- 1 Title:
- 2 Closed environments facilitate secondary transmission of coronavirus disease 2019
- 3 (COVID-19)
- 4 Running title: Closed environment and COVID-19

5 Authors:

- 6 Hiroshi Nishiura, M.D., Ph.D.<sup>1, 2</sup>, Hitoshi Oshitani, M.D., Ph.D.<sup>1, 3</sup>, Tetsuro Kobayashi,
- 7 M.D.<sup>1, 2</sup>, Tomoya Saito, M.D., M.P.H., Ph.D.<sup>1, 4</sup>, Tomimasa Sunagawa, M.D., Ph.D.<sup>1, 5</sup>,
- 8 Tamano Matsui, M.D., Ph.D.<sup>1, 5</sup>, Takaji Wakita, M.D., Ph.D.<sup>1, 5</sup>, MHLW COVID-19
- 9 Response Team<sup>1</sup>, Motoi Suzuki, M.D., Ph.D.<sup>1,5</sup>
- 10 1. Cluster Intervention Group, Ministry of Health, Labour and Welfare, Kasumigaseki
- 11 1-2-2, Chiyoda-ku, Tokyo 100-8916, Japan
- 12 2. Graduate School of Medicine, Hokkaido University, Kia 15 Jo Nishi 7 Chome,
- 13 Kitaku, Sapporo, 060-8638, Japan
- 14 3. Tohoku University Graduate School of Medicine, Seiryocho 2-1, Aoba-ku, Sendai,
- 15 980-8575, Japan
- 16 4. National Institute of Public Health, 5. National Institute of Infectious Diseases,
- 17 Toyama 1-23-1, Shinjuku-ku, Tokyo 162-8640, Japan
- 18 (Correspondence to Hiroshi Nishiura at: Address: Kita 15 Jo Nishi 7 Chome, Kita-ku,
- 19 Sapporo-shi, Hokkaido 060-8638, Japan, Tel: +81-11-706-5066; Fax: +81-11-706-7819;
- 20 Email: nishiurah@med.hokudai.ac.jp)
- 21

## 22 Abstract

| 23 | <b>Objective:</b> | To identify | common | features | of cases | with novel | coronavirus | disease |
|----|-------------------|-------------|--------|----------|----------|------------|-------------|---------|
|----|-------------------|-------------|--------|----------|----------|------------|-------------|---------|

- 24 (COVID-19) so as to better understand what factors promote secondary transmission
- 25 including superspreading events.
- 26 Methods: A total of 110 cases were examined among eleven clusters and sporadic cases,
- and investigated who acquired infection from whom. The clusters included four in
- 28 Tokyo and one each in Aichi, Fukuoka, Hokkaido, Ishikawa, Kanagawa and Wakayama
- 29 prefectures. The number of secondary cases generated by each primary case was
- 30 calculated using contact tracing data.
- **Results:** Of the 110 cases examined, 27 (24.6%) were primary cases who generated
- 32 secondary cases. The odds that a primary case transmitted COVID-19 in a closed
- environment was 18.7 times greater compared to an open-air environment (95%
- 34 confidence interval [CI]: 6.0, 57.9).

35 **Conclusions:** It is plausible that closed environments contribute to secondary

- transmission of COVID-19 and promote superspreading events. Our findings are also
- 37 consistent with the declining incidence of COVID-19 cases in China, as gathering in
- 38 closed environments was prohibited in the wake of the rapid spread of the disease.
- 39

## 40 Introduction

| 41 | Although the incidence of coronavirus disease 2019 (COVID-19) in China began to                       |
|----|-------------------------------------------------------------------------------------------------------|
| 42 | decrease in February 2020, <sup>1</sup> many countries are struggling with containment of the         |
| 43 | disease. To effectively reduce the spread of COVID-19, it is vital to identify common                 |
| 44 | features of cases so as to better understand what factors promote superspreading events, <sup>2</sup> |
| 45 | wherein an extraordinarily large number of secondary transmissions are produced by a                  |
| 46 | single primary case. Commissioned by the Minister of the Ministry of Health, Labour,                  |
| 47 | and Welfare of Japan, we collected secondary transmission data with the aim of                        |
| 48 | identifying high risk transmission settings.                                                          |
| 49 | Methods                                                                                               |
| 50 | As of 28 February 2020, <sup>3</sup> we examined a total of 110 cases among eleven                    |
| 51 | clusters and sporadic cases, and investigated who acquired infection from whom. The                   |
| 52 | clusters included four in Tokyo and one each in Aichi, Fukuoka, Hokkaido, Ishikawa,                   |
| 53 | Kanagawa and Wakayama prefectures. All traced transmission events were examined in                    |
| 54 | relation to close contact in indoor environments, including fitness gyms, a restaurant                |
| 55 | boat on a river, hospitals, and a snow festival where there were eating spaces in tents               |
| 56 | with minimal ventilation rate. The number of secondary cases generated by each                        |
| 57 | primary case was calculated using contact tracing data.                                               |
| 58 | Results                                                                                               |
| 59 | Of the 110 cases examined, 27 (24.6%) were primary cases who generated                                |
| 60 | secondary cases. Figure 1 shows the distribution of these transmissions, of which the                 |

61 mean and variance were 0.6 cases and 2.5 cases<sup>2</sup>, respectively. The odds that a primary

3

| 62 | case transmitted COVID-19 in a closed environment was 18.7 times greater compared                    |
|----|------------------------------------------------------------------------------------------------------|
| 63 | to an open-air environment (95% confidence interval [CI]: 6.0, 57.9).                                |
| 64 | If superspreading events are defined as events where the number of secondary                         |
| 65 | cases generated by a single primary case is greater than the 95th percentile of the                  |
| 66 | distribution (i.e. transmission to three or more persons), then seven of the 110 cases               |
| 67 | (6.4%) were involved in such events. Six of these events (85.7%) took place in closed                |
| 68 | environments, and the odds ratio (OR) of superspreading events in closed environments                |
| 69 | was as high as 32.6 (95% CI: 3.7, 289.5).                                                            |
| 70 | Discussion                                                                                           |
| 71 | It is plausible that closed environments contribute to secondary transmission of                     |
| 72 | COVID-19 and promote superspreading events. Closed environments are consistent with                  |
| 73 | environmental sampling study <sup>4</sup> and also large-scale COVID-19 transmission events such     |
| 74 | as that of the ski chalet-associated cluster in France and the church- and                           |
| 75 | hospital-associated clusters in South Korea <sup>5</sup> . Our findings are also consistent with the |
| 76 | declining incidence of COVID-19 cases in China, as gathering in closed environments                  |
| 77 | was prohibited in the wake of the rapid spread of the disease.                                       |
| 78 | Reduction of unnecessary close contact in closed environments may help                               |
| 79 | prevent large case clusters and superspreading events. We hope that with such a                      |
| 80 | reduction in contact the reproduction number of COVID-19 in Japan will be maintained                 |
| 81 | below 1 and contact tracing will be sufficient to contain disease spread. <sup>6</sup> As the        |
| 82 | possibility of confounders and interactions was not assessed in this study, additional               |
| 83 | studies must be conducted to verify the importance of closed environments as                         |
| 84 | facilitators for transmission of COVID-19.                                                           |

4

85

- 86 Conflict of interest:
- 87 We declare that we have no conflict of interest.
- 88 Acknowledgement:
- 89 We sincerely thank staff of local governments, including health centers and prefectural
- 90 institutes of public health, healthcare facilities, and associated companies and
- 91 organizations for cooperating us to collect and investigate secondary transmission data.
- 92 H.N. received funding support from Japan Agency for Medical Research and
- 93 Development [grant number: JP18fk0108050] and the Japan Science and Technology
- 94 Agency (JST) Core Research for Evolutional Science and Technology (CREST)
- 95 program [grant number: JPMJCR1413].
- 96
- 97 References:
- 98 1. The Novel Coronavirus Pneumonia Emergency Response Epidemiology Team. Vital
- 99 Surveillances: The Epidemiological Characteristics of an Outbreak of 2019 Novel
- 100 Coronavirus Diseases (COVID-19) China, 2020. China CDC Weekly
- 101 2020;2(8):113-122.
- 102 2. Lloyd-Smith JO, Schreiber SJ, Kopp PE, Getz WM. Superspreading and the effect of
- 103 individual variation on disease emergence. Nature 2005;438:355-359.
- 104 3. Ministry of Health, Labour and Welfare, Japan. On the novel coronavirus infection.
- 105 Tokyo: Ministry of Health, Labour and Welfare, 2020. Available online from:
- 106 https://www.mhlw.go.jp/stf/seisakunitsuite/bunya/0000164708\_00001.html (accessed
- 107 on 26 February 2020).
- 108 4. Ong SWX, Tan YK, Chia PY, Lee TH, Ng OT, Wong MSY, Marimuthu K. Air,

- 109 Surface Environmental, and Personal Protective Equipment Contamination by Severe
- 110 Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) From a Symptomatic
- 111 Patient. JAMA. 2020; in press. doi: 10.1001/jama.2020.3227.
- 112 5. Promed mail. Subject: PRO/AH/EDR> COVID-19 update (19): China, global, Italy
- 113 & Iran. imported cases, WHO. Archive Number: 20200226.7029842
- 114 6. Grantz K, Metcalf JE, Lessler J. Dispersion vs. control. 2020. Available online from:
- 115 https://hopkinsidd.github.io/nCoV-Sandbox/DispersionExploration.html (accessed on
- 116 26 February 2020).
- 117
- 118 Figure legend
- 119 Figure 1. The distribution of the number of secondary cases generated by a single
- 120 primary case with novel coronavirus (COVID-19). The mean and variance were 0.6
- 121 cases and  $2.5 \text{ cases}^2$ , respectively.

