Title:

Closed environments facilitate secondary transmission of coronavirus disease 2019 (COVID-19)

Running title: Closed environment and COVID-19

Authors:

Hiroshi Nishiura, M.D., Ph.D.1,2, Hitoshi Oshitani, M.D., Ph.D.1,3, Tetsuro Kobayashi, M.D.1,2, Tomoya Saito, M.D., M.P.H., Ph.D.1,4, Tomimasa Sunagawa, M.D., Ph.D.1,5, Tamano Matsui, M.D., Ph.D.1,5, Takaji Wakita, M.D., Ph.D.1,5, MHLW COVID-19 Response Team1, Motoi Suzuki, M.D., Ph.D.1,5

1. Cluster Intervention Group, Ministry of Health, Labour and Welfare, Kasumigaseki 1-2-2, Chiyoda-ku, Tokyo 100-8916, Japan
2. Graduate School of Medicine, Hokkaido University, Kia 15 Jo Nishi 7 Chome, Kitaku, Sapporo, 060-8638, Japan
3. Tohoku University Graduate School of Medicine, Seiryocho 2-1, Aoba-ku, Sendai, 980-8575, Japan

(Correspondence to Hiroshi Nishiura at: Address: Kita 15 Jo Nishi 7 Chome, Kita-ku, Sapporo-shi, Hokkaido 060-8638, Japan, Tel: +81-11-706-5066; Fax: +81-11-706-7819; Email: nishiurah@med.hokudai.ac.jp)
Abstract

Objective: To identify common features of cases with novel coronavirus disease (COVID-19) so as to better understand what factors promote secondary transmission including superspreading events.

Methods: A total of 110 cases were examined among eleven clusters and sporadic cases, and investigated who acquired infection from whom. The clusters included four in Tokyo and one each in Aichi, Fukuoka, Hokkaido, Ishikawa, Kanagawa and Wakayama prefectures. The number of secondary cases generated by each primary case was calculated using contact tracing data.

Results: Of the 110 cases examined, 27 (24.6%) were primary cases who generated secondary cases. The odds that a primary case transmitted COVID-19 in a closed environment was 18.7 times greater compared to an open-air environment (95% confidence interval [CI]: 6.0, 57.9).

Conclusions: It is plausible that closed environments contribute to secondary transmission of COVID-19 and promote superspreading events. Our findings are also consistent with the declining incidence of COVID-19 cases in China, as gathering in closed environments was prohibited in the wake of the rapid spread of the disease.
Introduction

Although the incidence of coronavirus disease 2019 (COVID-19) in China began to decrease in February 2020,¹ many countries are struggling with containment of the disease. To effectively reduce the spread of COVID-19, it is vital to identify common features of cases so as to better understand what factors promote superspreading events,² wherein an extraordinarily large number of secondary transmissions are produced by a single primary case. Commissioned by the Minister of the Ministry of Health, Labour, and Welfare of Japan, we collected secondary transmission data with the aim of identifying high risk transmission settings.

Methods

As of 28 February 2020,³ we examined a total of 110 cases among eleven clusters and sporadic cases, and investigated who acquired infection from whom. The clusters included four in Tokyo and one each in Aichi, Fukuoka, Hokkaido, Ishikawa, Kanagawa and Wakayama prefectures. All traced transmission events were examined in relation to close contact in indoor environments, including fitness gyms, a restaurant boat on a river, hospitals, and a snow festival where there were eating spaces in tents with minimal ventilation rate. The number of secondary cases generated by each primary case was calculated using contact tracing data.

Results

Of the 110 cases examined, 27 (24.6%) were primary cases who generated secondary cases. Figure 1 shows the distribution of these transmissions, of which the mean and variance were 0.6 cases and 2.5 cases², respectively. The odds that a primary
case transmitted COVID-19 in a closed environment was 18.7 times greater compared
to an open-air environment (95% confidence interval [CI]: 6.0, 57.9).

If superspreading events are defined as events where the number of secondary
cases generated by a single primary case is greater than the 95th percentile of the
distribution (i.e. transmission to three or more persons), then seven of the 110 cases
(6.4%) were involved in such events. Six of these events (85.7%) took place in closed
environments, and the odds ratio (OR) of superspreading events in closed environments
was as high as 32.6 (95% CI: 3.7, 289.5).

Discussion

It is plausible that closed environments contribute to secondary transmission of
COVID-19 and promote superspreading events. Closed environments are consistent with
environmental sampling study⁴ and also large-scale COVID-19 transmission events such
as that of the ski chalet-associated cluster in France and the church- and
hospital-associated clusters in South Korea⁵. Our findings are also consistent with the
decreasing incidence of COVID-19 cases in China, as gathering in closed environments
was prohibited in the wake of the rapid spread of the disease.

Reduction of unnecessary close contact in closed environments may help
prevent large case clusters and superspreading events. We hope that with such a
reduction in contact the reproduction number of COVID-19 in Japan will be maintained
below 1 and contact tracing will be sufficient to contain disease spread.⁶ As the
possibility of confounders and interactions was not assessed in this study, additional
studies must be conducted to verify the importance of closed environments as
facilitators for transmission of COVID-19.
Conflict of interest:

We declare that we have no conflict of interest.

Acknowledgement:

We sincerely thank staff of local governments, including health centers and prefectural institutes of public health, healthcare facilities, and associated companies and organizations for cooperating us to collect and investigate secondary transmission data. H.N. received funding support from Japan Agency for Medical Research and Development [grant number: JP18fk0108050] and the Japan Science and Technology Agency (JST) Core Research for Evolutional Science and Technology (CREST) program [grant number: JPMJCR1413].

References:

4. Ong SWX, Tan YK, Chia PY, Lee TH, Ng OT, Wong MSY, Marimuthu K. Air,

5. Promed mail. Subject: PRO/AH/EDR> COVID-19 update (19): China, global, Italy & Iran. imported cases, WHO. Archive Number: 20200226.7029842

Figure legend

Figure 1. The distribution of the number of secondary cases generated by a single primary case with novel coronavirus (COVID-19). The mean and variance were 0.6 cases and 2.5 cases2, respectively.
The figure shows a histogram with two categories:

- Primary cases in closed environment (gray bars)
- Other primary cases (white bars)

The x-axis represents the number of secondary cases per single primary case, ranging from 0 to 13. The y-axis represents the frequency, ranging from 0 to 80.

The histogram indicates that most primary cases result in no secondary cases, with a peak at 0 cases. There are also a few cases where one or two secondary cases occur.

The data suggest that primary cases in closed environments are more likely to result in no secondary cases compared to other primary cases.