing β by βπptq in the specification of the latent prevalence model (3), and moreover in all
quantities and steps in the MCMC implementation. See the detailed in Section 3.

2.3 Epidemiological model with quarantine compartment

An alternative way to incorporate quarantine measures into the basic epidemiological model (4) is
to add a new quarantine compartment that collects quarantined individuals who would have no
chance of meeting any infected individuals in the infection system, as shown in Figure 5. This model
allows to characterize time-varying proportions of susceptible cases due largely to the government-
enforced stringent in-home isolation outside of Hubei province. The basic SIR model in equation
(4) is then extended by adding a quarantine compartment with a time-varying rate of quarantine
φptq, which is the chance of a susceptible person being willing to take in-home isolation at time t.
The extended SIR takes the following 4-dimensional latent process pθSt , θ

Q
t , θ

I
t , θ

R
t q
J:

dθQt
dt

“ φptqθSt ,
dθSt
dt

“ ´βθSt θ
I
t ´ φptqθ

S
t ,

dθIt
dt

“ βθSt θ
I
t ´ γθ

I
t ,

dθRt
dt

“ γθIt , (6)

where θSt ` θ
Q
t ` θ

I
t ` θ

R
t “ 1.

Figure 5: An extended SIR model with time-varying transmission rate.

We suppose that the quarantine rate φptq is a Dirac delta function with jumps at times when
major macro quarantine measures are enforced. For example, we may specify the φptq function as
follows:

φptq “

$

’

’

&

’

’

%

φ01, if t “ Jan 23, city blockade;
φ02, if t “ Feb 4, enhanced quarantine;
φ03, if t “ Feb 8, opening of new hospitals;
0, otherwise.

Here we show several examples of multi-point instantaneous quarantine rates in Figure 6 with jump
sizes equal to φ0 “ pφ01, φ02, φ03q that occur respectively at dates of (Jan 23, Feb 4, Feb 8). In
particular, we plot three scenarios, e.g., no intervention (φ0 “ p0, 0, 0q), multiple moderate jumps
(φ0 “ p0.1, 0.4, 0.3q), and only one large jump (φ0 “ p0, 0.9, 0q). Note that at each jump, the
respective proportion of the susceptible population would move to the quarantine compartment.
For example, with φ0 “ p0.1, 0.4, 0.3q, the quarantine compartment will be enlarged accumulatively
over three time points as 0.1 θSt1 ` 0.4θSt2 ` 0.3θSt3 .

The fpθt´1, β, γq function determined by the above extended SIR model (6) can be solved
by applying the fourth-order Runge-Kutta approximation, and the resulting solution is given in
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Figure 6: Three examples of multi-point instantaneous quarantine rates. Subfigures from A to C
denote φ0 “ p0, 0, 0, 0q, φ0 “ p0.1, 0.4, 0.3q and φ0 “ p0, 0.9, 0q at three time points of (Jan 23, Feb
4, Feb 8) respectively.

Appendix A. To deal with the Dirac delta function φptq, we develop a two-step approximation for
model (6). In brief, we first solve a continuous function without change points via the differential
equations in (5), and then we directly move φptqθSt of the susceptible compartment to the quarantine
compartment. From our experience, this approach largely improves the approximation accuracy in
the presence of discontinuities.

3 Implementation: Markov Chain Monte Carlo Algorithm

3.1 MCMC Algorithm

We implemented the MCMC algorithm to collect draws from the posterior distributions, and further
obtain posterior estimates and credible intervals of the unknown parameters in the above models
specified in Section 2. Because of the hierarchical structure in the state-space model considered
in this paper, the posterior distributions can be obtained straightforwardly. The R package rjags

[25] can be directly applied to draw samples from the posterior distributions, so we omit the
technical details. The latent Markov θt processes are sampled and forecasted by the MCMC
sampler, particularly for the prevalence of infection and the probability of removal, θIt and θRt ,
which enables us to determine turning points of interest and the reproduction number R0.

The first turning point of interest is the time when the daily number of new infected cases stops
increasing. Mathematically, this corresponds to the time t at which :θIt “ 0 or the gradient of 9θIt
is zero. As illustrated by Panel A in Figure 7, the peak of 9θIt , denoted by the vertical green line,
is the first turning point of interest. The second turning point is the time when the cumulative
infected cases reaches its maximum, meaning 9θIt “ 0. In principle, the second turning point occurs
only after the first one, as shown in Panel B in Figure 7.

The reproduction number R0 of an infectious disease is estimated by the ratio R0 “ β{γ, where
β and γ are both estimated from their posterior distributions. Because our models consider the
quarantine compartment, R0 might change according to the forms of quarantine protocols. We
adopt a standard MCMC algorithm to draw the latent process. Let t0 be the current time up to
which we have observed data pY I

0:t0
, Y R

0:t0
q. To perform M draws of Y I

t , Y
R
t for t P rt0 ` 1, T s, we
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Figure 7: The first turning point in Panel A is marked by a green line, denoting the time when the
estimated first-order derivative of the prevalence of infection reaches the maximum. The second
turning point in Panel B is marked by a purple line, which is the time when the estimated first-
order derivative of the prevalence of infection equals to zero. The vertical blue line labels the first
observation day.

proceed as follows: for each m “ 1, . . . ,M ,

(1) draw θ
pmq
t from the posterior rθt|θ

pmq
t´1, τ

pmqs of the prevalence process, at t “ t0 ` 1, . . . , T ;

(2) draw pY
Ipmq
t , Y

Rpmq
t q from rY I

t |θ
pmq
t , τ pmqs and rY R

t |θ
pmq
t , τ pmqs according to the observed pro-

cess, at t “ t0 ` 1, . . . , T , respectively;

The prior distributions are specified with some of the hyper-parameters being set according to the
SARS data from Hong Kong [21]. They are,

θI0 „ Betap1, pY I
1 q
´1q, θS0 „ Betap1, pY R

1 q
´1q, θR0 “ 1´ θS0 ´ θ

I
0;

R0 „ LogNp1.099, 0.096q with EpR0q “ 3.15, SDpR0q “ 1;

γ „ LogNp´2.955, 0.910q with Epγq “ 0.0117, SDpγq “ 0.1, β “ R0γ;

κ „ Gammap2, 0.0001q, λI „ Gammap2, 0.0001q, λR „ Gammap2, 0.0001q.

In the default setting the variances of the above prior distributions are set at relatively large
values to reflect the fact that limited prior knowledge of these epidemiological model parameters is
available. When more information becomes accessible during the course of the epidemic, smaller
prior variance values may be used, leading to tighter credible intervals for the model parameters
and turning points.

3.2 R software package

We deliver an R software package that is able to output the MCMC estimation, inference and pre-
diction under the epidemiological model with two proposed extended SIR models that incorporate
time-varying quarantine protocols. These new models have been discussed in detail in Sections
2.2 and 2.3. Our R package, named eSIR, uses daily-updated time series of infected and removed
proportions as input data. The R package is available at GitHub lilywang1988/eSIR, and its
user manual is appended as the supplementary material of this paper. The quarantine functions
are predefined and will be treated as known functions of protocols/policies in the estimation and
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prediction steps. We let the transmission rate modifier πptq be either a step function or an expo-
nential function, and let the quarantine rate φptq follow a Dirac delta function with pre-specified
points of jump and sizes of jumps. The package provides various plots for users to visualize the
MCMC results, including the estimated prevalence of infection and the estimated probability of
removal, and predicted turning points of interest. Various summary statistics are listed in the
output, including posterior mean estimates of the transmission and removal rates, estimate of the
reproduction number, and forecasts of turning points and their 95% credible intervals. Moreover,
the package gives multiple options to users who can save the entire MCMC results, including the
output tables and summary plots, traceplots for MCMC quality control, and full MCMC draws
for user’s own summary analyses. Some illustrations on the use of this software package is given
in Section 4. In addition, we developed an online R Shiny App that can automatically update the
results whenever the China CDC updates the daily COVID-19 data.

4 Analysis of the COVID-19 Data Within and Outside Hubei

4.1 Calibration of under-reported infection data

Under-reporting of infections is a common issue in the data collection of infectious disease, especially
at the beginning of an outbreak. When medical diagnostic tools become more accurate and reliable,
as well the transparency of preventive measures gets improved for an exchange of voluntary in-home
quarantine, certain adjustments in data typically occur. It is shown in Figure 8 that on Feb 12 the
cumulative and daily added number of infected cases in Hubei had clear jumps with significantly
large sizes. Such sizable jumps cannot happen within one day, rather they represent an accumulation
of cases that have not been reported in previous dates prior to Feb 12. To fix this under-reporting
issue, we develop a calibration procedure with the detail in Appendix C. Below we briefly describe
our approach for the calibration of the infected cases.

We assume an exponential growth curve for the cumulative number of infected cases in Hubei
before Feb 12 of the form yptq “ aeλt ` b, where parameters λ, a, b are to be estimated. Under
the boundary conditions ypt “ Jan 12q “ 0 and ypt “ Feb 12q “ a expp31λq ` b, we would like to
minimize the one-step ahead extrapolation error on Feb 13. The constrained optimal solution can
be obtained by the means of Lagrange Multipliers; the estimates are λ̂ “ 0.06605, â “ 7142.80, b̂ “
´7142.80. The resulting calibration curves for the cumulative and daily added number of infected
cases are shown as the solid red curves in Figure 8. For example, on Jan 31, the reported cumulative
number of infected cases is 7,153, but the calibrated number of infected cases is 17,911, with an
increment of 10,758 cases. As shown later, this data quality control (QC) step helps improve the
performance of MCMC.

4.2 Evaluation and prediction under time-varying quarantine

We applied our proposed models, algorithms and R package eSIR to analyze the COVID-19 data col-
lected from the public website DXY.cn. The earliest public records for the provincial data are avail-
able since Jan 20, 2020. According to an existing R package on GitHub GuangchuangYu/nCov2019

[39], the total counts of confirmed infections and deaths are dated back on Jan 13, 2020. We
assumed that before Jan 17 all the reported cases and deaths were from Hubei. We imputed by
the linear interpolation the missing cases on Jan 18-19. Therefore, the data used in our analyses
starts from Jan 13. The data used in analyses for the other provinces starts on Jan 23, which is
the earliest time with non-zero values in the removed compartment. Note that there exist some
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Figure 8: Under-reporting calibration of the infected cases in Hubei. (A) The cumulative number
of infected cases. (B) The daily added number of infected cases. Data calibration is performed
from Jan 13 to Feb 12 as is shown by the red curves.

minor discrepancies between different data sources, and the under-reporting issue is addressed in
Appendix C by a calibration procedure. This section aims to provide a demonstration of our
software to analyze the current public COVID-19 data, through which users may understand the
proposed methods. We focus on illustrating ways to export and interpret the MCMC results. The
R package may be applied to analyze infectious data from other countries.

First, we show the analysis of the Hubei COVID-19 data. Note that option dic=T enables to
calculate the deviance information criterion (DIC) for model selection, while options, save_files=T
and save_mcmc, allow the storage of MCMC output tables, plots, summary statistics and even full
MCMC draws, which may be saved via the path of file_add, or otherwise via the current working
directory. The major results returned from the package include predicted cumulative proportions,
predicted turning points of interest, two ggplot2 [36] objects of the summary plots related to
both infection and removed compartments, a summary output table containing all the posterior
means, median and credible intervals of the model parameters, and DIC if opted. The trace-
plots and other useful diagnostic plots are also provided and automatically saved if save_files=T
is opted. In the package, function tvt.eSIR() works on the epidemiological model with time-
varying transmission rate in Section 2.2, and qh.eSIR() for the other epidemiological model with
a quarantine compartment in Section 2.3. Note that in function tvt.eSIR(), with a choice of
exponential=F, a step function is run in the MCMC when both change_time and pi0 are specified.
To fit the model with a continuous transmission rate modifier function, user may set exponential=T
and specify a value of lambda0. The default is to run the basic epidemiological model with no
quarantine or πptq ” 1 in Section 2.1. death_in_R is usually set to be the average ratio of death
and removed proportions at each observation time point, which is used to estimate the death curve
in the forecast plot of the removed compartment. Below are the R scripts used in the analysis.

### Example 1: Step function pi(t)

### Y and R are observed proportions of infected and removed compartments

change_time <- c("01/23/2020","02/04/2020","02/08/2020")

pi0<- c(1.0,0.9,0.5,0.1)

res.step <-tvt.eSIR(Y,R,begin_str="01/13/2020",death_in_R = 0.4,

T_fin=200,pi0=pi0,change_time=change_time,dic=T,

casename="Hubei_step",save_files = T,
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save_mcmc=F,M=5e2,nburnin = 2e2)

res.step$plot_infection

res.step$plot_removed

res.step$dic_val

### Example 2: continuous exponential function pi(t)

res.exp <- tvt.eSIR(Y,R,begin_str="01/13/2020",death_in_R = 0.4,

T_fin=200,exponential=TRUE,dic=F,lambda0=0.05,

casename="Hubei_exp",save_files = F,save_mcmc=F,

M=5e2,nburnin = 2e2)

res.exp$plot_infection

#res.exp$plot_removed

### Example 3: the basic state-space SIR model, pi(t)=1

res.nopi <- tvt.eSIR(Y,R,begin_str="01/13/2020",death_in_R = 0.4,

T_fin=200,casename="Hubei_nopi",save_files = F,

M=5e2,nburnin = 2e2)

res.nopi$plot_infection

#res.nopi$plot_removed

In the above R coding scripts, only very short MCMC chains are specified for the consideration
of running time. In practice, it is recommended to set M=5e5 and nburnin=2e5 to achieve desirable
burn-ins and yield stable MCMC draws. We tried the step function given by Panel C in Figure 3
with pi0=c(1,0.9,0.5,0.1), an exponential function given by Panel B in Figure 4 with rate
lambda0=0.05, both of which were compared with the basic model with πptq ” 1. The results of
the three modifier functions obtained from the tvt.eSIR function are summarized in Figures 9-11.
In these forecasting plots of the infected and removed compartments (Panel A and Panel C), the
black dots left to the blue vertical line denote the observed proportions of the infected and removed
compartments on the last date of available observations or before. That is, the blue vertical
marks time t0 as defined in Section 3. The green and purple vertical lines denote the first and
second turning points, respectively. The salmon color area denotes the 95% credible interval of the
predicted proportions Y I

t and Y R
t after t0, respectively, while the cyan color area represents either

the 95% credible intervals of the prevalence (θIt ) and or that of the probability of removal (θRt ) prior
to time t0. The gray and red curves are the posterior mean and median curves. The black curve in
the plot (Panel C) is the proportion of deaths estimated from a pre-specified ratio death_in_R. The
middle Panel B displays important dynamic features of the infection via a spaghetti plot, in which 20
randomly selected MCMC draws of the first-order derivative of the posterior prevalence of infection,
namely 9θIt . The black curve is the posterior mean of the derivative, and the vertical lines mark times
of turning points corresponding respectively to those shown in Panel A and Panel C. Moreover, the
95% credible intervals of these turning points are also highlighted by semi-transparent rectangles in
Panel B. As shown in these figures, the transmission rate modifier πptq played an important roles in
shortening the key turning points of the epidemic, and its effect on both estimation and prediction
of the COVID-19 infection dynamics has been clearly demonstrated .

Next, we analyzed the data from the rest of the Chinese population (i.e. the provinces outside
Hubei) starting on Jan 23. We set begin_str="01/23/2020"in tvt.eSIR. To address the delayed
starting time, we included two change points for the step function πptq at [Feb 4, Feb 8] with
π0 “ p0.8, 0.1q. The exponential function remained the same. It is noted that the spread of
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Figure 9: Prediction plots of θIt and Y I
t (Panel A), 9θIt (Panel B), θRt and Y R

t (Panel C) for Hubei
without intervention, πptq ” 1.

Figure 10: Prediction plots of θIt and Y I
t (Panel A), 9θIt (Panel B), θRt and Y R

t (Panel C) for Hubei
with an exponential transmission rate modifier πptq “ expp´0.05tq.
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Figure 11: Prediction plots of θIt and Y I
t (Panel A), 9θIt (Panel B), θRt and Y R

t (Panel C) for Hubei
with a step-function transmission rate modifier specified by π0 “ p1, 0.9, 0.5, 0.1q at change points
[Jan 23, Feb 4, Feb 8].

COVID-19 outside Hubei has been so far much less severe. Possible reasons for such low proportions
of infection and deaths include (i) discontinuing the traffic connections between Hubei and the
provinces, (ii) more timely caution and preventative measures taken, and (iii) a comparatively
large population that dilutes the exposed group. When Panel A in Figure 12 is zoomed in, some of
the observed proportions (black dots) are deviated from the posterior mean or median of the fitted
prevalence albeit they all fall in the 95% credible intervals, as shown by Panel A in Figures 13 and
14. Since the latent process follows the SIR differential equations, there may be a lack of fit for
the SIR model to accommodate a very large and complex population of 1.3 billion people, in which
most of the subjects are not at risk. The proposed models should work much better for individual
provinces, but we did not perform such analyses.

The other epidemiological model with an added quarantine compartment as an absorbing state
was fitted via our R function qh.eSIR in the package eSIR. The arguments used in qh.eSIR() are
almost identical to those in tvt.eSIR(). Note that if the quarantine rate function is set at constant
0, this model will be reduced to a basic epidemiological SIR model.

### Example 4: Dirac delta function of the quarantine process

change_time <- c("01/23/2020","02/04/2020","02/08/2020")

phi <- c(0.1,0.4,0.4)

res.q <- qh.eSIR (Y,R,begin_str="01/13/2020",death_in_R = 0.4,

phi0=phi0,change_time=change_time,

casename="Hubei_q",save_files = T,save_mcmc = F,

M=5e2,nburnin = 2e2)

res.q$plot_infection
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Figure 12: Prediction plots of θIt and Y I
t (Panel A), 9θIt (Panel B), θRt and Y R

t (Panel C) for the
other provinces outside Hubei with πptq ” 1.

Figure 13: Prediction plots of θIt and Y I
t (Panel A), 9θIt (Panel B), θRt and Y R

t (Panel C) for the other
provinces outside Hubei with with an exponential transmission rate modifier πptq “ expp´0.05tq.
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Figure 14: Prediction plots of θIt and Y I
t (Panel A), 9θIt (Panel B), θRt and Y R

t (Panel C) for
the other provinces outside Hubei with a step-function transmission rate modifier specified by
π0 “ p1, 0.9, 0.5, 0.1q at change points [Jan 23, Feb 4, Feb 8].

#res.q$plot_removed

### Example 5: basic state-space SIR model

res.noq <- qh.eSIR (Y,R,begin_str="01/13/2020",death_in_R = 0.4,

T_fin=200,casename="Hubei_noq",

M=5e2,nburnin = 2e2)

res.noq$plot_infection

We applied the R function qh.eSIR in analyses of the data within and outside Hubei. Results are
summarized in Figures 15-16. Our analyses once again clearly indicated that stringent quarantine
protocols can largely reduce the spread of COVID-19 both within Hubei and outside Hubei. Yet, it
is known that too strict quarantine can cause backfire; people may lose their trust and patience in
their committed system, and consequently may try to reduce compliance or even avoid quarantine.
We also present the posterior mean probability of staying quarantine compartment in Figure 17
within Hubei and outside Hubei. Note that Jan 23 was not set as a change point for the case
of outside Hubei, leading only to two jumps. It is evident that by Feb 8, more than 90% of the
Chinese population have taken in-home isolation or as such, reflective to a very strict quarantine
protocol enforced in the entire country.

As described in Subsection 4.1, we corrected the under-reported proportion of infections in Hubei
province prior to Feb 12, when a big jump occurred on one day. We repeated the same analyses
using the calibrated data of infections, and the corresponding results are shown in Figures 18-21.
It is interesting to see that the abrupt rise in the infection proportion on Feb 12 disappeared in all
Panel A in these new analyses, and the observed data (i.e. the black dots) align better with the
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Figure 15: Prediction plots of θIt and Y I
t (Panel A), 9θIt (Panel B), θRt and Y R

t (Panel C) for Hubei
with time-varying quarantine specified by φ0 “ r0.1, 0.9, 0, 5s at change points [Jan 23, Feb 4, Feb
8].

Figure 16: Prediction plots of θIt and Y I
t (Panel A), 9θIt (Panel B), θRt and Y R

t (Panel C) for other
provinces outside Hubei with time-varying quarantine specified by φ0 “ r0.9, 0, 5s at change points
[Feb 4, Feb 8].
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Figure 17: The posterior mean probability of staying in quarantine compartment within and outside
Hubei.

Table 1: The posterior mean and credible intervals of the reproduction number R0 obtained from
different quarantine models and datasets.

Within Hubei Outside Hubei

No Data Calibration Data Calibration

Model Mean 95%CI Mean 95%CI Mean 95%CI

No quarantine 3.00 [1.91, 4.50] 2.96 [1.82, 4.49] 2.58 [1.52, 4.26]
Exponential 6.30 [2.80, 10.78] 4.88 [2.35, 8.42] 3.36 [1.96, 5.26]
Step-function 5.61 [2.89, 8.95] 4.31 [2.34, 6.90] 3.02 [1.74, 4.89]
Quar. Compart. 6.00 [2.35, 13.24] 5.04 [2.30, 9.36] 3.58 [1.85, 6.10]

credible intervals of all the latent processes. We also notice that after the correction, the estimated
reproduction numbers R0 became smaller. The reproduction numbers estimated from different
models for within and outside Hubei, with and without the data calibration, together with their
95% credible intervals are summarized in Table 1.

It is worth pointing out that the estimates of the reproduction numbers obtained from the
epidemiological models with time-varying transmission or quarantine rates appear larger than those
obtained from the basic model with no quarantine. This is no surprising as our new models explicitly
incorporate interventions, so that the estimated R0 is an adjusted number with the influence of
interventions be removed. In contrast, the basic model with no use of the quarantine modifier
implicitly integrates the effect of interventions into the transmission rate β, and consequently the
estimated R0 is reduced due to the contribution from interventions. Our analyses suggest that
reproduction numbers R0 of COVID-19 without public health interventions would be around 4-5
within Hubei and around 3-3.5 outside Hubei with relatively big credible intervals. These findings
are in agreement with findings from [17]. As pointed out above, the size of credible interval may be
reduced with more accessible data of COVID-19, which permit users to specify smaller variances
in the prior distributions given in section 3.1.

5 Concluding Remarks

We develop an epidemiological forecast model with an R software package to assess effects of
interventions on the COVID-19 epidemic within Hubei and outside Hubei in China. Since our
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Figure 18: Prediction plots of θIt and Y I
t (Panel A), 9θIt (Panel B), θRt and Y R

t (Panel C) for Hubei
province with πptq ” 1 after calibration. Note that the second turning point is beyond the time-axis
limit in the plots.

Figure 19: Prediction plots of θIt and Y I
t (Panel A), 9θIt (Panel B), θRt and Y R

t (Panel C) for Hubei
with an exponential transmission rate modifier πptq “ expp´0.05tq after data calibration.
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Figure 20: Prediction plots of θIt and Y I
t (Panel A), 9θIt (Panel B), θRt and Y R

t (Panel C) for Hubei
with a step-function transmission rate modifier specified by π0 “ p1, 0.9, 0.5, 0.1q at change points
[Jan 23, Feb 4, Feb 8] after data calibration.

Figure 21: Prediction plots of θIt and Y I
t (Panel A), 9θIt (Panel B), θRt and Y R

t (Panel C) for Hubei
with time-varying quarantine specified by φ0 “ r0.1, 0.9, 0, 5s at change points [Jan 23, Feb 4, Feb
8] after data calibration.
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proposed model utilizes the strength of the SIR’s dynamic system to capture the primary mechanism
of the COVID-19 infectious disease, we are able to predict future episodes of the disease spread
patterns over a window of 200 days from the last date of data availability. Some turning points of
interest are obtained from these forecasting curves as part of the deliverable information, including
the predicted time when daily proportion of infected cases becomes smaller than the previous ones
and the predicted time when daily proportion of removed cases (i.e. both recovered and dead)
becomes larger than that of infected cases, as well as the time when the epidemic ends. Our
informatics toolbox provides quantification of uncertainty on the prediction, rather than only point
prediction values, which are valuable to see the best versus the worst. The key novel contribution is
the incorporation of time-varying quarantine protocols to expand the basic epidemiological model
to accommodate changing transmission rates over time in the population. The toolbox can be
used by practitioners who have better knowledge of quarantine and better quality data to perform
their own analyses. Practitioners can use the toolbox to evaluate different types of quarantine
strategies in practice. All summary statistics obtained from the toolbox are of great importance
for public health workers and government policy makers to take proper actions on stop spreading
of COVID-19.

We chose the MCMC algorithm to implement the statistical estimation and prediction because of
the consideration on the prediction uncertainty. Given the considerable complexity in the COVID-
19 virus spread dynamics and potentially inaccurate information of quarantine measures as well
as likely under-reported proportions of infected and recovered cases and deaths, it is of critical
importance to quantify and report uncertainty in the forecast. Note that the publicly reported
data of recovery and death of COVID-19 are mostly collected from hospitals where accessibility to
such information is warrant. In contrast, it is very difficulty, if not impossible, to collect the data
of infected individuals with light symptoms who had in-home isolation and recovered, in spite of
serious efforts made by the government for a door-to-door inspection to identify suspected cases.

This toolbox is indeed so general that it may be applicable to analyze and evaluate the COVID-
19 epidemic in other countries, as well as the future outbreak of other types of infectious diseases.
As noted in the paper, our proposed method does need prior data of similar infectious disease to
set up initial conditions of the infection dynamics. For this, we analyzed the complete SARS data
from Hong Kong given some similarity of COVID-19 to SARS. From this perspective, what we
learned from this COVID-19 epidemic in this paper is extremely valuable to form initial conditions
in the analysis of any future outbreak of similar infectious disease. In addition, understanding
forms and strengths of quarantines for the controlling of disease spread is an inevitable path to
making effective preventive policies, which is the key analytic capacity that our toolbox offers.

The proposed epidemiological models can be further extended to accommodate more data re-
ported by the China CDC, which are worth future exploration. Two types of data that may be
used in the future extension are the daily number of suspected cases and the daily number of
hospitalized cases. We did not use such data due to the concern of data accuracy. For example,
the number of suspected cases is largely dependent on the diagnostic protocols, which have been
revised a few times since the outbreak of the disease, and the sensitivity of the RNA test. Given
such concerns, our strategy in the proposed model was to only use necessary data for analysis, and
over the course of improved data quality in the near future, our toolbox may be extended to enjoy
greater statistical power and more accurate predictions.
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Supplementary Material

Software website: https://github.com/lilywang1988/eSIR
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A Runge-Kutta Approximation

A.1 Approximation in the Basic SIR model

The forth order Runge-Kutta(RK4) method gives an approximate of fpθt´1, β, γq in equation (4)
as follows:

fpθt´1, β, γq “

¨

˝

θSt´1 ` 1{6rkS1
t´1 ` 2kS2

t´1 ` 2kS3
t´1 ` k

S4
t´1s

θIt´1 ` 1{6rkI1t´1 ` 2kI2t´1 ` 2kI3t´1 ` k
I4
t´1s

θRt´1 ` 1{6rkR1
t´1 ` 2kR2

t´1 ` 2kR3
t´1 ` k

R4
t´1s

˛

‚:“

¨

˝

α1pt´1q

α2pt´1q

α3pt´1q

˛

‚,

where

kS1
t “ ´βθSt θ

I
t ,

kS2
t “ ´βrθSt ` 0.5kS1

t srθ
I
t ` 0.5kI1t s,

kS3
t “ ´βrθSt ` 0.5kS2

t srθ
I
t ` 0.5kI2t s,

kS4
t “ ´βrθSt ` k

S3
t srθ

I
t ` k

I3
t s;

kI1t “ βθSt θ
I
t ´ γθ

I
t ,

kI2t “ βrθSt ` 0.5kS1
t srθ

I
t ` 0.5kI1t s ´ γrθ

I
t ` 0.5kI1t s,

kI3t “ βrθSt ` 0.5kS2
t srθ

I
t ` 0.5kI2t s ´ γrθ

I
t ` 0.5kI2t s,

kI4t “ βrθSt ` k
S3
t srθ

I
t ` k

I3
t s ´ γrθ

I
t ` k

I3
t s;

and

kR1
t “ γθIt ,

kR2
t “ γrθIt ` 0.5kI1t s,

kR3
t “ γrθIt ` 0.5kI2t s,

kR4
t “ γrθIt ` k

I3
t s.
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A.2 Approximation in the extended SIR model with quarantine compartment

Using the RK4 approximation, fpθt´1, β, γq in the extended SIR model (6) with a quarantine
compartment can be approximated following the two iterative steps:

1. Solve the fpθt´1, β, γq in Appendix A without considering the quarantine with fp¨q

fpθt´1, β, γq “ rα1pt´1q, α2pt´1q, α3pt´1qs
T.

2. Due to the quarantine, we deduct the susceptible by α˚1pt´1q “ α1pt´1q ´ φptqθSt´1, and let

θQt “ θQt´1 ` φptqθ
S
t´1 with θQ0 “ 0.

Let α˚t´1 “ rα
˚
1pt´1q, α2pt´1q, α3pt´1qs

T, and it is easy to show that the sum
ř3
k“1 α

˚
kpt´1q “ 1´ θQt .

Thus we can regenerate the next day’s θt following a Dirichlet distribution adjusted by the preva-
lence of the quarantine compartment α˚t „ Dirichletpκα˚t´1{p1 ´ θQt qq. The estimated prevalence

values become θt “ p1 ´ θQt qα
˚
t . We follow above two steps and finish the complete prevalence

processes. Note that the deduction of susceptible compartments might cause θSt ď 0, we will bound
such prevalence value to be consistently 0, which is equivalent to terminating transmission among
susceptible subjects.

B Moment properties of Beta and Dirichlet distributions

For the sake of being self-contained, we list the moments of both Beta and Dirichlet distributions.
The mean and variance of Beta distribution Betapα, βq are respectively:

Mean “
α

α` β
,Var “

αβ

pα` βq2pα` β ` 1q
.

While to Dirchlet distribution Dirpκαq, we have

Mean “ α,Var “
1

κ` 1

¨

˚

˚

˝

α1p1´ α1q ´α1α2 ´α1α3 ´α1α4

´α1α2 α2p1´ α2q ´α2α3 ´α2α4

´α1α3 ´α2α3 α3p1´ α3q ´α3α4

´α1α4 ´α2α4 ´α3α4 α4p1´ α4q

˛

‹

‹

‚

,

where α “ pα1, α2, α3, α4q
T with α1 ` α2 ` α3 ` α4 “ 1.

C Under-reporting Calibration

As is mentioned in the Introduction, the issue of under-reporting may cause bias in prediction. In
order to adjust the under-reported number of infected cases, we apply the following algorithm to
calibrate the number of infections before Feb 12, during which time the Chinese government only
relies on the RNA test for diagnosis, which was realized later with low sensitivity leading to many
false negatives.

We assume that the cumulative number of infected cases between Jan 13 and Feb 12 when a
sudden big jump occurs follows an exponential function,

yptq “ aeλt ` b,

26

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 3, 2020. .https://doi.org/10.1101/2020.02.29.20029421doi: medRxiv preprint 

https://doi.org/10.1101/2020.02.29.20029421


where t P t1, 2, . . . u and a, b, λ are parameters to be estimated. Here, t “ 1 stands for Jan 13 and
t “ 31 stands for Feb 12. Under the condition of yp0q “ 0, we can easily get that

yptq “ aeλt ´ a.

To estimate parameter λ and a, we want to minimize the least square error of the estimated number
ŷptq of infected cases at t “ 32 (Feb 13), which is one day after the Chinese government changed the
diagnosis protocol. It is assumed that the difference between the predicted and observed number
of infections on Feb 13 would not be big if the model were established well, although the long term
difference might be large due to other interventions. Therefore, the optimization problem we want
to solve is,

min
a,λ

typ32q ´ ae32λ ` au2

s.t. ae31λ ´ a “ yp31q.

The constraint ae31λ ´ a “ yp31q is used to ensure that the cumulative number of infected cases
till Feb 12 equals to the observed value yp31q. The optimization problem can be solved using the
method of Lagrange Multipliers. Obtained λ̂ “ 0.06605, â “ 7142.80. The calibrated number of
infected cased between Jan 13 and Feb 12 is shown in Figure 8. The proposed calibration method
corrected the under-reporting issue, at least partially.

27

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 3, 2020. .https://doi.org/10.1101/2020.02.29.20029421doi: medRxiv preprint 

https://doi.org/10.1101/2020.02.29.20029421


Package ‘eSIR’
February 29, 2020

Type Package

Title Extended state-space SIR models

Version 0.2.0

Date 2020-02-19

Author Song Lab (http://www.umich.edu/~songlab/)

Maintainer Lili Wang <lilywang@umich.edu>

Description An inplementation of extended state-
space SIR models developed by Song Lab at UM school of Public Health

License CC BY 4.0

Encoding UTF-8

Depends rjags, scales, ggplot2, chron, gtools, data.table

RoxygenNote 6.1.1

R topics documented:
qh.eSIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
tvt.eSIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Index 8

qh.eSIR Extended state-space SIR with quarantine

Description

Fit an extended state-space SIR model being reduced by in-home hospitalization.

Usage

qh.eSIR(Y, R, phi0 = NULL, change_time = NULL,
begin_str = "01/13/2020", T_fin = 200, nchain = 4,
nadapt = 10000, M = 500, thn = 10, nburnin = 200, dic = FALSE,
death_in_R = 0.02, casename = "qh.eSIR", beta0 = 0.2586,
gamma0 = 0.0821, R0 = beta0/gamma0, gamma0_sd = 0.1, R0_sd = 1,
file_add = character(0), save_files = FALSE, save_mcmc = FALSE,
save_plot_data = FALSE)
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2 qh.eSIR

Arguments

Y the time series of daily observed infected compartment proportions.
R the time series of daily observed removed compartment proportions, including

death and recovered.
phi0 a vector of values of the dirac delta function φt. Each entry denotes the propor-

tion that will be qurantined at each change time point. Note that all the entries
lie between 0 and 1, its default is NULL.

change_time the change points over time corresponding to phi0, to formulate the dirac delta
function φt; its defalt value is NULL.

begin_str the character of starting time, the default is "01/13/2020".
T_fin the end of follow-up time after the beginning date begin_str, the default is 200.
nchain the number of MCMC chains generated by rjags, the default is 4.
nadapt the iteration number of adaptation in the MCMC. We recommend using at least

the default value 1e4 to obtained fully adapted chains.
M the number of draws in each chain, with no thinning. The default is M=5e2 but

suggest using 5e5.
thn the thinning interval between mixing. The total number of draws thus would

become round(M/thn)*nchain. The default is 10.
nburnin the burn-in period. The default is 2e2 but suggest 2e5.
dic logical, whether compute the DIC (deviance information criterion) for model

selection.
death_in_R the numeric value of average of cumulative deaths in the removed compart-

ments. The default is 0.4 within Hubei and 0.02 outside Hubei.
casename the string of the job’s name. The default is "qh.eSIR".
beta0 the hyperparameter of average transmission rate, the default is the one estimated

from the SARS first-month outbreak (0.2586).
gamma0 the hyperparameter of average removed rate, the default is the one estimated

from the SARS first-month outbreak (0.0821).
R0 the hyperparameter of the mean reproduction number R0. The default is thus

the ratio of beta0/gamma0, which can be specified directly.
gamma0_sd the standard deviation for the prior distrbution of the removed rate γ, the default

is 0.1.
R0_sd the standard deviation for the prior disbution of R0, the default is 1.
file_add the string to denote the location of saving output files and tables.
save_mcmc logical, whether save (TRUE) all the MCMC outputs or not (FALSE).The out-

put file will be an .RData file named by the casename. We include arrays
of prevalence values of the three compartments with their matrices of poste-
rior draws up to the last date of the collected data as theta_p[,,1] and after-
wards as theta_pp[,,1] for θSt , theta_p[,,2] and theta_pp[,,2] for θIt ,
and theta_p[,,3] and theta_pp[,,3] for θRt . The posterior draws of the
prevalence process of the quarantine compartment can be obtained via thetaQ_p
and thetaQ_pp. Moreover, the input and predicted proportions Y, Y_pp, R and
R_pp can also be retrieved. The prevalence and prediceted proportion matrices
have rows for MCMC replicates, and columns for days. The MCMC posterior
draws of other parameters including beta, gamma, R0, and variance controllers
k_p, lambdaY_p, lambdaR_p are also available.

save_plot_data logical, whether save the plotting data or not.
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qh.eSIR 3

Details

In this function we allow it to characterize time-varying proportions of susceptible due to government-
enforced stringent in-home isolation. We expanded the SIR model by adding a quarantine compart-
ment with a time-varying rate of quarantine φt, the chance of a susceptible person being willing to
take in-home isolation at time t.

Value

casename the predefined casename.

incidence_mean mean incidence.

incidence_ci 2.5%, 50%, and 97.5% quantiles of the incidences.

out_table summary tables including the posterior mean of the prevalance processes of the
3 states compartments (θSt , θ

I
t , θ

R
t , θ

H
t ) at last date of data collected ((t′) decided

by the lengths of your input data Y and R), and their respective credible inctervals
(ci); the respective means and ci’s of the reporduction number (R0), removed
rate (γ), transmission rate (β).

plot_infection plot of summarizing and forecasting for the infection compartment, in which
the vertial blue line denotes the last date of data collected (t′), the vertial dark-
gray line denotes the deacceleration point (first turning point) that the posterior
mean first-derivative of infection prevalence θ̇It achieves the maximum, the ver-
tical purple line denotes the second turning point that the posterior mean first-
derivative infection proportion θ̇It equals zero, the darkgray line denotes the pos-
terior mean of the infection prevalence θIt and the red line denotes its posterior
median.

plot_removed plot of summarizing and forecasting for the removed compartment with lines
similar to those in the plot_infection. The vertical lines are identical, but the
horizontal mean and median correspond to the posterior mean and median of the
removed process θRt . An additional line indicates the estimated death prevalence
from the input death_in_R.

spaghetti_plot 20 randomly selected MCMC draws of the first-order derivative of the posterior
prevalence of infection, namely θ̇It . The black curve is the posterior mean of
the derivative, and the vertical lines mark times of turning points corresponding
respectively to those shown in plot_infection and plot_removed. Moreover,
the 95% credible intervals of these turning points are also highlighted by semi-
transparent rectangles.

first_tp_mean the date t at which θ̈It = 0, calculated as the average of the time points with
maximum posterior first-order derivatives θ̇It ; this value may be slightly different
from the one labeled by the "darkgreen" lines in the two plots plot_infection
and plot_removed, which indicate the stationary point such that the first-order
derivative of the averaged posterior of θIt reaches its maximum.

first_tp_mean the date t at which θ̈It = 0, calculated as the average of the time points with
maximum posterior first-order derivatives θ̇It ; this value may be slightly different
from the one labeled by the "darkgreen" lines in the two plots plot_infection
and plot_removed, which indicate the stationary point such that the first-order
derivative of the averaged posterior of θIt reaches its maximum.

first_tp_ci fwith first_tp_mean, it reports the corresponding credible interval and median.

second_tp_mean the date t at which θIt = 0, calculated as the average of the stationary points
of all of posterior first-order derivatives θ̇It ; this value may be slightly different
from the one labeled by the "pruple" lines in the plots of plot_infection and
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4 tvt.eSIR

plot_removed. The latter indicate stationary t at which the first-order derivative
of the averaged posterior of θIt equals zero.

second_tp_ci with second_tp_mean, it reports the corresponding credible interval and me-
dian.

dic_val the output of dic.sample() in dic.sample, computing deviance information
criterion for model comparison.

Examples

NI_complete <- c( 41,41,41,45,62,131,200,270,375,444,549, 729,
1052,1423,2714,3554,4903,5806,7153,9074,11177,
13522,16678,19665,22112,24953,27100,29631,31728,33366)

RI_complete <- c(1,1,7,10,14,20,25,31,34,45,55,71,94,121,152,213,
252,345,417,561,650,811,1017,1261,1485,1917,2260,
2725,3284,3754)

N=58.5e6
R <- RI_complete/N
Y <- NI_complete/N- R #Jan13->Feb 11

change_time <- c("01/23/2020","02/04/2020","02/08/2020")
phi0 <- c(0.1,0.4,0.4)
res.q <- qh.eSIR (Y,R,begin_str="01/13/2020",death_in_R = 0.4,

phi0=phi0,change_time=change_time,
casename="Hubei_q",save_files = T,save_mcmc = F,
M=5e2,nburnin = 2e2)

res.q$plot_infection
#res.q$plot_removed

res.noq <- qh.eSIR (Y,R,begin_str="01/13/2020",death_in_R = 0.4,
T_fin=200,casename="Hubei_noq",
M=5e2,nburnin = 2e2)

res.noq$plot_infection

tvt.eSIR Fit extended state-space SIR model with time-varying transmission
rates

Description

Fit extended state-space SIR model with prespecified changes in the transmission rate, either step-
wise or continuous, accomodating time-varying quaratine protocols.

Usage

tvt.eSIR(Y, R, pi0 = NULL, change_time = NULL, exponential = FALSE,
lambda0 = NULL, begin_str = "01/13/2020", T_fin = 200,
nchain = 4, nadapt = 10000, M = 500, thn = 10, nburnin = 200,
dic = FALSE, death_in_R = 0.02, beta0 = 0.2586, gamma0 = 0.0821,
R0 = beta0/gamma0, gamma0_sd = 0.1, R0_sd = 1,
casename = "tvt.eSIR", file_add = character(0), save_files = FALSE,
save_mcmc = FALSE, save_plot_data = FALSE)
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tvt.eSIR 5

Arguments

Y the time series of daily observed infected compartment proportions.
R the time series of daily observed removed compartment proportions, including

death and recovered.
pi0 the time-dependent transission rate modifier π(t) between 0 and 1.
change_time the change points over time for step function pi, defalt value is NULL.
exponential logical, whether π(t) is exponential exp(−λ0t) or not; the default is FALSE.
lambda0 the rate of decline in the exponential survival function in exp(−λ0t).
begin_str the character of starting time, the default is "01/13/2020".
T_fin the end of follow-up time after the beginning date begin_str, the default is 200.
nchain the number of MCMC chains generated by rjags, the default is 4.
nadapt the iteration number of adaptation in the MCMC. We recommend using at least

the default value 1e4 to obtained fully adapted chains.
M the number of draws in each chain, with no thinning. The default is M=5e2 but

suggest using 5e5.
thn the thinning interval between mixing. The total number of draws thus would

become round(M/thn)*nchain. The default is 10.
nburnin the burn-in period. The default is 2e2 but suggest 2e5.
dic logical, whether compute the DIC (deviance information criterion) for model

selection.
death_in_R the numeric value of average of cumulative deaths in the removed compart-

ments. The default is 0.4 within Hubei and 0.02 outside Hubei.
beta0 the hyperparameter of average transmission rate, the default is the one estimated

from the SARS first-month outbreak (0.2586).
gamma0 the hyperparameter of average removed rate, the default is the one estimated

from the SARS first-month outbreak (0.0821).
R0 the hyperparameter of the mean reproduction number R0. The default is thus

the ratio of beta0/gamma0, which can be specified directly.
gamma0_sd the standard deviation for the prior distrbution of the removed rate γ, the default

is 0.1.
R0_sd the standard deviation for the prior disbution of R0, the default is 1.
casename the string of the job’s name. The default is "tvt.eSIR".
file_add the string to denote the location of saving output files and tables.
save_files logical, whether save (TRUE) results or not (FALSE). This enables to save sum-

mary tables, trace plots, and plots of the posterior means of the first-order deriva-
tives of the infection prevalence process θIt .

save_mcmc logical, whether save (TRUE) all the MCMC outputs or not (FALSE).The out-
put file will be an .RData file named by the casename. We include arrays
of prevalence values of the three compartments with their matrices of poste-
rior draws up to the last date of the collected data as theta_p[,,1] and after-
wards as theta_pp[,,1] for θSt , theta_p[,,2] and theta_pp[,,2] for θIt ,
and theta_p[,,3] and theta_pp[,,3] for θRt . Moreover, the input and pre-
dicted proportions Y, Y_pp, R and R_pp can also be retrieved. The prevalence and
prediceted proportion matrices have rows for MCMC replicates, and columns
for days. The MCMC posterior draws of other parameters including beta_p,
gamma_p, R0_p, and variance controllers k_p, lambdaY_p, lambdaR_p are also
available.

save_plot_data logical, whether save the plotting data or not.
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6 tvt.eSIR

Details

We fit a state-space model with extended SIR, in which a time-varying transmission rate modifier
π(t) (between 0 and 1) is introcuded to model. This allows us to accommodate quarantine protocol
changes and ignored resources of hospitalization. The form of reducing rate may be a step-function
with jomps at times of big policy changes or a smooth exponential survival function exp(−λ0t).
The parameters of the function and change points, if any, should be predefined.

Value

casename the predefined casename.

incidence_mean mean incidence.

incidence_ci 2.5%, 50%, and 97.5% quantiles of the incidences.

out_table summary tables including the posterior mean of the prevalance processes of the
3 states compartments (θSt , θ

I
t , θ

R
t ) at last date of data collected ((t′) decided by

the lengths of your input data Y and R), and their respective credible inctervals
(ci); the respective means and ci’s of the reporduction number (R0), removed
rate (γ), transmission rate (β).

plot_infection plot of summarizing and forecasting for the infection compartment, in which
the vertial blue line denotes the last date of data collected (t′), the vertial dark-
gray line denotes the deacceleration point (first turning point) that the posterior
mean first-derivative of infection prevalence θ̇It achieves the maximum, the ver-
tical purple line denotes the second turning point that the posterior mean first-
derivative infection proportion θ̇It equals zero, the darkgray line denotes the pos-
terior mean of the infection prevalence θIt and the red line denotes its posterior
median.

plot_removed plot of summarizing and forecasting for the removed compartment with lines
similar to those in the plot_infection. The vertical lines are identical, but the
horizontal mean and median correspond to the posterior mean and median of the
removed process θRt . An additional line indicates the estimated death prevalence
from the input death_in_R.

spaghetti_plot 20 randomly selected MCMC draws of the first-order derivative of the posterior
prevalence of infection, namely θ̇It . The black curve is the posterior mean of
the derivative, and the vertical lines mark times of turning points corresponding
respectively to those shown in plot_infection and plot_removed. Moreover,
the 95% credible intervals of these turning points are also highlighted by semi-
transparent rectangles.

first_tp_mean the date t at which θ̈It = 0, calculated as the average of the time points with
maximum posterior first-order derivatives θ̇It ; this value may be slightly different
from the one labeled by the "darkgreen" lines in the two plots plot_infection
and plot_removed, which indicate the stationary point such that the first-order
derivative of the averaged posterior of θIt reaches its maximum.

first_tp_ci fwith first_tp_mean, it reports the corresponding credible interval and median.

second_tp_mean the date t at which θIt = 0, calculated as the average of the stationary points
of all of posterior first-order derivatives θ̇It ; this value may be slightly different
from the one labeled by the "pruple" lines in the plots of plot_infection and
plot_removed. The latter indicate stationary t at which the first-order derivative
of the averaged posterior of θIt equals zero.

second_tp_ci with second_tp_mean, it reports the corresponding credible interval and me-
dian.
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tvt.eSIR 7

dic_val the output of dic.sample() in dic.sample, computing deviance information
criterion for model comparison.

Examples

NI_complete <- c( 41,41,41,45,62,131,200,270,375,444,549, 729,
1052,1423,2714,3554,4903,5806,7153,9074,11177,

13522,16678,19665,22112,24953,27100,29631,31728,33366)
RI_complete <- c(1,1,7,10,14,20,25,31,34,45,55,71,94,121,152,213,

252,345,417,561,650,811,1017,1261,1485,1917,2260,
2725,3284,3754)

N=58.5e6
R <- RI_complete/N
Y <- NI_complete/N- R #Jan13->Feb 11
### Step function of pi(t)
change_time <- c("01/23/2020","02/04/2020","02/08/2020")
pi0<- c(1.0,0.9,0.5,0.1)
res.step <-tvt.eSIR(Y,R,begin_str="01/13/2020",death_in_R = 0.4,

T_fin=200,pi0=pi0,change_time=change_time,dic=T,
casename="Hubei_step",save_files = T,
save_mcmc=F,M=5e2,nburnin = 2e2)

res.step$plot_infection
res.step$plot_removed
res.step$dic_val

### continuous exponential function of pi(t)
res.exp <- tvt.eSIR(Y,R,begin_str="01/13/2020",death_in_R = 0.4,

T_fin=200,exponential=TRUE,dic=F,lambda0=0.05,
casename="Hubei_exp",save_files = F,save_mcmc=F,
M=5e2,nburnin = 2e2)

res.exp$plot_infection
#res.exp$plot_removed

### without pi(t), the standard state-space SIR model without intervention
res.nopi <- tvt.eSIR(Y,R,begin_str="01/13/2020",death_in_R = 0.4,

T_fin=200,casename="Hubei_nopi",save_files = F,
M=5e2,nburnin = 2e2)

res.nopi$plot_infection
#res.nopi$plot_removed
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Index

dic.sample, 4, 7

qh.eSIR, 1

rjags, 2, 5

tvt.eSIR, 4
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