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Abstract  34 

A bidirectional detrimental relationship between sleep alteration and Alzheimer’s disease 35 

(AD) has been reported in cognitively normal older adults. Here, we tested whether a similar 36 

association could be detected in young adults, decades before typical AD symptom onset. We 37 

investigated associations between sleep endophenotypes and genome-wide Polygenic Risk 38 

Scores (PRS) for AD in 363 young men (22.1±2.7y) devoid of sleep and cognitive disorders. AD 39 

PRS was associated with higher slow wave energy, a marker of sleep need, during habitual 40 

sleep and following sleep loss, and, potentially, with the relative increase in slow wave energy 41 

following sleep deprivation, reflecting sleep homeostasis. Furthermore high AD PRS was 42 

correlated with higher daytime sleepiness. These results imply that sleep features may be 43 

associated with AD liability in young adults and suggest that, contrary to older adults, denser 44 

and/or more intense sleep slow waves are associated with AD risk in early adulthood. 45 

  46 
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Introduction 47 

Defective proteostasis of brain amyloid-beta (Aβ) and tau protein antedates the clinical 48 

manifestations of Alzheimer’s disease by decades (Jack et al., 2018; Musiek and Holtzman, 49 

2015; Scheltens et al., 2016). This so-called “preclinical” window constitutes an opportunity 50 

for internvention that would hopefully reduce the predicted increase in AD prevalence 51 

(Norton et al., 2014), despite the absence of disease modifying treatments in the foreseeable 52 

future. In this respect, the further identification of AD risk factors is of paramount importance.  53 

Altered sleep has recently been related to increased risk for AD, over and above sleep 54 

disturbances in AD patients (Van Egroo et al., 2019). Longer latency to fall asleep and reduced 55 

sleep slow waves and rapid eye movement (REM) sleep are associated with both Aβ plaques 56 

and Tau neurofibrillary tangles (NFTs) in cognitively normal participants (Branger et al., 2016; 57 

Lucey et al., 2019; Mander et al., 2015). Sleep fragmentation and the reduction in REM sleep 58 

quantity in cognitively normal individuals aged >60 y predict the future risk of developing AD 59 

(Lim et al., 2013; Pase et al., 2017). Acute sleep deprivation (Holth et al., 2019; Ooms et al., 60 

2014), and experimentally induced reduction of sleep slow waves (Ju et al., 2017), increases 61 

cerebrospinal fluid (CSF) Aβ and Tau protein content.  62 

In post mortem human brain tissues, the first signs of brain protein aggregation are 63 

identified in the locus coeruleus (LC), a brainstem nucleus essential to sleep regulation 64 

(Mather and Harley, 2016), under the form of pretangles, consisting of phosphorylated Tau 65 

protein (Braak and Del Tredici, 2011). Critically, LC pretangles can be detected during 66 

adolescence, while by age 30, they can be detected in the  majority of the population (> 90%)  67 

(Braak and Del Tredici, 2011). With age, Tau deposits increase in the brain in a stereotypical 68 

manner and are tightly associated with cognitive decline in overt ‘clinical’ AD (Braak and Del 69 

Tredici, 2011). Individual variations in these intrinsic properties should be reflected in brain 70 
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function, including sleep, whether or not Tau aggregation has already occurred. Furthermore, 71 

although the consequences of LC pretangles are unknown (Mather and Harley, 2016), they 72 

might affect brain functions, including during sleep. Tau plays an important role in synaptic 73 

function while Tau pretangles and their surrounding soluble hyperphosphorylated Tau, which 74 

remain undetectable in vivo in humans, are suspected to have a deleterious impact on 75 

neuronal function (DeVos et al., 2013; Hall et al., 2015; Mondragón-Rodríguez et al., 2012; 76 

Pooler et al., 2014; Schultz et al., 2018).  77 

We therefore reasoned that early associations between sleep and AD might exist in 78 

young healthy adults (i.e., before 30 y), especially because AD is heritable (Marioni et al., 79 

2018). Sporadic AD, the most common form of AD in the general population, has an estimated 80 

heritability ranging between 58% to 79% (Ertekin-Taner, 2010; Gatz et al., 2006). Individual 81 

Polygenic Risk Scores (PRS) for AD can be computed based on results of published Genome 82 

Wide Association Studies (GWAS). These PRS reflect part of the genetic liability for AD in any 83 

asymptomatic individual and, at the group level, can be associated with phenotypes of interest 84 

which are related to the (risk) pathways leading to AD (Euesden et al., 2015; Ge et al., 2019). 85 

Recent studies reported significant association between AD PRS and CSF Aβ content 86 

(Martiskainen et al., 2015), cortical thickness (Sabuncu et al., 2012), memory decline  (Marden 87 

et al., 2016), and hippocampus volume (Mormino et al., 2016) in cognitively normal older 88 

adults (> 45 y) but, importantly, also in young adults (18 -35 y) (Mormino et al., 2016).  89 

Here, we conducted a proof-of-concept study to establish that sleep can be related to 90 

AD risk in young adults, using PRS for AD. We phenotyped sleep under different conditions 91 

(baseline, sleep extension, recovery sleep after total sleep deprivation) in a homogenous 92 

sample of young healthy cognitively normal men without sleep disorders and computed 93 

individual PRS for AD. We hypothesized that high PRS would be associated with sleep metrics 94 
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that had previously been associated with AD features in cognitively normal older adults. We 95 

further explored whether subjective assessments and behavioural correlates of sleep quality 96 

would be associated with PRS for AD.  97 

 98 

Results  99 

Following 3 weeks of imposed regular sleep which was confirmed with actimetry, 363 healthy 100 

men aged between 18 and 31 y (Table 1) completed a 7-day protocol including 101 

polysomnographically recorded sleep during habitual sleep-wake times (range of total sleep 102 

duration: 361 to 518 min), during a 12h extended sleep opportunity, and during a 12h recovery 103 

sleep opportunity following 40h of total sleep deprivation (Figure 1). A blood sample was 104 

collected in all participants to assess whole genome common single nucleotide 105 

polymorphisms (SNPs). PRS were computed as the weighted sum of the effect sizes of the AD-106 

associated SNPs, obtained from summary statistics of AD cases vs. controls GWAS (Euesden 107 

et al., 2015; Ge et al., 2019). PRS can indicate the presence of a genetic signal in moderate 108 

sample size studies (Euesden et al., 2015; Sabuncu et al., 2012) as long as it is computed based 109 

on a very large GWAS (Dudbridge, 2013; Santoro et al., 2018). We therefore used the summary 110 

statistics of one of the largest AD-GWAS available to date (N = 388,324) (Marioni et al., 2018) 111 

to compute individual PRS for AD in our sample and related these to sleep EEG characteristics 112 

following multiple quality control steps (Supplementary Figure S1).  113 

 114 

Polygenic risk for AD is associated with the generation of slow waves during sleep  115 

We first focused on baseline sleep, as it is most representative of habitual sleep, to evaluate 116 

sleep metrics that might be associated with AD liability. Given our sample size, we reduced 117 

the multiple comparison burden by selecting a priori variables of interest among 118 
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electrophysiology sleep metrics that have previously been related to Aβ and Tau in cognitively 119 

normal older adults: sleep onset latency [SOL] (Branger et al., 2016; Ettore et al., 2019), 120 

duration of wakefulness after sleep onset [WASO] (Ettore et al., 2019), duration of REM sleep 121 

(Pase et al., 2017), slow wave energy [SWE] during NREM sleep (Lucey et al., 2019; Mander et 122 

al., 2015), i.e. the cumulated power in the 0.5-4 Hz EEG band, and hourly rate of micro-arousal 123 

during sleep (Ju et al., 2017). To compute PRS, one considers SNPs below a p-value threshold 124 

in the reference GWAS; the optimal threshold for SNP selection to best compute a PRS for AD 125 

is not established. Previous studies employed very exclusive GWAS p-values (p~10-8) (Sleegers 126 

et al., 2015) to more inclusive p-values (p = .5) (Escott-Price et al., 2015; Mormino et al., 2016), 127 

leading to the inclusion of effect sizes of a few tens to hundreds of thousands SNPs to compute 128 

AD PRS. We opted for computing PRS based on increasingly inclusive p-value thresholds 129 

(including SNPs reaching GWAS significance – p < 5x10-8 - to very liberal p < 1), whilst also 130 

pruning SNPs based on their correlation structure (i.e. linkage disequilibrium) (Supplementary 131 

Table S1) (Escott-Price et al., 2015; Mormino et al., 2016). In addition, we performed a PRS 132 

analysis using all SNPs without any selection.  133 

General linear model (GLM) analyses controlling for age, body mass index (BMI) and 134 

total sleep time (TST), reveal an significant association between baseline night SWE and AD 135 

PRS (p <0.02; β ≥ 0.12) from a p-value threshold of p=0.05 up to selecting all SNPs; the 136 

association reached stringent experiment-wise correction for multiple comparisons when 137 

selecting all SNPs (p < 0.00125, see methods; β = 0.17; Figure 2A; Supplementary Table S2). 138 

We performed a negative control analysis using a PRS for height, a variable for which no 139 

association with sleep metrics was expected, and found no association (Supplementary Figure 140 

S2A). The association between AD PRS and SWE was positive (Figure 2B) indicating that higher 141 

SWE was associated with higher AD-PRS. SWE was also positively associated with TST 142 



7 
 

(Supplementary Table S2), which was expected since TST conditions the opportunity to 143 

generate slow waves, and negatively with age, which is in line with the literature (Carrier et 144 

al., 2011) but may still be surprising given the young age of our sample. Importantly, since 145 

GLM included TST and age, they are not driving the association we find between SWE and PRS 146 

for AD.  147 

Sleep onset latency (SOL) also reached significant association with AD PRS from a p-148 

value threshold of p=0.05 up to p = 1 (p ≤ 0.04; β = -0.11), but significance did not reach 149 

stringent experiment-wise correction for multiple comparisons (p < 0.00125) (Figure 2A; 150 

Supplementary Table S2). Hence, this result has to be considered with caution and will not be 151 

extensively commented upon. It is interesting to note, however, that the association between 152 

PRS for AD and SOL is negative, with higher PRS associating with shorter sleep latency (Figure 153 

2C). Of note, REM% reached uncorrected significance (p < 0.05) for thresholding at p=0.05 (β 154 

= 0.1), with a positive association with AD PRS (Figure 2A; Supplementary Table S2), but, since 155 

it is observed for only one p-value threshold, this will not be discussed any further.   156 

These results indicate that, particularly when considering all SNPs to construct the AD 157 

PRS, the overnight power of the slow waves generated during Non-REM sleep, which is a 158 

widely accepted measure of sleep need (Dijk and Czeisler, 1995), is linearly and positively 159 

associated with AD genetic liability. This finding suggests that individuals with a higher genetic 160 

liability for AD have a higher need for sleep. This idea is further reinforced by the fact that 161 

association between SWE and AD PRS is also significant when only considering SWE of the first 162 

hour of sleep (Dijk and Czeisler, 1995) (Supplementary Figure S3 & Table S3), and the 163 

potential negative association with SOL, which depends in part on sleep need.  164 

Since slow oscillations (SO), i.e. EEG slow waves < 1 Hz, may be distinct from faster slow 165 

waves (Steriade and Amzica, 1998), we further decomposed SWE into SO-SWE (0.5-1Hz) and 166 
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faster-oscillations—SWE (FO-SWE; 1.25 – 4 Hz). Both SO-SWE and FO-SWE were similarly and 167 

significantly associated with AD PRS and for the same p-value thresholds (Figure 2D; 168 

Supplementary Table S3). The association we found between SWE and AD PRS does not 169 

appear therefore to arise exclusively from either slower or faster slow waves.    170 

 171 

Recovery sleep, slow wave sleep rebound and extension night  172 

When considering sleep EEG of the other nights, we only included SWE, as it is the only sleep 173 

metric that was associated with PRS for AD at stringent correction for multiple comparisons 174 

threshold. Similarly to baseline night, when considering SWE during the recovery night that 175 

followed total sleep deprivation, GLM including age, BMI and TST, reveal that SWE and AD PRS 176 

are significantly associated (p ≤ 0.04; β ≥ 0.11) from p-value thresholding at p=0.1 up to using 177 

all SNPs (Figure 3A; Supplementary Table S4), and the association reached stringent 178 

experiment-wise correction for multiple comparisons at p-value threshold of p=1 (p < 179 

0.00625). Again, the association was positive with higher SWE associated with higher AD PRS 180 

(Figure 3B) and results were similar when considering only SWE of the first hour of sleep 181 

(Supplementary Figure S3 & Table S4). Individuals typically produce more sleep slow waves 182 

in response to sleep loss, as part of the homeostatic regulation of sleep (Klerman and Dijk, 183 

2005). Therefore, individuals with higher need for sleep after sleep loss have a high PRS for 184 

AD.  185 

Slow wave sleep rebound quantifies the physiological response to a lack of sleep based 186 

on the relative changes from normal sleep to recovery sleep following sleep loss. We 187 

computed the ratio between the initial SWE (1h of sleep) during recuperation and baseline 188 

nights to assess SWE rebound. GLM analysis, including age and BMI, indicated that SWE 189 

rebound reached significant association with AD PRS when including all SNPs (β = -0.11), but 190 
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significance did not reach stringent experiment-wise correction for multiple comparisons (p < 191 

0.00625) (Figure 3A; Supplementary Table S4). Sleep rebound is driven by sleep homeostasis 192 

which tightly regulates sleep duration and intensity based on prior sleep-wake history (Dijk 193 

and Landolt, 2019). Since we observe an association with AD PRS for a single p-value threshold 194 

at uncorrected p-value our findings suggest that, in our sample, AD PRS was not tightly 195 

associated with sleep homeostatic response. Interestingly though, Spearman’s correlation 196 

indicated that SWE rebound was correlated to SWE during the recovery night (r = 0.39, p <10-197 

14; Figure 3C). 198 

We then considered SWE during the extension night and PRS for AD in a GLM, including 199 

age, BMI and TST. Results indicated that extension night SWE was not significantly linked to 200 

AD PRS. This may be because sleep timing for this particular night affects sleep quality (Dijk 201 

and Landolt, 2019; Dijk and Czeisler, 1995) (Figure 3A). In contrast to baseline and 202 

recuperation sleep periods which were initiated at habitual sleep time, sleep extension started 203 

2 hours before habitual sleep time, covering the end of a period known as the evening “wake-204 

maintenance zone” corresponding to the time at which the circadian system maximally 205 

promotes wakefulness (Dijk and Czeisler, 1995). In addition, the circadian system is known to 206 

affect the relative content in Non-REM and REM sleep as well as in different EEG frequencies 207 

(Dijk and Landolt, 2019; Dijk and Czeisler, 1995). Therefore, the imposed 2h advance of sleep 208 

time during the extension night affected sleep quality, which may have reduced the 209 

association between SWE and AD PRS found with baseline and recovery nights.  210 

 211 

Polygenic risk for AD is associated with increased subjective daytime sleepiness  212 

We next focused on the non-EEG sleep metrics of our protocol and explored their potential 213 

association with AD PRS. Based on the 3 weeks of actigraphy with imposed regular habitual 214 
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sleep time at home, we computed the probability of transition from rest to activity during the 215 

sleep period [kRA; (Lim et al., 2013)]. kRA is a proxy for sleep fragmentation and has been 216 

associated with cognitive decline and the risk for developing AD in cognitively normal older 217 

adults [mean age 81.6 y (Lim et al., 2013)]. kRA showed a negative association (higher AD PRS 218 

is associated with less fragmented sleep) with PRS for AD for two p-value thresholds, p=5 x 10-219 

8 and p = 10-8 (Figure 4A; Supplementary Table S5), but did not reach stringent experiment-220 

wise correction for multiple comparisons (p < 0.002); it will not be further discussed. 221 

Two questionnaires assessed habitual subjective sleep quality and daytime sleepiness 222 

before the start of the protocol. Subjective sleep quality was not significantly associated with 223 

AD PRS. By contrast, subjective daytime sleepiness was significantly associated with PRS for 224 

AD (p < 0.05; β ≥ 0.11) from thresholding at p < 10-4 up to a threshold of p < 1 and at stringent 225 

experiment-wise correction for multiple comparisons at p-value thresholds of p < 0.05 and p 226 

< 0.3 (p < 0.002, see methods; β ≥ 0.16; Figure 4A; Supplementary Table S5). The association 227 

was positive indicating that higher habitual subjective daytime sleepiness was associated with 228 

higher AD PRS (Figure 4B). This shows that the association between AD PRS and sleep need, 229 

as assessed by electrophysiology, is not a mere effect of the protocol and is mirrored at the 230 

behavioural level during habitual daytime functioning (outside the experimental protocol). 231 

Importantly the vast majority of participants had no or mild levels of sleepiness with a minority 232 

(N = 28) reporting moderate level of daytime sleepiness; the association with daytime 233 

sleepiness is therefore not driven by extreme or clinically relevant sleepiness levels but rather 234 

by ordinary variability in healthy young individuals. 235 

 236 

  237 
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Discussion 238 

We provide evidence that genetic liability for AD is related to sleep characteristics and daytime 239 

sleepiness in young adults (aged 18 to 31 y), i.e. decades before typical onset age of clinical 240 

AD symptoms and at an age at which current AD biomarkers are typically negative. Our sample 241 

size is modest for the detection of small effect size associations, so the present results should 242 

be considered as a proof-of-concept for linking AD liability and sleep in young adults. We 243 

emphasize, however, that the unique deep phenotyping of our protocol in hundreds of 244 

participants, based on gold standard electrophysiology and comprising different sleep 245 

conditions, undoubtedly increased the sensitivity of our analyses so that we could find 246 

associations that survived stringent correction for multiple comparisons. Importantly, our 247 

protocol provides links between disease risk and sleep physiology in contrast to coarser 248 

phenotyping based on sleep questionnaires or actimetry alone. The characteristics of our 249 

sample renders our findings remarkable: to increase the genetic uniformity of the sample we 250 

only included Caucasian men within a narrow age range; they were healthy and devoid of any 251 

sleep disorders or sleep complaints and their prior sleep-wake history was recorded and 252 

stable. In this carefully selected homogenous sample, higher PRS for AD was associated with 253 

producing denser or larger slow waves during baseline and recovery night time sleep, 254 

potentially with large slow wave sleep rebound following sleep deprivation, and with 255 

reporting higher daytime sleepiness.  256 

Larger and more abundant slow waves during habitual sleep in young and healthy 257 

individuals can result from an increased sleep need due to insufficient prior sleep (Klerman 258 

and Dijk, 2005). This appears unlikely: prior sleep-wake history was stringently controlled for 259 

3 weeks prior to entering the lab, ruling out undue sleep deprivation, sleep restriction or 260 

disrupted rhythmicity. Moreover, throughout the protocol, participants followed their own 261 
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sleep schedule, a regime that should not expose them to important chronic sleep restriction. 262 

Finally, SWE during the sleep extension night did not significantly correlate with subjective 263 

daytime sleepiness (Spearman’s correlation r = 0.08, p = 0.11), supporting the idea that, when 264 

given a longer sleep opportunity, individuals with higher and yet normal daytime sleepiness 265 

did not sleep more intensely to recover a putative prior sleep debt. Alternatively, increased 266 

slow wave density and/or intensity could reflect a faster build-up of sleep need (Viola et al., 267 

2007). Indeed, sleep homeostasis is thought to result from molecular and cellular changes 268 

induced by waking brain function and behaviour (Scammell et al., 2017; Tononi and Cirelli, 269 

2014). Synaptic potentiation and increased synaptic strength resulting from waking 270 

experience are reflected in a progressive increased cortical excitability during wakefulness 271 

(Huber et al., 2013; Ly et al., 2016) and an increase in slow wave activity during subsequent 272 

sleep (Scammell et al., 2017; Tononi and Cirelli, 2014). Likewise, extracellular glutamate 273 

concentration and glutamatergic receptor density increase with time awake and affect brain 274 

function (Dash et al., 2009; Hefti et al., 2013). Here, SWE rebound following sleep loss, i.e. the 275 

ratio between baseline and recovery sleep, was only significantly associated with high PRS for 276 

AD for one p-value threshold and at uncorrected significance threshold, but was strongly 277 

associated with SWE during recovery sleep. We therefore find only partial evidence for this 278 

second hypothesis, which will require more investigations.   279 

How are these findings related to AD? The answer to this question remains speculative 280 

because the time course of AD processes across lifespan is still poorly understood. In 281 

transgenic mice, neuronal activity locally increases the level of Aβ in the interstitial fluid and 282 

drives local Aβ aggregation (Bero et al., 2011). The progressive Aβ deposition ultimately 283 

disrupts local functional connectivity and increases regional vulnerability to subsequent Aβ 284 

deposition (Bero et al., 2012). We might thus hypothesize that individuals with more intense 285 
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brain activity during wakefulness (and therefore also during sleep) would also be exposed to 286 

larger Aβ extracellular levels and a greater risk of developing Aβ deposits. This hypothesis 287 

appears unlikely for the following reasons. First, post mortem examinations show that the 288 

earliest evidence of Aβ deposits (stage 1 (Thal et al., 2002)) is not observed before 30 y (Braak 289 

and Del Tredici, 2015). Second, Aβ oligomers might be released and exert their detrimental 290 

effect on brain function at an earlier age. However, in transgenic mice, sleep-wakefulness 291 

cycle and diurnal fluctuation in brain extracellular Aβ remain normal until plaque formation 292 

(Roh et al., 2012).  293 

By contrast, given the age range of our population sample, the reported topography of 294 

pretangles at this age (Braak and Del Tredici, 2011) and the power of PRS for AD to 295 

discriminate AD patients in case-control samples (Escott-Price et al., 2015), higher PRS in our 296 

young sample might reflect the influence of incipient Tau aggregation onto sleep regulation 297 

through the LC (and other non-thalamic cortically-projecting nuclei, as raphe nuclei) (Braak 298 

and Del Tredici, 2011). Tau, an intracellular protein, is also detected in the extracellular space. 299 

Over and above a low level constitutive tau secretion (Chai et al., 2012), neuronal activity 300 

increases the release of tau in the extracellular space (Yamada et al., 2014), thereby 301 

participating in enhancing tau spread and tau pathology in vivo (Schultz et al., 2018). 302 

Moreover, early electrophysiological changes indicative of hyperexcitability are observed in 303 

intact neurons from transgenic tau mice (Crimins et al., 2012). In the cerebral cortex of tau 304 

transgenic mice, glutamatergic and GABAergic neurons are in a hypermetabolic state, 305 

characterized by a relative increase in production of glutamate (Nilsen et al., 2013). By 306 

contrast, decreasing tau in epilepsy-prone transgenic mice reduces neuronal hyperexcitability 307 

(Holth et al., 2013). These findings would suggest that a strong cerebral activity during 308 

wakefulness would result in a higher daily average in perceived sleepiness, a substantial tau 309 
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release and an enhanced sleep homeostasis processes, as indicated by denser and larger slow 310 

waves.  311 

The reasons for the vulnerability of LC to Tau aggregation are not established but might 312 

reside in its constant recruitment for essential functions, its energy demanding and ubiquitous 313 

brain connections, its high vascularization or its higher susceptibility to oxidative stress 314 

(Mather and Harley, 2016). Although it tantalizing to hypothesize that tau is involved in the 315 

mechanisms linking slow wave sleep and AD liability, one can also speculate that it is the LC 316 

intrinsic characteristics that are related to tau vulnerability (subsequent) that associated with 317 

PRS for AD, meaning that the association would not necessarily require the presence of tau to 318 

be detected.  319 

On the other hand, in tau transgenic mice, misfolded and hyperphosphorylated tau  320 

alters hippocampal synaptic plasticity (Polydoro et al., 2014), eventually induces a loss of 321 

hippocampal LTP and causes reduction of synaptic proteins and dendritic spines (Van der 322 

Jeugd et al., 2012) (Sydow et al., 2011). These findings would predict a lower sleep need in 323 

participants with high AD liability. However, it is possible that these detrimental processes 324 

take place later on in the development of the disease or emerge from an interaction between 325 

tau and  Ab (Oddo et al., 2003) (Fein et al., 2008). Accordingly, in older adults, significant 326 

associations, opposite to the current findings, were observed between slow wave sleep and 327 

risk for AD based on PET biomarkers (Lucey et al., 2019; Mander et al., 2015): higher Aβ 328 

(Mander et al., 2015) or tau (Lucey et al., 2019) burdens were associated with lower sleep 329 

slow wave EEG power. Our results suggest therefore that the association between AD risk and 330 

sleep homeostasis changes with age: at an early stage, dense and large slow waves would be 331 

associated with increased AD risk. Later on, the ability to generate slow waves would play a 332 
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protective role against AD risk. Deep sleep phenotyping across all ages and/or in long term 333 

longitudinal studies will have to test this hypothesis.  334 

We emphasize that the cross sectional nature of our study, precludes any causal 335 

interpretation of the association we find between AD and sleep. We further stress that our 336 

sample only include men and cannot therefore be extended to the entire population. Women 337 

have been reported to have different sleep characteristics, including the production of more 338 

numerous and intense slow waves during sleep (Svetnik et al., 2017). It is also worth 339 

mentioning that we cannot isolate in our findings the specific contributions of the circadian 340 

timing system, which is the second fundamental mechanism regulating sleep and wakefulness 341 

(Dijk and Landolt, 2019). Although we find significant association between AD PRS and 342 

baseline/recovery SWE and daytime sleepiness across similar p-value thresholds, more 343 

research is also required to determine how many SNPs one has to include, i.e. what SNP 344 

selection strategy should be used to best predict AD. Previous studies support that using a 345 

lenient p-value thresholds is successful in doing so (Escott-Price et al., 2015; Mormino et al., 346 

2016), thus we are confident that our finding are related to AD liability. Our PRS calculation 347 

was stringently controlled for the weight of chromosome 19 (see methods) to avoid excessive 348 

contribution from Apolipoprotein E (APOE) genotype, which is the genetic trait most 349 

associated with sporadic AD. When comparing APOE ε4 carriers genotype vs. non-carriers, no 350 

significant difference in baseline night SWE and daytime sleepiness was observed 351 

(Supplementary Figure S4), in line with our findings that a large number of SNPs is required 352 

to find an association between SWE and PRS for AD. 353 

The specificity of our findings for a given EEG frequency band and/or for NREM remains 354 

to be fully established. As many previous studies on linking sleep and AD risk [e.g. (Lucey et 355 

al., 2019; Mander et al., 2015)], we only focussed on a limited set of sleep metrics, and 356 
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included a single power measure over a given frequency band. Although not the focus of the 357 

present paper, we computed SWE, relative SWE (i.e. ratio between SWE and overnight total 358 

NREM power), overnight cumulated total power during NREM sleep and overnight cumulated 359 

power in the 2 to 6 Hz band during REM sleep of the baseline night in individuals among the 360 

higher and lower AD PRS quartile (Supplementary Figure S5). This simple analyses indicates 361 

that individuals with 25% highest AD PRS had higher power than individuals with 25% lowest 362 

AD PRS for all three absolute measures (t-test; p ≤ 0.01 but not for relative SWE (p = 0.14), 363 

suggesting that our findings may not be specific to NREM sleep and SWE. We emphasize, 364 

however, that, given our modest sample size, our analyses was not planned to address such 365 

question. This first preliminary analysis warrants future studies with larger sample size 366 

ensuring sufficient power when using a larger set of sleep metrics. Since we also find that 367 

daytime sleepiness, a wakefulness trait, is associated with PRS for AD, and because of the link 368 

between tau protein and cortical excitability (Holth et al., 2013), neuronal activity synchrony 369 

during wakefulness should be associated with the risk for developing AD to assess whether 370 

isolated links are specific to sleep.  371 

In conclusion, we find that denser and/or more intense sleep slow waves during 372 

baseline and recovery sleep and daytime sleepiness are associated with the genetic liability 373 

for AD in young and healthy young men. This finding supports that sleep slow wave and 374 

sleepiness measures may help early detection of an increased risk for AD and reinforce the 375 

idea that sleep may be an efficient intervention target for AD. Similarly to most studies 376 

associating PRS to phenotypes of interest [e.g. (Marden et al., 2016; Mormino et al., 2016; 377 

Sabuncu et al., 2012; Santoro et al., 2018)], the effects we isolated constitute relatively small 378 

effects (r < 0.2), however, recalling that sleep must be envisaged within the multifactorial 379 

aspect of a complex disease such as AD (Norton et al., 2014).  380 
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Materials and Methods 381 

Participants 382 

Three hundred and sixty-four young healthy men (aged 18-31 years) were enrolled for the 383 

study after giving their written informed consent, and received a financial compensation. This 384 

research was approved by the Ethics Committee of the Faculty of Medicine at the University 385 

of Liège, Belgium.  386 

Exclusion criteria were as follows: Body Mass Index (BMI) > 27; psychiatric history or 387 

severe brain trauma; addiction, chronic medication affecting the central nervous system; 388 

smoking, excessive alcohol (> 14 units/week) or caffeine (> 3 cups/day) consumption; shift 389 

work in the past year; transmeridian travel in the past three months; moderate to severe 390 

subjective depression as measured  by the Beck Depression Inventory (BDI)(Beck et al., 1988) 391 

(score > 19); poor sleep quality as assessed by the Pittsburgh Sleep Quality Index (PSQI) 392 

(Buysse et al., 1989) (score > 7). Participants with sleep apnea (apnea hypopnea index > 393 

15/hour; 2017 American Academy of Sleep Medicine criteria, version 2.4) were excluded 394 

based on an in-lab screening night of polysomnography. One participant, part of a twin pair, 395 

was excluded from the analyses so that the analysed sample included 363 participants (Table 396 

1). EEG recordings were missing due to technical issues for three of the five participants per 397 

nights of sleep considered in this manuscript. No individual had more than one night of sleep 398 

missing so that all 363 individuals contributed to at least part of the analyses reported here. 399 

The Epworth Sleepiness Scale (Johns, 1991) was used to characterize daytime sleepiness but 400 

was not used for inclusion. While most participants scored normal values (≤ 11), 28 401 

participants had scores ranging from 12 to 15, corresponding to moderate daytime sleepiness. 402 

Because of an initial error in automatic evaluation of computerized questionnaires, seven 403 

participants had PSQI scores higher than cut-off (scores of 8 or 9). No participants were, 404 
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however, taking sleep medication. To avoid reducing sensitivity, these participants were 405 

included in all analyses but removing them did not change statistical outcomes.   406 

Although available in our laboratory, Ab- and tau- PET scans were not conducted in 407 

participants: it was felt unethical to expose them to an irradiation while results would 408 

necessarily be normal. 409 

Experimental Protocol 410 

Individual sleep-wake history was strictly controlled: during the three weeks preceding the in-411 

lab experiment, participants were instructed to follow a regular sleep schedule according to 412 

their habitual sleep timing (+/-30 min for the first 2 weeks; +/- 15 min for the last week). 413 

Actigraphy data showed that included participants faithfully followed the assigned schedules.  414 

Figure 1 provides an overview of the protocol. On Day 1, a urine drug test was 415 

performed (10-multipanel drug) before completing an adaptation night at habitual 416 

sleep/wake schedule during which a full polysomnography was recorded in order to screen 417 

for sleep related breathing disorders or periodic limb movements. On Day 2, participants left 418 

the lab with the instruction not to nap (checked with actigraphy). They returned to the 419 

laboratory at the end of Day 2, completed a baseline night of sleep under EEG monitoring at 420 

habitual sleep/wake schedule and remained in the laboratory until Day 7 under constant 421 

CCTV. A 12h sleep extension night under EEG and centered around habitual sleep mid-point 422 

was initiated on Day 3, in complete darkness with the instruction to try to sleep as much as 423 

possible. Day 4 included a 4h afternoon nap under EEG recording (centred 1h after the mid-424 

point between morning wake-up time and evening sleep time) further dissipated any residual 425 

sleep need. What we termed the “before” night was also initiated on Day 4. It consisted in 8h 426 

sleep opportunity starting at habitual sleep time. During Day 5 and 6, participants remained 427 

awake for 40 hours under constant routine (CR) conditions [dim light < 5 lux, semi-recumbent 428 
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position, 19°C ± 1, regular isocaloric food intake] before initiating a 12h recuperation night 429 

from habitual sleep time until 4h after habitual wake time. Except during sleep (darkness – 0 430 

lux) and constant routine protocol (dim light < 5 lux), participants were maintained in normal 431 

room light levels oscillating between 50 and 1000 lux depending on location and gaze. 432 

Analyses of “before” night, nap and sleep deprivation protocol will be reported elsewhere. 433 

The current study focusses on baseline, extension and recovery nights of sleep. 434 

EEG acquisitions and analyses 435 

Sleep data were acquired using Vamp amplifiers (Brain Products, Germany). The electrode 436 

montage consisted of 10 EEG channels (F3, Fz, F4, C3, Cz, C4, Pz, O1, O2, A1; reference to right 437 

mastoid), 2 bipolar EOGs, 2 bipolar EMGs and 2 bipolar ECGs. Screening night of sleep also 438 

included respiration belts, oximeter and nasal flow, 2 electrodes on one leg, but included only 439 

Fz, C3, Cz, Pz, Oz and A1 channels. EEG data were re-referenced off-line to average mastoids. 440 

Scoring of sleep stages was performed automatically in 30-s epochs using a validated 441 

algorithm (ASEEGA, PHYSIP, Paris, France) (Berthomier et al., 2020) and according to 2017 442 

American Academy of Sleep Medicine criteria, version 2.4. An automatic artefact detection 443 

algorithm with adapting thresholds (Wallant et al., 2016) was further applied on scored data. 444 

Power spectrum was computed for each channel using a Fourier transform on successive 4-s 445 

bins, overlapping by 2-s., resulting in a 0.25 Hz frequency resolution. The night was divided 446 

into 30 min periods, from sleep onset until lights on. For each 30 min period, slow wave energy 447 

(SWE) was computed as the sum of generated power in the delta band (0.5 – 4 Hz range) 448 

during all the NREM 2 (N2) and NREM 3 (N3) epochs of the given period, after adjusting for 449 

the number of N2 and N3 epochs to account for artefacted data (Skorucak et al., 2018). As the 450 

frontal regions are most sensitive to sleep-wake history (Schmidt et al., 2012), SWE was 451 

considered over the frontal electrodes (mean over F3, Fz, F4). To deal with the multiple 452 



20 
 

comparison issue, we did not consider SWE over the other parts of the scalp (Dijk and Landolt, 453 

2019). Additional analyses also considered cumulative power between 0.5 and 25 Hz during 454 

NREM and cumulative power between 2 to 6 Hz power during REM sleep as well through 455 

similar computation procedures. 456 

Genotyping and Imputation  457 

Blood sample were collected on Day 2 for DNA analyses. The genotyping was performed using 458 

the Infinium OmniExpress-24 BeadChip (Illumina, San Diego, CA) based on Human Build 37 459 

(GRCh37). Missingness of the SNP markers were below 20% in all individuals. Using PLINK 460 

software (Purcell et al., 2007), we excluded the SNPs with a minor allele frequency (MAF) 461 

below 0.01, or Hardy-Weinberg disequilibrium (HWD) significance below 10-4. Markers with 462 

ambiguous alleles (A-T, T-A, G-C, C-G) were excluded as well. We finally ended with 511,729 463 

SNPs. To investigate the relatedness between the individuals, using PLINK --genome 464 

command, we computed the identity by descent (IBD) estimates for all pairs of individuals. 465 

For 8 pairs, the composite pi-hat score was between 0.15 and 0.56 suggesting the existence 466 

of at least 3rd degree relatives in our cohort. However, we did not exclude any individuals at 467 

this level of analysis. We merged our cohort with “1000 Genomes Project”  (Altshuler et al., 468 

2010)and employed principal component analyses (PCA) on the merged samples to see if our 469 

cohort was located in the European cluster (Figure S1A). We further assess allele frequencies 470 

coherence of our cohort with the European subset of “1000 Genomes Project” (Figure S1B). 471 

Markers with allele frequencies deviating more than 0.2 unit from European allele frequency 472 

were excluded (Figure S1C). Genotype imputation was performed using “Sanger imputation 473 

server” by choosing “Haplotype Reference Consortium (release 1.1)” (HRC) as Reference Panel 474 

and the Pre-phasing algorithm EAGLE2. Post-imputation QC was then performed very similarly 475 

to the one of above (MAF < 0.01, HWD < 10-4, imputation quality score < 0.3). As a result of 476 
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such filters, 7,554,592 variants remained for the analysis. However, to avoid having markers 477 

with allele frequencies deviating from European allele frequency, we computed the allele 478 

frequencies for the samples in our cohort after imputation and cross checked them with the 479 

European allele frequency (obtained from HRC Reference Consortium (release 1.1)) (Figure 480 

S1D). The markers whose allele frequencies were deviating more than 0.2 unit from European 481 

allele frequency were excluded. 482 

Predicting Height 483 

To validate common SNP assessments in our sample we predicted actual height based on 484 

Polygenic Scores computed based on a meta-analysis of a recent GWAS study (Yengo et al., 485 

2018) on around 700,000 individuals. We used all the variants in the meta-analysis that were 486 

included in our cohort [3121 SNPS out of 3290]. The procedure for calculating the Liability for 487 

height is the same as the one described in the following section. Figures S1E visualize the 488 

Pearson correlation results between the actual values for Height and estimated genetic 489 

Liability of Height (r = 0.46, p = 10-20). Explained variance is very close to that reported 490 

previously (Yengo et al., 2018), i.e. is 24.6% . 491 

Polygenic Risk Score (PRS) 492 

Polygenic risk score (PRS) is defined as the sum of multiple single-nucleotide polymorphism 493 

alleles associated with the trait for an individual, weighted by the estimated effect sizes 494 

(Euesden et al., 2015; Ge et al., 2019). We used the estimated effect sizes from a GWAS by 495 

Marioni et al. including 388,324 individuals, with 67,614 cases - patients and self-report 496 

familial history of AD – and 320,710 controls (Marioni et al., 2018). To generate a set of 497 

approximately independent SNPs in our sample, linkage disequlibrium (LD) clumping was 498 

performed using PLINK (Purcell et al., 2007) on window size of 1000-kb using a pairwise r2  cut-499 
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off of 0.2 and a predetermined significance thresholds (p-value < 5 10-8, 10-6, 10-4, 0.001, 0.01, 500 

0.05, 0.1, 0.3, 0.5, and 1). Due to the effect of APOE in chromosome 19, we used a more 501 

stringent criteria pairwise r2 cut-off of 0.01 for this chromosome. In addition, we also 502 

calculated the PRS using all the variants with no pruning, i.e. no correction for linkage 503 

disequilibrium, thereby selecting all SNPs for PRS construction. This procedure yielded a 504 

quantitative polygenic score, under each significance threshold, for each individual in our 505 

cohort. 506 

Height as a negative control 507 

From the known and hypothesised biology, we did not expect any a priori association between 508 

the sleep phenotypes and a genetic liability for height. Therefore, we included an analysis of 509 

polygenic scores for height as a negative control, performing exactly the same association 510 

analyses as we did for liability to AD. 511 

Actigraphy data collection and analysis 512 

Actigraphy data were collected with Actiwatch 4 devices (Cambridge Neurotechnology ltd, UK) 513 

worn on the non-dominant arm. Data consisted in the sum of activity counts over 60-second 514 

intervals. Data were analyzed with pyActigraphy (Version v0.1) (Hammad and Reyt, 2019) which 515 

implements the computation of state transition probabilities from rest to activity (kRA) (Lim 516 

et al., 2013). In order to better reflect sleep fragmentation, this probability was calculated only 517 

over sleep periods for each study’s participant. The sleep period is defined as the period 518 

comprised between the activity offset and onset times, derived from the average 24h activity 519 

profile. In addition, to mitigate the uncertainty on their exact timing, the offset and onset 520 

times were shifted by +15 min and -15min, respectively. 521 

Statistical Analysis 522 
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We employed general linear model (GLM) to test the associations between sleep metrics of 523 

interests as a dependent variable and the estimated PRS as an independent variables and age, 524 

BMI and TST as covariates. Prior to the analysis, we removed the outliers among the sleep 525 

metrics by excluding the samples lying beyond 4 times the standard deviation (the final 526 

number of individuals included in each analyses is reported below each dependent variable in 527 

the supplementary tables). All analyses were performed in Python. 528 

In this study, we analysed multiple traits and multiple polygenic risk scores (PRS) for 529 

association. To control the experiment-wise false positive rate, we estimated the number of 530 

independent tests that we performed, and set an experiment-wise p-value threshold 531 

accordingly. Since the traits are phenotypically correlated with each other and the PRSs are 532 

also correlated, we used the correlation structure to estimate the equivalent number of tests, 533 

which is the number of independent tests that would result in the same overall observed 534 

variation. 535 

For each correlation matrix of traits and PRS, we performed a singular value 536 

decomposition (SVD), ordered the resulting eigenvalues and calculated the sum of all 537 

eigenvalues. We then calculated the minimum number of linear combination of the traits that 538 

resulted in 99% of the variation. For the 5 EEG phenotypic sleep traits this estimate was 5, 539 

showing that they are not highly correlated. Likewise, for the 3 non-EEG phenotypic sleep 540 

traits this estimate was 3. For the 11 PRS for AD and height, the resulting number was 8 and 541 

4, respectively, consistent with a higher correlation structure among the multiple height 542 

predictors. Therefore, our analyses with the 5 EEG sleep metrics implies a total number of 40 543 

and 20 tests when confronted to AD-PRS and height-PRS respectively. Hence, for any of our 544 

trait-PRS combination to be statistically significant when taken multiple testing into account, 545 

the p-value threshold are 0.00125 and 0.0025 for AD and height, respectively. Similarly, our 546 
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analyses with SWE in recovery and extension nights and with SWE rebound, each imply 8 tests 547 

and a p-value threshold of p = 0.00625, while our analyses with 3 non-EEG sleep metrics 24 548 

tests and a p-value threshold of p = 0.0021. Additional analyses compared lower and higher 549 

PRS quartile (i.e. 90 individuals with lowest AD PRS and 90 individuals with highest PRS; cf. Fig. 550 

S4) as well as APOE ε4 carriers vs. non carriers (cf. Fig. S5). For these analyses, groups were 551 

compared through t-tests. 552 
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 847 

Figures and Tables  848 

 849 

 850 

 851 

 852 

Figure 1: Overview of the protocol. 853 

 854 

Following 3 weeks of regular sleep at habitual times, 363 healthy young men aged ~22 y 855 

complete a 7-day protocol (displayed for a participant sleeping from 11PM to 7PM). 856 

Adaptation/screening and baseline nights were scheduled at habitual sleep-wake times. 857 

Extension nights consisted of a 12h sleep opportunity centred around habitual sleep mid-858 

point. Nap consisted of an afternoon 4h sleep opportunity. The “Before” (sleep deprivation) 859 

and recovery nights (from sleep deprivation) consisted of an 8h and 12h sleep opportunity 860 

respectively, all starting at habitual sleep time. Following the “before” night, volunteers 861 

completed a 40h sleep deprivation protocol under strictly controlled constant routine 862 

conditions in dim light. Sleep periods included in the current analyses are in bold and italic.  863 
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 864 

 865 

Figure 2: Associations between Polygenic Risk Score (PRS) for AD and baseline night sleep 866 

metrics. 867 

A. Statistical outcomes of GLMs with five sleep metrics of interest vs. AD PRS from 868 

conservative (p < 5x10-8) p-value threshold to using all SNPs. GLMs are corrected for age, BMI 869 

and total sleep time (TST). Negative log transformation of p-values of the associations are 870 

presented on the vertical axis. Horizontal lines in A and D indicate different p-values 871 

thresholds: light blue = .05 (uncorrected); orange= .01 (corrected for 5 sleep metrics); red = 872 

0.00125 (experiment-wise correction; see methods). 873 

SOL: sleep onset latency; WASO: wake time after sleep onset; DUR_REM: duration of REM 874 

sleep; arousal: hourly rate of micro-arousal during sleep; SWE: slow wave energy in NREM 875 

sleep (0.5-4Hz) 876 

B. Positive association between SWE during baseline night and AD PRS including All SNPs. 877 

Spearman correlation r is reported for completeness (r = .12, p = .02), refer to main text Table 878 

S2 for statistical outputs of GLMs. 879 

C. Negative association between SOL during baseline night and AD PRS for p < 0.3. Spearman 880 

correlation r is reported for completeness (r = -.11, p = .03), refer to main text Table S2 for 881 

statistical outputs of GLMs. 882 

D. GLMs including SWE separated in the slower (SO-SWE; 0.5-1Hz) and faster (FO-SWE; 1.25-883 

4Hz) frequency range from conservative p-value thresholds to using all SNPs. Horizontal blue 884 

line indicate p = 0.05 significance level. GLMs are corrected for age, BMI and TST. Refer to 885 

main text Table S3 for statistical outputs of GLMs.  886 
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 887 

Figure 3: Associations between Polygenic Risk Score (PRS) for AD and slow wave energy 888 

(SWE) during recovery and extension nights and with SWE rebound. 889 

 890 

A. Statistical outcomes of GLMs with SWE (0.5-4Hz) in the recovery (REC) and extension (EXT) 891 

nights and with SWE rebound (REC/BAS) vs. AD PRS from conservative (p < 5x10-8) to inclusive 892 

(p < 1) p-value level and using all SNPs. SWE rebound consist in the ratio between SWE in the 893 

first hour of sleep of recovery and baseline nights. GLMs are corrected for age and BMI, and 894 

TST for REC and EXT. Negative log transformation of p-values of the associations are presented 895 

on the vertical axis. Horizontal lines indicate different p-values thresholds: light blue = .05 896 

(uncorrected); red = 0.00625 (experiment-wise correction; see methods). 897 

B. Positive association between SWE during recovery night and AD PRS at p < 1. Spearman 898 

correlation r is reported for completeness (r = .01, p = .06), srefer to main text Table S4 for 899 

statistical outputs of GLMs. 900 

C. Positive association between SWE during recovery and SWE rebound (SWE REC/BAS): 901 

Spearman correlation r = .36, p < .001. 902 
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 903 

Figure 4: Associations between Polygenic Risk Score (PRS) for AD and non-EEG sleep metrics. 904 

 905 

A. Statistical outcomes of GLMs with actimetry-assessed sleep fragmentation (kRA), subjective 906 

sleep quality (Sleep-qual) and subjective daytime sleepiness (Day-sleepiness) vs. AD PRS from 907 

conservative (p < 5x10-8) to inclusive (p < 1) p-value thresholds and using all SNPs. GLMs are 908 

corrected for age and BMI. Negative log transformation of p-values of the associations are 909 

presented on the vertical axis. Horizontal lines indicate different p-values: light blue = .05 910 

(uncorrected); orange= .016 (corrected for 3 sleep metrics); red = 0.002 (experiment-wise 911 

correction). 912 

B. Positive association between subjective daytime sleepiness and AD PRS at p < 0.05. Linear 913 

regression line shown for display purposes only; refer to main text and Table S5 for statistical 914 

outputs of GLMs.  915 
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Table 1. Sample characteristics (mean ± SD).  916 

N 363 

Sex  Men 

Ethnicity Caucasian  

Age (y) 22.10 ± 2.73 

Height (cm) 180.39 ± 6.70 

Body mass index (BMI) (kg m-2) 22.15 ± 2.31 

IQ 
123.88 ± 

11.14 

Education (y) 13.33 ± 1.60 

Mood 3.00 ± 3.48 

Sleep quality 3.46 ± 1.76 

Daytime sleepiness 5.94 ± 3.54 

Chronotype 50.11 ± 8.25 

Rest-activity Fragmentation 

(a.u.)  
0.10 ± 0.03 

Baseline sleep duration (min) 451 ± 41 

 917 

Mood was estimated by the 21-item Beck Depression Inventory II (Beck et al., 1988), sleep 918 

quality by the Pittsburgh Sleep Quality Index (PSQI) (Buysse et al., 1989); daytime sleepiness 919 

by the Epworth Sleepiness Scale (ESS)(Johns, 1991); chronotype by the Horne-Östberg 920 

questionnaire (Horne and Ostberg, 1976). IQ was estimated using Raven Progressive 921 

Matrices (John and Raven, 2003). Rest fragmentation (arbitrary units, a.u.) was estimated as 922 

the probability of transition from rest to activity during estimated sleep based on actigraphy 923 

data from the 3 weeks of imposed regular sleep (Hammad and Reyt, 2019; Lim et al., 2013). 924 


