
 1 

Peripheral inflammatory response in human tuberculosis treatment is 1 

predicted by a combination of pathogen sterilization and microbiome 2 

dysbiosis 3 

 4 

Matthew F. Wipperman1,2,#, Shakti K. Bhattarai3,#, Charles Kyriakos Vorkas1,4,  Ying Taur5, Laurent Mathurin6, 5 
Katherine McAulay7, Stalz Charles Vilbrun6, Daphie Jean Francois11, James Bean1, Kathleen F. Walsh7, Carl 6 
Nathan8, Daniel W. Fitzgerald7, Michael S. Glickman1,4,8,*, Vanni Bucci3,9,10,* 7 
 8 
Affiliations: 9 
1 Immunology Program, Sloan Kettering Institute 10 
2Clinical and Translational Science Center, Weill Cornell Medicine 11 
3 Department of Microbiology and Physiological Systems, University of Massachusetts Medical School 12 
4 Division of Infectious Diseases, Weill Cornell Medicine 13 
5 Division of Infectious Diseases, Memorial Sloan Kettering Cancer Center 14 
6 Haitian Study Group for Kaposi's Sarcoma and Opportunistic Infections (GHESKIO), Port-au-Prince, Haiti 15 
7 Center for Global Health, Weill Cornell Medicine 16 
8 Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School 17 
9 Center for Microbiome Research, University of Massachusetts Medical School 18 
10 Program in Systems Biology, University of Massachusetts Medical School  19 
11Department of Laboratory Medicine and Pathology, Mayo Clinic, Phoenix, USA 20 
# these authors contributed equally 21 
 22 
*Correspondence to:  23 
 24 
Vanni Bucci, PhD 25 
Microbiology and Physiological Systems 26 
Program in Systems Biology 27 
Center for Microbiome Research 28 
University of Massachusetts Medical School 29 
368 Plantation Street  30 
Worcester, MA  01605 31 
774-856-2215  32 
vanni.bucci2@umassmed.edu 33 
 34 
Michael S. Glickman MD 35 
Immunology Program, Sloan Kettering Institute 36 
1275 York Ave 37 
New York, NY 10065 38 
6468882368 39 
glickmam@mskcc.org 40 
  41 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted February 27, 2020. ; https://doi.org/10.1101/2020.02.25.20027870doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

mailto:glickmam@mskcc.org
https://doi.org/10.1101/2020.02.25.20027870


 2 

Abstract 42 

Antibiotic therapy cures infection predominantly by killing the infecting pathogen, but for infections such as 43 

tuberculosis (TB), which are accompanied by chronic inflammation, the salutary effects of antibiotic therapy 44 

may reflect a combination of pathogen killing and microbiome alteration. This question has not been examined 45 

in humans due to the difficulty in dissociating the immunologic effects of antibiotic induced pathogen clearance 46 

and microbiome alteration. We analyzed sputum TB bacterial load, microbiome composition, and peripheral 47 

blood transcriptomics from a clinical trial (NCT02684240) comparing two antimicrobial therapies for 48 

tuberculosis, only one of which was clinically effective. We confirm that standard TB therapy (HRZE) rapidly 49 

depletes Clostridia from the intestinal microbiota. The antiparasitic drug nitazoxanide (NTZ), although 50 

ineffective in reducing Mycobacterium tuberculosis (Mtb) bacterial load in the sputum, caused profound 51 

alterations to host microbiome composition overlapping with alterations generated by HRZE. We then evaluated 52 

the effect of these two treatments on the TB driven inflammatory state and found that whereas HRZE 53 

normalized proinflammatory TB-associated gene sets, NTZ exacerbated these pathways. Using Random Forest 54 

Regression, we identify both pathogen sterilization and microbiome disruption as the top predictors of changes 55 

in TB-associated inflammatory transcriptomic markers. We then validate the observed microbiome-peripheral 56 

gene expression associations in an independent human cohort of healthy subjects in which the abundance of 57 

Clostridia was positively associated with homeostatic, and negatively associated with pro-inflammatory 58 

pathways, while the abundance of Bacilli and Proteobacteria species displayed the opposite trend. Our findings 59 

indicate that antibiotic-induced reduction in pathogen burden and changes in the microbiome are 60 

independently associated with treatment-induced changes of the inflammatory response of active TB, and more 61 

broadly indicate that response to antibiotic therapy may be a combined effect of pathogen killing and 62 

microbiome driven immunomodulation. Additionally, to our knowledge, this is the first analysis to directly test 63 

the hypothesis that the microbiome composition is associated with peripheral gene expression inflammatory 64 

profile in humans. 65 
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 3 

Introduction 67 

There is mounting evidence that the gut microbiome has an important role in the modulation of host physiology, 68 

with a wealth of studies having associated microbiome composition and functions with differential 69 

inflammatory, neurological, and even behavioral activity1. Gastrointestinal colonization by specific taxa with 70 

particular metabolic capacities has been shown to differentially modulate host biology2. For example, 71 

colonization by a subset of Clostridia enhanced anti-inflammatory phenotypes in mice3, and enrichment in 72 

specific members of the Bacteroides and Parabacteroides genera induced CD8+ T cell responses and anticancer 73 

activity in mice and marmosets4, as well as correlating with the abundance of these immune effectors in 74 

humans5. A multitude of experiments in mice have allowed for the determination of mechanisms by which 75 

intestinal mucosal-associated bacteria affect host physiology at the epithelial interface and systemically 76 

throughout their host 6,7.  77 

 78 

Despite these observations, it is unknown whether, and to what degree, microbiome changes are responsible 79 

for changes in human systemic inflammatory responses. This knowledge gap is due in part to the difficulty of 80 

isolating the microbiome dependent effects from other aspects of human physiology and in discerning the 81 

direction of causality in human studies. As microbial communities in the gut promote the development and 82 

maintenance of innate and adaptive immune responses, including microbiota-educated immune cells and many 83 

small molecules that circulate throughout the periphery, we would expect to observe both localized and 84 

systemic host effects due to microbiome alterations 8. 85 

 86 

Infection by Mycobacterium tuberculosis (Mtb) is the cause of tuberculosis (TB) disease—the 9th leading cause 87 

of death on Earth9. A plethora of studies using whole blood transcriptomics have documented that individuals 88 

with active TB display a different systemic gene expression pattern compared to people with latent disease, 89 

other respiratory diseases, or no known infection9-11. Specifically, infection with Mtb leads to heightened 90 

expression of inflammatory pathways, most notably the Type I and Type II interferon pathways12-15, and this 91 

pattern resolves with antibiotic therapy12,15,16. A recent meta-analysis combining microarray and RNAseq data 92 

from studies aimed at identify active TB transcriptional signatures confirmed the findings about a specific set of 93 

peripheral blood transcripts that are biomarkers of active TB disease, relative to healthy individual, or those 94 

with latent TB infection (LTBI)17. 95 

 96 

Antibiotic treatment for active TB involves combination therapy with narrow spectrum and prodrug agents with 97 

mostly Mycobacterial-specific targets. The World Health Organization guidelines for treating infection with drug 98 
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sensitive Mtb are to give isoniazid (H), rifampin (R), pyrazinamide (Z), and ethambutol (E) ( HRZE) for two months 99 

and then to continue HR for an additional four months. The effects of HRZE therapy on the intestinal microbiome 100 

were demonstrated in a longitudinal study in mice18 and cross-sectional study in humans19, which indicated that 101 

the major phyla perturbed are from the class Clostridia, a group of obligate anaerobes in the gut with well 102 

described immunomodulatory effects on the host2,3,20,21. Given that HRZE treatment causes microbiome shifts 103 

that include the depletion of many Clostridia species, and given the role that these species play in modulation 104 

of host biology in mice and humans, we reasoned that there could be a connection between the microbiome 105 

alterations observed during HRZE therapy and the resolution of systemic inflammatory responses to TB. 106 

However, because HRZE therapy rapidly reduces the burden of Mtb in the early phase of treatment, it is difficult 107 

to uncouple the immunologic effects of pathogen killing from microbiome perturbation without a control group 108 

that has either pathogen killing or microbiome perturbation, but not both.  109 

 110 

An opportunity to address this issue arose when we analyzed secondary endpoint data from a clinical trial 111 

(NCT02684240) that compared the early bactericidal effect (EBA) of standard TB therapy with HRZE to the 112 

antiparasitic drug nitazoxanide (NTZ), recently shown to possess antimycobacterial activity in vitro22,23. We 113 

found that NTZ perturbed the intestinal microbiome, with pathobiont domination and Clostridia depletion. This 114 

contrasted with HRZE treatment, which had a narrow effect on intestinal Clostridia after only two weeks of 115 

treatment. We then found that HRZE and NTZ had distinct effects on host peripheral gene expression, with HRZE 116 

resolving interferon signatures and NTZ exacerbating them. We used machine learning to determine the factors 117 

that predict correction or exacerbation of TB associated systemic inflammation and found that the three most 118 

important predictors are (a) the Mtb level in the sputum, (b) the abundance of Clostridia species that associate 119 

with inflammatory renormalization, and (c) the abundance of antibiotic-promoted Proteobacteria that associate 120 

with exacerbation of proinflammatory pathways. We next investigated these relationships using a validation 121 

cohort of healthy Haitian community controls and household contacts of TB patients, previously described5. 122 

Using machine learning to investigate relationships between the microbiome and peripheral gene pathways 123 

derived from the MiSigDB hallmark gene pathways database, we validated many of the relationships between 124 

peripheral gene expression and microbiome composition. We believe these results provide support to the oft 125 

stated hypothesis that there exists clear regulatory relationships between gut microbiome composition and 126 

peripheral composition, at both the immune 5, and gene regulatory levels in humans.  127 
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Results 129 

Gut microbiome diversity is depleted after two weeks of HRZE or NTZ treatment 130 

As detailed elsewhere, the GHESKIO centers in Port au Prince, Haiti conducted a prospective, randomized, early 131 

bactericidal activity (EBA) study in treatment-naive, drug-susceptible adult patients with uncomplicated 132 

pulmonary tuberculosis (TB) (ClinicalTrials.gov Identifier: NCT02684240)23. Participants were randomized to 133 

receive either NTZ, 1000 mg po (oral) twice daily, or standard oral therapy with isoniazid 300 mg daily, rifampin 134 

600 mg daily, pyrazinamide 25 mg/kg daily, and ethambutol 15 mg/kg daily (referred to as HRZE) for 14 days 135 

(Figure 1A). The primary endpoint of the trial was sputum bacterial load (measured by time to culture positivity, 136 

TTP) in a BACTEC liquid culture system. Sputum was collected from 6pm to 9am every other day to quantify 137 

mycobactericidal activity of each treatment regimen. As reported23, HRZE resulted in a predictable increase in 138 

the TTP (corresponding to reduced bacterial load) over the first two weeks of therapy compared to pretreatment 139 

TTP, consistent with its known potent bactericidal activity. However, NTZ, despite potent in vitro activity24, did 140 

not have any significant effect on TTP after 14 days (Figure 1B)23. This lack of NTZ efficacy was traced to a failure 141 

of the drug to penetrate the sputum23. All patients were subsequently switched to HRZE standard treatment.  142 

 143 

We have reported19 that HRZE therapy depletes members of the order Clostridiales, but the cross-sectional 144 

design of that study did not allow for conclusions about the rapidity of this effect and most importantly, did not 145 

include pretreatment samples that will allow for assessment of baseline microbiome composition. To investigate 146 

microbiome changes induced by NTZ or HRZE, we extracted and amplified bacterial and archaeal DNA using V4 147 

– V5 16S rDNA sequencing. Stool samples were collected before the start of treatment and on day 14 of therapy 148 

(Figure 1A). Using principal components analysis (PCoA) with Bray Curtis distances, we determined that 149 

antibiotic administration induced rapid changes in microbiome community structure after two weeks in both 150 

the NTZ and HRZE groups (PERMANOVA: p<0.001 and p<0.02, respectively), compared with pretreatment 151 

(Figure 1C). HRZE samples clustered closer to pretreatment samples than did NTZ to pretreatment. Both 152 

treatments were characterized by a significant drop in alpha diversity (the Inverse Simpson index) when 153 

compared to pretreatment samples, and despite expected interindividual heterogeneity, NTZ treatment 154 

samples had a significantly lower diversity compared to HRZE (Figure 1C). There was no significant difference 155 

between the day 0 diversity metrics between the pre-randomized active TB groups (Figure 1D).  156 
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 157 

Figure 1: Both HRZE and NTZ perturb the gut microbiome after two weeks of therapy. A. Schematic showing active 158 

TB patients randomized to either HRZE (standard of care) or NTZ. B. Paired time to positivity (TTP) at day 0 and day 159 

14 for the NTZ treatment cohort and HRZE treatment cohort. C. Principal components analysis (PCoA) with Bray-160 

Curtis distance showing differences in microbiome community structure between individuals before and after 14 161 

days of either HRZE or NTZ treatment. The grey line connects pre and day 14 treatment paired samples. D. Microbiota 162 

alpha diversity plotted using the Inverse Simpson index. There was no significant difference between the 163 

pretreatment groups, and both groups had significantly (p < 0.01, Wilcoxon signed-rank test) reduced alpha diversity 164 

after 14 days of treatment.   165 
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 7 

Overlapping taxonomic alterations in microbiome composition induced by NTZ and HRZE  166 

Taxonomic profiling of differential amplicon sequence variants (ASVs) obtained from the 16S rDNA profiling 167 

between the pretreatment and antibiotic groups revealed that, whereas all trial participants began with typical 168 

heterogeneous community structure, after two weeks of treatment with HRZE, members of the class Clostridia 169 

were depleted, leaving most other clades unaltered (Figure 2A,B). In contrast, NTZ had a much more pronounced 170 

and broad effect compared to HRZE (Figure 2A,C). Specifically, NTZ not only reduced the relative abundance of 171 

a greater number of Clostridia compared to HRZE, but also led to the increase of aerobic and facultative 172 

anaerobic pathobiont organisms such as Escherichia and Klebsiella (Proteobacteria). Additionally, several 173 

participants became dominated (with domination defined as >30% relative abundance according to Taur, et al25) 174 

by single clades of Actinobacteria or Bacilli in the NTZ arm of the trial (Figure 2A,C and Supplementary Figure S1 175 

and S2).  176 

 177 

Comparison of the overlap of the two antibiotic perturbations with respect to number of Clostridia genera 178 

affected (i.e., testing for differences pre-post HRZE/NTZ administration on bacterial abundances grouped at the 179 

genus level) revealed that 83% (10/12) of the HRZE-depleted Clostridia were also depleted by NTZ (Figure 2D). 180 

HRZE uniquely affected Clostridia genera Acutalibacter and Hespellia, whereas NTZ affected 22 unique Clostridia 181 

genera, including Blautia, Dorea, Eubacterium, Faecalibacterium, Oscillibacter, Ruminococcus, and 182 

Lachnospiraceae. Both treatments affected the genera Clostridium, Fusicatenibacter, Hungatella, 183 

Intestinibacter, Intestinimonas, Kineothrix, Roseburia, Sporobacter, Terrisporobacter, and an uncultured 184 

member of the Family Ruminococcaceae. Taken together, these data demonstrate that NTZ had a more severe 185 

disruptive effect on the intestinal microbiota than HRZE and that most of the HRZE effects on the microbiota 186 

(e.g. loss of Class Clostridia) were also evident in NTZ treated subjects.  187 
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 188 

Figure 2: Overlapping and distinct microbiome perturbation induced by NTZ and HRZE. A. Relative abundance 189 

showing microbiota composition in each individual patient as stacked paired samples corresponding to pre and post 190 

treatment. Only paired samples were used for these analyses. B. Unsupervised hierarchical clustering of the 191 

abundances of ASVs identified to be significantly affected by HRZE treatment (p<0.01); VST indicates variance 192 

stabilized transformed counts from DESeq2. C. Unsupervised hierarchical clustering of the abundances of ASVs 193 

identified to be significantly affected by NTZ treatment (p<0.01). D. Number of Clostridia genera depleted (i.e. 194 

reduced in relative abundance) by HRZE and NTZ treatment.  195 
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 9 

HRZE and NTZ uniquely affect host peripheral gene expression 196 

To determine how inflammatory transcriptional signatures in peripheral blood are affected by TB treatment, we 197 

applied unsupervised (PCA) and supervised learning (Support Vector Machine and Random Forest Classification) 198 

methods to the DESeq-normalized RNA transcript abundances from RNA derived from peripheral blood 199 

(Supplementary Figure S3). This analysis showed that, overall, HRZE treatment caused a more substantial change 200 

(in terms of the number of genes affected) in expression profile than NTZ when comparing pretreatment to 2 201 

week treatment transcriptome samples, as measured by random forest/support vector machine ROC curves or 202 

principal component analysis (Supplementary Figure S3A-B).  203 

 204 

To identify specific RNA transcripts affected by each treatment, we used DESeq analysis on the paired-sample 205 

transcript abundance of RNA and compared pretreatment samples to samples obtained at day 14 after HRZE 206 

(n=8) or NTZ treatment (n=14) independently. The paired nature of samples was considered in the analysis to 207 

account for person-specific baseline normalization. We found that 2 weeks of HRZE treatment was associated 208 

with changes in 1374 transcripts at a p-value cutoff of p<0.05 and 503 at a p-value cutoff of p<0.001 (throughout, 209 

all p-values from DESeq are adjusted using the Benjamini-Hochberg method for multiple comparisons). 210 

Repeating the same analysis for NTZ-treated individuals, we identified 811 differentially expressed genes at a p-211 

value cutoff of p<0.05 and only 15 at p<0.001.  212 

 213 

We determined the functional pattern of treatment-induced changes in overall transcript abundance, by 214 

performing gene set enrichment analysis (GSEA)26 (See Methods) using the ranked DESeq gene expression data 215 

for the differentially expressed genes in each arm separately. In the HRZE arm we observed reduced expression 216 

of the pathways of inflammatory response, IFN response, IFN response, TNF signaling via NFB, and IL6 JAK 217 

STAT3, all of which are consistent with the immunologic effects of antibiotic induced reduction in the levels of 218 

the bacterial pathogen, given the demonstrated relevance of these signaling pathways to pathogenesis12,15,27 219 

(Figure 3A). In contrast, NTZ treatment, which perturbed the microbiome without significantly affecting Mtb 220 

bacterial load in the sputum, had the opposite effect. Inflammatory signaling pathways reduced by HRZE, 221 

including TNF signaling, IFN signaling, and type 1 interferon signaling, were all enriched by NTZ treatment 222 

(Figure 3A). Several other pathways such as hypoxia, apoptosis, and reactive oxygen species (ROS), which are 223 

considered hallmarks of immune dysregulation28, were also enriched by NTZ treatment (Figure 3B). When 224 

comparing the list of transcripts significantly affected by either HRZE (1374) or NTZ (811) , after taking into 225 

account person-specific gene normalization, we found that only 86 genes were affected by both treatments (p 226 

< 0.05). Eighty of these genes had the same pre/post treatment pattern in HRZE and NTZ-treated individuals, 227 
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thus leaving 1294 (94.2%) and 731 (90.1%) to be HRZE and NTZ-specific changes to peripheral gene expression 228 

(Figure 3C). Of the 86 genes affected by both HRZE and NTZ, only 10 were reported to be peripheral blood 229 

transcriptomic markers of active tuberculosis 12,13,15. Interestingly, six active-TB associated genes belong to the 230 

group of 80 genes that similarly respond to HRZE and NTZ (7.5%). The remaining four TB-related genes (P2RY14, 231 

ADM, CARD16, DHRS9) belong to the group of six genes (P2RY14, NRN1, ADM, JAG1, CARD16, DHRS9) that were 232 

reduced in expression and renormalized with HRZE but increased and exacerbated TB signature with NTZ (67%) 233 

(Figure 3C). 234 

 235 

To focus our analysis on validated transcriptomic markers of active TB from prior studies, we examined the 236 

recently reported list of 373 transcripts that have been associated and validated in multiple human cohorts on 237 

multiple sequencing platforms (microarray and RNAseq) to be differentially abundant between active and 238 

healthy control and/or active and LTBI individuals17 in a comprehensive meta-analysis. In our study, we detected 239 

361 of these 373 transcripts in pretreatment active TB subjects. We defined three classes of changes to these 240 

transcripts with two weeks of HRZE or NTZ treatment: 1) renormalization (transcripts whose pre-post HRZE/NTZ 241 

foldchange in expression displays the same sign (or direction) of the previously-reported fold-change between 242 

active TB and control/LTBI; 2) unchanged (transcripts with no change in expression between pre-post HRZE/NTZ 243 

administration); and 3) exacerbation (genes whose pre-post HRZE/NTZ fold-change sign is opposite to the 244 

previously-reported fold-change between active TB and control/LTBI). Of the 361 transcripts, 173 (48%) were 245 

found to be affected by HRZE. Of these 173, 151 (87%) renormalize with HRZE treatment, whereas 22 (13%) 246 

exacerbate (Supplementary Table S1, Figure 4). In contrast, NTZ was found not only to have a smaller overall 247 

effect on the active TB signature, but also to only contribute to exacerbation. Specifically, only 28 genes were 248 

affected by NTZ (8%), of which 26 (96%) were in the exacerbation category (Supplementary Table S1, Figure 4).  249 

 250 

Taken together, our data suggest that both HRZE and NTZ lead to changes in the peripheral transcriptomic 251 

pattern of active TB, with HRZE having a more dramatic effect, at least as measured by the number of genes 252 

differentially expressed before and after two weeks of therapy compared to NTZ, both overall as well as when 253 

considering a previously-reported signature of active TB. Additionally, our analysis suggests that two weeks of 254 

HRZE treatment normalizes almost 50% of the peripheral gene expression profile characteristic of active 255 

tuberculosis, consistent with prior studies, whereas NTZ had the opposite effect: exacerbating the 256 

transcriptional pattern for a subset of transcripts that reflect disease activity.  257 

 258 
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 259 

Figure 3: Hallmark pathway gene set enrichment analysis and gene expression comparison in HRZE and NTZ 260 

treated cohorts. A,B. Hallmark gene pathway changes associated with 2 weeks of HRZE (A) or NTZ (B). Positive 261 

are pathways overrepresented at 2 weeks of therapy, and negative are pathways underrepresented at 2 weeks, 262 

both compared to pretreatment. All pathways are significant (p<0.05) with the associated Normalized 263 

Enrichment Score (NES) shown on the x axis, which considers pathway size. C. Overlap in genes that are 264 

differentially altered in both HRZE and NTZ treatments compared to pretreatment. Transcripts annotated in the 265 

left column in red (Up) rise with HRZE and NTZ. Transcripts annotated in blue (Down) are suppressed by both 266 

HRZE and NTZ. Genes annotated in green are down in HRZE and up in NTZ. The second column of vertical 267 

metadata scores each gene as either present or absent in prior active TB transcriptional signatures.   268 
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Relationships between gene expression and changes in the microbiome in the longitudinal treatment cohort 269 

Resolution of disease manifestations by antibiotic therapy of a chronic, pro-inflammatory infection such as 270 

tuberculosis is likely to reflect a complex interplay of pathogen killing and resolution of inflammatory responses, 271 

which may occur with different temporal profiles29. Although a primary effect of antibiotics is killing of the 272 

pathogen, perturbation of the microbiome during therapy might also affect disease resolution due to an 273 

independent effect on peripheral inflammation, but these two effects are difficult to uncouple and therefore 274 

remain hypothetical. Because we observed changes in peripheral transcriptomic profiles by both HRZE and NTZ 275 

in active TB subjects, in some cases divergent between HRZE and NTZ, despite the fact that NTZ did not 276 

significantly reduce Mtb bacterial load in the sputum, this dataset provided a unique opportunity to investigate 277 

potential effects of antibiotic induced microbiome changes on disease driven inflammation. We hypothesized 278 

that TB therapy-induced perturbations of the gut microbiota that might be predictive of the observed changes 279 

in host gene expression.  280 

 281 

To decouple the effect of microbiome perturbation from Mtb-killing in peripheral inflammatory transcriptomics, 282 

we used a machine learning approach. Specifically, we built random forest regression (RFR) models30 to predict 283 

the DESeq-normalized pre- and post-treatment expression profiles of each significantly differentially abundant 284 

transcript as a function of both Mtb bacterial load (TTP) (at day 0 and day 14) and of DESeq-normalized 285 

abundance of ASVs (microbiome components) (also at day 0 and day 14) found to be affected by each TB 286 

treatment, separately. We modeled data from each cohort independently because the treatment effects at the 287 

single gene and ASV level were distinct between each cohort and because at baseline there is no significant 288 

difference in microbiome and gene expression due to arm membership (PERMANOVA  p > 0.05). We used the 289 

Boruta algorithm 31 for feature selection in predicting the expression profile of each gene (see Methods). We 290 

reasoned that this approach was appropriately suited for this type of “large p, small n” multi-omics dataset 291 

common in clinical research32. Several advantages of RFR modeling include: being agnostic to model structure 292 

(e.g. non-parametric regression), not having to meet common assumptions underlying classical regression 293 

techniques, and being able to intrinsically perform ranked feature selection. Importantly, while the 294 

interpretation of RFR is apparently less immediate compared to traditional regression (e.g. there are per-se no 295 

regression coefficients or betas), downstream analysis, which includes Permutated Importance 33 and 296 

accumulated local effects calculations34 (see Methods) allows for the estimation of the significance of predictors 297 

(e.g. TTP, microbiome constituents, etc.) as well as their effects on the dependent variable (e.g. host 298 

transcriptomic markers).  299 

 300 
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For both sets of HRZE- and NTZ-affected transcripts, we estimated the frequency of each feature to be identified 301 

as important by the RFR model. We performed this analysis considering all differentially expressed genes in both 302 

datasets (Supplementary Figure S4) as well as focusing only the 361 genes belonging to the list of 373 transcripts 303 

previously reported as an active TB signature. Remarkably, this analysis identified bacterial load and the 304 

abundance of members of Clostridia as the most important predictors of gene expression (Supplementary Figure 305 

S6A and 5B). For the HRZE arm (Supplementary Figure S6A), change in bacterial load (TTP) was the top predictor 306 

of the change in transcript abundance with treatment, which is found to be important in predicting the change 307 

in 75% of the 173 active TB transcripts and HRZE affected transcripts (Supplementary Figure S6). This is 308 

consistent with the idea that HRZE normalizes the active TB signature by reducing the pathogen burden in the 309 

lung (Supplementary Figure S6C). Surprisingly, even though sputum bacterial load did not change in aggregate 310 

in the NTZ cohort, TTP is still found to be the second most important feature in predicting changes in active TB 311 

gene expression, as it is found to contribute to the abundance of 48% of the 27 active TB and NTZ affected 312 

transcripts (Figure 3). We confirmed that the relationship between bacterial load and transcript abundance in 313 

the NTZ cohort (obtained via RFR) was a biological signal by performing linear-mixed effect modeling (lme in R) 314 

to predict the expression of each of these NTZ associated transcripts as a function of TTP and using patient ID 315 

as a random effect (Supplementary Figure S4) (model: lme( ~ TTP, random = ~1|Patient.ID)). We found that 316 

despite the lack of clinical efficacy of the NTZ drug as measured by average TTP in the treated group, transcripts 317 

that are known to respond to TB bacterial load are altered in a direction that correlates with the TTP signal. This 318 

reflects the fact that while the magnitude of TTP change was not clinically significant across the entire NTZ 319 

cohort, person-specific changes in TTP were present in the NTZ cohort for TB-associated transcripts.  320 

 321 

With respect to microbiome effects, Clostridia are predicted by both models to be the most important 322 

microbiome component predicting the change in the inflammatory transcriptomic pattern that reflects active 323 

TB and normalizes with treatment. Specifically, in the HRZE arm (Supplementary Figure S6A) E. hallii (ASV 336) 324 

and S. termiditis (ASV 71) are the second and third-best predictors of the abundance of over 50% of the HRZE-325 

affected transcripts associated with active TB. In the NTZ arm (Supplementary Figure S6B) G. formicilis (ASV 27) 326 

is identified as the most important predictor with over 50% of NTZ-affected active TB transcripts predicted to 327 

co-vary with it. Of the other important microbiome features selected by the models, we observed the presence 328 

of a number of well characterized short chain fatty acid-producing Clostridia (including F. prausnitizii, Clostrdium 329 

spp., B. lutii in the HRZE group, or D. longicatena and B. lutii in the NTZ group), which are all depleted by the 330 

anti-TB treatment (Supplementary Figure S6C-D). Interestingly both models identified the same ASV, Clostridium 331 

XIVa F. saccharivorans (ASV 57) to be an important predictor of transcriptomic markers that are depressed by 332 
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both treatments. Peculiar to the NTZ-data based model is the identification as important variables of S. 333 

alactolyticus (ASV 40), E. faecium (ASV 222) and K. pneumoniae (ASV 59) which are observed to significantly 334 

increased in abundance and dominate several of the NTZ-treated individuals (Figure 2). 335 

 336 

Variable importance estimation techniques such as Boruta allow determination of the presence of significant 337 

associations among variables, but not their directionality (positive/negative effect). Therefore, we determined 338 

the direction of the contribution of each important feature to the abundance of each of the modeled active TB 339 

signature transcripts from the RFR modeling, by adapting the concept of accumulated local effects (ALE) 340 

calculations (see Methods)34 and using the sign of the average of the first-order derivative of the ALE plot as a 341 

binary indicator for direction. As most of these plots are monotonic and continuous curves, the first order 342 

derivative is a good approximation of the quantitative contribution of a hypothesized biologically relevant 343 

predictor to transcript abundance, in this case microbiota constituents or change in Mtb bacterial load (TTP). 344 

We displayed the sign of the features x genes matrices containing the first order derivative values (or slopes) as 345 

clustered heatmaps (Figure 5A-B). For both the HRZE and NTZ dataset-derived models, we observed that sputum 346 

bacterial load (TTP) clustered independently of the model-selected microbiome features (Figure 5A-B). The 347 

effect of reducing sputum bacterial load was predominantly to normalize gene expression in the relevant 348 

inflammatory pathways such as IFN and IFN (negative contribution in heatmap for TTP means that rising TTP 349 

(i.e., lower bacterial load) is associated with normalizing transcripts) (Figure 5A).  350 

 351 

In the model trained on the NTZ treatment data, we find two opposing effects of NTZ induced microbiome 352 

perturbation. Depletion of Clostridia by NTZ is predicted to contribute to the exacerbation of inflammatory 353 

pathways of active TB observed in the transcriptomic data (Figure 5B: negative contribution in heat map=lower 354 

Clostridia>>higher inflammatory transcripts) consistent with the anti-inflammatory properties of these 355 

microbiota members. In contrast, the model predicts that pathobionts, whose abundance is enhanced by NTZ 356 

(E. faecium, K. pneumoniae and S. alactolyticus, Figure 2C), have the opposite effect and exacerbate 357 

inflammatory transcripts (Figure 5B: positive contribution in heat map=higher pathobionts>>higher 358 

inflammatory transcripts). Pathobionts are potentially pathogenic symbionts of the microbiota, and include E. 359 

coli, K. pneumoniae and S. alactolyticus).  360 

 361 

Taken together, our data and related computational analyses show that the changes in inflammatory gene 362 

expression that accompany treatment of TB may be mediated both by the anti-microbial activity of the drugs 363 

that lead to pathogen clearance and by antibiotic induced changes in microbiome composition. Our model 364 
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identifies two modules of microbiome-inflammatory effects. The first is the exacerbation of TB associated 365 

inflammation by depletion of Clostridia, which is evident in both the HRZE and NTZ models. Additionally, the 366 

enhancement of pathobionts such as Klebsilla, which only occurs with NTZ, also exacerbates inflammatory 367 

pathways. Based on this modelling, we predict that successful disease resolution will be associated with 368 

preservation of Clostridia, whereas their depletion and consequent enhancement of Proteobacteria and Bacilli 369 

pathobionts might slow resolution or even support inflammatory exacerbation. 370 

 371 

 372 

Figure 4: Effect of HRZE and NTZ on active TB transcriptional signatures. A. Summary of the number of active 373 

TB genes that renormalize (blue), do not change (grey), or exacerbate (red) as a result of each drug 374 

administration. B. Comparison of log2 Fold Change in gene expression from17 where the 373 active TB signature 375 

was first introduced with the log2 Fold Change of the same genes pre-post HRZE (left) or NTZ (right) from this 376 

study. A significant positive correlation (Pearson’s p<0.01) is observed for the 151 genes that renormalize with 377 

HRZE treatment.  378 

  379 
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 380 

Figure 5: Hallmark Pathway Analysis of peripheral gene transcriptional data and its relationship to 381 

gastrointestinal microbiota and M. tuberculosis bacterial load (TTP). We used Random Forest regression to 382 

model the change in gene expression as a function of gastrointestinal microbiota and reduction in bacterial load 383 

(TTP). Top predictors are shown for both HRZE (A) and NTZ (B) study arms. The contribution of each predictor 384 

to a gene’s expression profile is estimated by calculating the derivative (or slope) of the accumulated local 385 

effects (ALE) plots between each predictor and each modeled gene (see Methods). The sign of the derivative is 386 

displayed in the heatmaps. On the right, the presence or absence of a particular gene in a Hallmark gene set is 387 
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indicated. If that gene is in the pathway, it is marked as red. Some genes are in multiple pathways, and only the 388 

significantly enriched pathways from the differential analysis (of the full transcriptome) are shown. The 389 

Normalized Enrichment Score (NES) is how significantly overrepresented a particular pathway is in the treated 390 

case (comparing pretreatment vs treatment in both instances) and takes into account pathway size. A majority 391 

of the organisms are obligate anaerobic Clostridia, from the following clusters: Clostridium disporicum (Cluster 392 

I), Faecalibacterium prausnitzii (Cluster IV), Eubacterium hallii (Cluster XIVa), Sporobacter termitidis (Cluster XI), 393 

Fusicatenibacter saccharivorans (Cluster XIVa), Clostridium fimetarium (obligate anaerobe), Clostridium 394 

innocuum (obligate anaerobe), Gemmiger formicilis (obligate anaerobe), Blautia luti (Cluster XIVa), Dorea 395 

longicatena (obligate anaerobe), Hungatella hathewayi (obligate anaerobe).  396 

 397 

Relationship of the microbiome and peripheral gene expression in a healthy control validation cohort  398 

The results from our primary analysis in the longitudinal treatment cohort demonstrate that specific 399 

gastrointestinal bacteria are associated with proinflammatory peripheral blood gene signatures in humans. 400 

Specifically, we predict that higher abundance of Clostridia is negatively associated with inflammation (e.g. INF, 401 

INF, IL6/JAK/STAT3, Inflammatory Response gene signatures) while high abundance of commonly known 402 

pathobionts including E. coli, Klebsiella, Citrobacter, Streptococcus and Enteroccocus promotes exacerbation of 403 

these signatures. To determine the generality of these results we analyzed a control set of human data from 404 

two healthy cohorts. A subset of these data were previously reported in our work5, and come from a cross-405 

sectional study of healthy household contacts of active pulmonary TB patients (termed Family Contacts, FC) and 406 

healthy unexposed donors from the same community in Haiti (termed Community Controls, CC) (see Methods). 407 

For these two new cohorts we have a total of 52 healthy control individuals (18 FC and 36 CC) for which we 408 

gathered both microbiome 16S rRNA sequencing data as well as peripheral blood transcriptomics for the same 409 

individuals.  410 

 411 

We analyzed the blood transcriptomics and performed correspondence analysis on the DSEeq2 normalized 412 

abundance of the transcripts in each sample (Figure 6A). We observed pretreatment and treated HRZE and NTZ 413 

sample clustering away from FC and CC samples, highlighting the fact that individuals with active TB, even while 414 

on treatment, represent the transcriptional profile of active TB patients has not returned to a profile of healthy 415 

controls (Supplementary Figure S7). More importantly we see that FC and CC samples do not separate in this 416 

ordination, suggesting that both cohorts can be used as healthy controls in the subsequent analysis.  417 

To link transcript abundance to immune pathway enrichment we utilized gene set variation analysis (GSVA) (see 418 

Methods)35. GSVA enables computing an enrichment score for any defined list of genes (taken as a surrogate 419 
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for a biological pathway) in each sample. For each sample, each pathway generates a normalized enrichment 420 

score (NES) that can be used for downstream analysis to compare pathway profiling across samples. 421 

Importantly, this method is completely agnostic to the phenotype label of the sample.  422 

 423 

We performed unsupervised clustering on the samples-by-pathway NES scores, and found that individuals from 424 

FC and CC cluster separately from individuals in the longitudinal treatment cohort (Figure 6B). We observed that 425 

the NES score signature comparisons between the FC and CC individuals, and individuals before treatment and 426 

after two-weeks of HRZE or NTZ have qualitatively reduced enrichment in INF, INF, IL6/JAK/STAT3, and 427 

Inflammatory Response (Figure 6B). As discussed, these are the pathways that renormalize with HRZE treatment 428 

and exacerbate with NTZ in the longitudinal dataset (Figure 3). These are also the pathways negatively 429 

associated with Clostridia abundance and positively with Proteobacteria and Bacilli abundance in the random 430 

forest modeling analysis (Figure 5). Interestingly, post HRZE treatment individuals have an enrichment 431 

distribution for this pathway which is in between FC and CC individuals and NTZ/Pretreatment samples thus 432 

reinforcing the result that HRZE treatment promotes renormalization (Figure 6C).   433 

 434 

Even though FC and CC individuals show an overall lower inflammatory enrichment compared to active TB 435 

samples, and samples post HRZE and NTZ treatment (Figure 6C), we hypothesize that the FC and CC intragroup 436 

inflammatory pathway enrichment distributions would correlate with the abundance of microbes that we found 437 

to predict the expression of genes associated with these pathways in the Random Forest Modeling analysis 438 

performed on the HRZE and NTZ microbiome/transcriptomic data (Figure 5 and Figure S6). We performed 439 

Pearson’s correlation analysis between these NES values, and the abundance of ASVs from bacterial orders 440 

having representative species found to be predictive of the abundance of these inflammatory pathways in the 441 

longitudinal treatment cohorts (Figure 6D). In these two human cohorts, we again observe a negative 442 

association between Clostridia ASVs and INF, INF, IL6/JAK/STAT3, and Inflammatory Response pathways, as 443 

well as a positive association between these pathways and the abundance of pathobionts including 444 

Enterococcus, Streptococcus, E. coli and Klebsiella. We interpret these correlations as independent validation of 445 

the observation that specific microbiome members are strongly correlated with peripheral inflammatory 446 

response pathways in both inflammatory disease states and in homeostatic conditions. 447 

  448 
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 449 

Figure 6: Analysis of microbiome and blood peripheral gene expression in an independent healthy control 450 

human cohort validates association between specific microbiome members and host peripheral gene 451 

expression. A. t-Distributed Stochastic Neighbor Embedding (t-SNE) ordination all RNAseq samples used in this 452 

analysis. This highlights the transcriptional differences between active TB patients, even those on HRZE 453 

treatment, and the healthy control cohorts. B. Within-sample GSEA (ssGSEA) of 50 Hallmark pathways from the 454 

MiSigDB on a per-sample basis for all cohorts in this study. NES score was calculated using the variance stabilized 455 

transformed counts from DSEeq, and plotted after scaling across all samples. C. Four representative pathways 456 

that correlated with microbiome composition in all cohorts analyzed in this study. D. Pearson’s correlations of 457 

ASVs with Hallmark pathways in an unbiased fashion highlighting negative correlation of many Clostridia and 458 

the proinflammatory pathways highlighted in 6C.  459 

  460 
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Discussion 461 

Since the advent of high-throughput microbiome characterization, it has become clear that antibiotics are one 462 

of the most common and severe perturbing influences on human microbiome composition, with both acute and 463 

longer lasting effects36,37. It also has become evident that the specific microbiome constituents have specific 464 

effects on host immunity, including the abundance and function of immune cell subsets21. Significant prior data 465 

have documented the effects of antibiotics on microbiome composition and function and the consequent 466 

influence of these microbiome factors on specific immune cell populations38, with the majority of these findings 467 

derived using in vivo mouse models. While there is no doubt that microbiota dynamics affect host immunity6, it 468 

remains unknown to what degree antibiotic induced perturbation of the microbiome may modify the outcome 469 

of  treatment of infection. It is conceivable that antibiotics work to clear infection both due to direct pathogen 470 

killing and by immune modulation through the microbiome. It is also possible that the pathogen killing effect of 471 

antibiotics may be partially counteracted by detrimental immune effects induced by microbiome perturbation. 472 

Such dynamics may be particularly relevant to the treatment of chronic infections such at tuberculosis, in which 473 

antibiotic therapy is prolonged and the disease manifestations reflect a mixture of pathogen burden and the 474 

balance of inflammatory mediators that cause tissue destruction and chronic symptomatology29,39. 475 

 476 

Antibiotic sensitive tuberculosis is treated with six months of antibiotics with predominantly mycobacterial 477 

specific agents. In this study we report the early microbiome effects of HRZE therapy in subjects with active TB 478 

and demonstrate that the same changes observed in a human cross-sectional study of TB treatment19 479 

(comparing vs cured and LTBI individuals) were present after just two weeks of treatment. As previously 480 

shown19, we conclude that HRZE treatment has a rapid and narrow effect on the intestinal Class of Clostridia, a 481 

finding that was also demonstrated in mice18,40. We note that given the mycobacterial-specific nature of TB 482 

drugs, and the combinatorial nature in which small molecules interact to affect the microbiome, it was difficult 483 

to predict that primarily Clostridia, in the Phylum Firmicutes, would be targeted by HRZE therapy, whereas 484 

Actinobacteria, the phylum to which Mtb belongs, are relatively unaffected. Experiments in mice have 485 

demonstrated that this anti-Clostridia effect is primarily driven by rifampicin18. Clostridia are immunologically 486 

active components of the microbiota through their production of metabolites such as short chain fatty acids 487 

and other compounds2,5,6,41,42. 488 

 489 

In this work, in addition to determining the microbiome perturbing effect of TB treatment at 2 weeks of therapy, 490 

we also leveraged a dataset derived from a clinical trial comparing two TB treatment regimens in a 2-week early 491 

bactericidal activity (EBA) format43. This comparison allowed us to dissect the relative contributions of pathogen 492 
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killing and microbiome perturbation to disease resolution because one treatment arm, standard therapy, both 493 

reduced Mtb bacterial burden and perturbed the microbiome, whereas NTZ had no effect on average Mtb 494 

burden, but did perturb the microbiome in a fashion that overlapped with HRZE. Additionally, the availability of 495 

systemic inflammatory markers derived from peripheral blood transcriptomics allowed us to determine the 496 

relative contribution of pathogen sterilization and microbiome disruption in predicting the resolution of 497 

inflammatory markers of disease. We find that even though NTZ did not reduce the burden of Mtb in the 498 

sputum, this molecule nevertheless: 1. caused perturbations responsible for obliterating a large number of 499 

obligate anaerobes (e.g. Clostridia), 2. facilitated domination by a number of pathobionts, and 3. affected 500 

peripheral gene expression of TB-related and TB-unrelated genes. Specifically, two independently-built 501 

computational models (one calibrated on HRZE-treated individuals, the other on NTZ) to link gene expression 502 

with microbiota and Mtb bacterial load changes showed that changes in active TB transcript patterns were not 503 

only correlated with the ability of the drug to reduce Mtb bacterial burden, but also with the abundance of 504 

Clostridia and pathobionts selected by NTZ. Specifically, the model proposed that reduced Mtb load in the 505 

sputum and increased abundance of Clostridia are predictive of normalization of the inflammatory transcript 506 

profile of active TB. In contrast, increased abundance of pathobionts, including E. faecium and K. pneumoniae, 507 

was predictive of inflammatory exacerbation in the NTZ cohort.  508 

 509 

To validate the inferred microbiome-host inflammatory relationship, we mined microbiome and blood 510 

transcriptomic profiling from an independent human cohort of healthy Haitian individuals. Remarkably, despite 511 

the reduced peripheral levels of inflammatory pathways compared subjects with active TB, we observe that 512 

members of the Class Clostridia negatively correlate with pro inflammatory pathways and the reverse for the 513 

intestinal pathobionts. This validation data strongly supports our conclusion that microbiome composition sets 514 

the tone of systemic inflammation, both in disease states and in homeostatic conditions. Further, it is consistent 515 

with the prior findings in both humans and animals that Clostridia have been associated with induction of anti-516 

inflammatory or benign conditions, whereas enrichment in Enterobacteriaceae members has been found to be 517 

immune-modulating and to alter immune cells populations in the periphery 44.  518 

 519 

This opposing predictive effects of immune modulating Clostridia and Mtb bacterial load (TTP) inferred by the 520 

RFR model in HRZE vs. NTZ-treated individuals may be interpreted as follows: when a treatment like HRZE is 521 

effectively killing Mtb, the rapid reduction in pathogen load in the lung dominates the normalization markers of 522 

inflammation, but there are also opposing effects on normalization originating from HRZE-induced microbiome 523 

perturbation. In the NTZ group, Clostridia are eradicated, and Proteobacteria and Bacilli are enriched, but 524 
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without pathogen killing, the microbiota effects are dominant. This NTZ group allows us to deduce opposing 525 

effects of Clostridia and pathobionts, with preservation of the former favoring inflammatory resolution and the 526 

latter favoring inflammatory exacerbation. This is consistent with our findings that after two weeks of NTZ 527 

treatment there is an exacerbation of TB associated inflammatory pathways (Figure 3B).  528 

 529 

Finally, given the challenge of explaining the relationship between microbiome composition and peripheral gene 530 

expression with paired samples, randomized to drug combinations with vastly different effects on both body 531 

systems, we strove to use an appropriate mathematical approach for this type of analysis: random forest 532 

regression. While there are a variety of statistical and machine learning techniques able to investigate 533 

relationships between complex multiparametric datasets (“large p”: microbiome composition, RNAseq data, 534 

clinical metadata, randomization cohort, paired-sample baseline normalization, etc.), and a “small n” of 535 

individuals in early phase clinical trials, Random Forests are adequate for microbiome purposes, as they have 536 

been shown to outperform Support Vector Machines in some instances, especially for continuous variable data, 537 

and need initialization of a smaller set of parameters compared to other deep-learning methods. We believe 538 

that our results highlight the utility of these models to: 1. Provide evidence for or against a particular hypothesis 539 

about clinically significant relationships between many potentially related parameters, and 2. To provide 540 

hypothesis generating relationships between the multi-omic constituents (i.e., features) of these models, which 541 

can be further tested in mice, validation cohorts, or other model systems.  542 

 543 

Our data indicates that within the first 14 days of treatment of tuberculosis, resolution of the active 544 

inflammatory response of TB (as measured by peripheral blood transcriptomics) may be strongly affected both 545 

by reducing Mtb burden as well as through antimicrobial-induced microbiome perturbations that may act 546 

directly on systemic immune function. Among the pathways tightly correlated with both factors are the 547 

signature activated pathways of active TB disease: IFN, type I interferon, and TNF 12. There is growing 548 

evidence that the outcome of active TB reflects a mixture of pathogen burden and cytokine networks that 549 

include IL-1 and IFN, with the latter acting to exacerbate disease39. Our findings indicate that the microbiome 550 

perturbation that accompanies TB treatment is a predictor of the normalization of these same pathways during 551 

early treatment, suggesting that microbiome perturbation could modify or predict the rapidity of disease 552 

resolution. In the first two weeks of treatment, pathogen killing is the dominant factor, but microbiome 553 

dependent modulation of inflammatory responses during treatment may assume an important role during the 554 

later phases of treatment when pathogen killing slows. The validation of the relationships between microbiome 555 

composition and peripheral gene expression in a healthy control cohort, especially for the collective expression 556 
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of these same pro- and anti-inflammatory pathways, suggests that these relationships may extend into other 557 

populations. Whether these relationships are causal, or biomarkers of another state will remain at the forefront 558 

of future study design. Future work will be directed to applying the analytical tools and study design presented 559 

here to later time points in the TB treatment course to examine whether microbiome perturbation during 560 

treatment associates with clinically relevant treatment outcomes, and whether the abundance of Clostridia 561 

correlates with rapidity of Mtb sterilization or the resolution of the inflammatory response that accompanies 562 

active TB. Such data might help support trials to test microbiome monitoring as a predictor of TB treatment 563 

outcome or help understand interindividual heterogeneity in treatment outcomes.  564 

  565 
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Materials and Methods 566 

Ethical statement and study approval 567 

All volunteers provided written informed consent to participate in this study. All human studies were reviewed 568 

and approved by the IRBs of both Weill Cornell Medicine and Groupe Haitien d’etude du Sarcome de Kaposi et 569 

des Infections Opportunistes (GHESKIO) Centers (Port-au-Prince, Haiti). Participants provided informed consent 570 

prior to peripheral blood draw for whole blood collection and stool collection for 16S rDNA sequencing. All 571 

methods and procedures were performed in accordance with the relevant institutional guidelines and 572 

regulations. 573 

 574 

Donor recruitment and protection of human subjects 575 

Longitudinal treatment cohort: Donors were enrolled through the Clinical Trials Unit at GHESKIO. Pulmonary 576 

TB was diagnosed by clinical symptoms, chest radiograph consistent with pulmonary TB, and positive molecular 577 

testing. All participant samples were deidentified on site using a barcode system before they were shipped to 578 

Weill Cornell Medicine (WCM)/Memorial Sloan Kettering Cancer Center (MSKCC) for analysis. All clinical 579 

metadata was collected on site and managed through the REDCap data management system.45  580 

 581 

Human healthy control arm: We recruited families of active pulmonary TB patients where at least 2 siblings 582 

within the family were diagnosed with active TB. These criteria were designed to select for households with high 583 

risk of transmission of Mtb. Household contacts were then recruited if they had been sleeping in the same house 584 

with a TB case for at least 1 month during the 6 months prior to the TB case diagnosis. Contacts underwent 585 

clinical screening for active TB symptoms and IGRA testing. Healthy donors without history of TB contacts or 586 

disease were recruited from the same community as a control group for exposure and also underwent clinical 587 

screening for active TB symptoms and IGRA testing. All donors provided informed consent prior to peripheral 588 

blood donation for whole blood collection for RNAseq and stool submission for DNA extraction and 16S rDNA 589 

sequencing. 590 

 591 

Microbial DNA extraction from stool 592 

DNA extraction from stool was performed as described.19 Stool specimens were collected and stored for less 593 

than 24 hours at 4°C, aliquoted (~2 ml each), frozen at –80°C, and shipped to WCM/MSKCC. About 200 – 500 594 

mg of stool from frozen samples was suspended in 500 μl of extraction buffer (200 mM Tris-HCl [Thermo Fisher 595 

Scientific], pH 8.0; 200 mM NaCl [Thermo Fisher Scientific]; 20 mM EDTA [MilliporeSigma]), 210 μl of 20% SDS, 596 

500 μl of phenol/chloroform/isoamyl alcohol (25:24:1; MilliporeSigma), and 500 μl of 0.1-mm–diameter 597 
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zirconia/silica beads (Biospec Products). Samples were lysed via mechanical disruption with a bead beater 598 

(Biospec Products for 2 minutes, followed by 2 extractions with phenol/chloroform/isoamyl alcohol [25:24:1]). 599 

DNA was precipitated with ethanol and sodium acetate at –80°C for at least 1 hour, resuspended in 200 μl of 600 

nuclease-free water, and further purified with QIAamp DNA Mini Kit (Qiagen) according to the manufacturer’s 601 

protocols. DNA was eluted in 200 μl of nuclease-free water and stored at –20°C.  602 

 603 

16S rDNA sequencing 604 

Primers used to amplify rDNA were: 563F (59-nnnnnnnn-NNNNNNNNNNNN-AYTGGGYDTAAAGN G-39) and 605 

926R (59-nnnnnnnn-NNNNNNNNNNNN-CCGTCAATTYHTTTR AGT-39). Each reaction contained 50 ng of purified 606 

DNA, 0.2 mM dNTPs, 1.5 μM MgCl2, 1.25 U Platinum TaqDNA polymerase, 2.5 μl of 10× PCR buffer, and 0.2 μM 607 

of each primer. A unique 12-base Golay barcode (Ns) preceded the primers for sample identification after 608 

pooling amplicons. One to 8 additional nucleotides were added before the barcode to offset the sequencing of 609 

the primers. Cycling conditions were the following: 94°C for 3 minutes, followed by 27 cycles of 94°C for 50 610 

seconds, 51°C for 30 seconds, and 72°C for 1 minute, where the final elongation step was performed at 72°C for 611 

5 minutes. Replicate PCRs were combined and were subsequently purified using the Qiaquick PCR Purification 612 

Kit (Qiagen) and Qiagen MinElute PCR Purification Kit. PCR products were quantified and pooled at equimolar 613 

amounts before Illumina barcodes and adaptors were ligated on using the Illumina TruSeq Sample Preparation 614 

procedure. The completed library was sequenced on an Illumina Miseq platform per the Illumina recommended 615 

protocol. 616 

 617 

16S rDNA bioinformatics analysis 618 

Forward and reverse 16S MiSeq-generated amplicon sequencing reads were dereplicated and sequences were 619 

inferred using dada2.46 Potentially chimeric sequences were removed using consensus-based methods. 620 

Taxonomic assignments were made using BLASTN against the NCBI refseq rna database. These files were 621 

imported into R and merged with a metadata file into a single Phyloseq object.  622 

 623 

Deposition of data. 16S rDNA sequencing data is deposited with the SRA under accession no. PRJNA445968 624 

(https://www.ncbi.nlm.nih.gov/bioproject/PRJNA445968). Code used for 16S analysis is available at 625 

https://wipperman.github.io/TBRU/.  626 

 627 

 628 

 629 
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Computational Analysis 630 

Raw ASV count data was normalized using DESeq247. DESeq2 was used to make differential abundance and 631 

expression comparisons between treatment cohorts and between individual pre and post-treatment samples 632 

for both microbiota and host gene count data.  633 

 634 

To determine how the anti-TB treatment affects both microbiome and peripheral gene expression profiles we 635 

performed differential analysis on the counts data obtained by microbiome DNA and peripheral blood RNA 636 

sequencing. As the primary endpoint of the clinical trial was powered to determine differences in Mtb load 637 

(TTP), we had to determine the statistical power available to identify significant differences in the abundance of 638 

both microbiota members and in the expression of peripheral genes. We ran power calculations (see Methods) 639 

to determine that with 16 microbiome samples and 8 RNAseq samples for the HRZE cohort, with 80% power at 640 

<0.05, we could detect a fold change of 1.4 for microbiome difference and a fold change of 1.8 for mRNA 641 

transcripts. In the NTZ cohort, with 18 microbiome samples and 14 RNAseq samples, with 80% power at <0.05, 642 

we can detect a fold change of 1.4 for microbiome differences and a fold change of 1.6 for mRNA transcripts. 643 

Additionally, we utilized DESeq in our analyses using baseline normalization within an individual as the gold 644 

standard. Power calculations were performed with the RNAseqPower package in R. For microbiome data we 645 

calculated a biological coefficient of variation of 0.3, and for RNAseq, we used a coefficient of variation of 0.4. 646 

We estimated the expected minimum fold change that we could observe for each group based on the sample 647 

size, sequencing depth, and an  < 0.05.  648 

 649 

To test whether there were differences between groups, we employed PERMANOVA using the Adonis function 650 

in the Vegan R package (https://cran.r-project.org/web/packages/vegan/vegan.pdf), which partitions a distance 651 

matrix of ASV count data and runs one-way ANOVA between groups of samples.  652 

 653 

To predict the post-pre fold change in abundance of HRZE and NTZ-affected host genes as a function of the 654 

corresponding fold change in abundance of microbiota ASVs and TTP using Random Forest Regression.30 To 655 

perform feature selection for each gene and rank features based on their prediction importance we used 656 

Boruta48. Boruta is a RF classification and regression wrapper for feature selection that allows identification of 657 

variables important for the prediction task while also removing redundant ones. Boruta creates a copy of each 658 

independent variable and shuffles them to remove correlation with the original variables (shadow variables). 659 

Using this augmented set Boruta builds a RF model and performs a Variable Importance Estimation of all the 660 

independent variables (both original and shadow). For every variable it then computes a normalized accuracy 661 
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score. A true variable is important if its normalized accuracy score is significantly greater than that of shadow 662 

variables. 663 

 664 

Accumulated Local Effect (ALE) plots were implemented to compute how the change in the expression of each 665 

modeled host gene is affected by the level of each predictor identified as important by the forest model. Code 666 

to analyze the data and to reproduce all the figures and results is available on Github at 667 

https://wipperman.github.io/TBRU/.  668 

 669 

Within sample GSEA analysis  670 

The ssGSEA (single sample gene set enrichment analysis) method49 was used to profile within-sample 671 

differences between pathways from the MiSigDB Hallmark pathways list50 with the GSVA package in R35. The 672 

MiSigDB Hallmark pathways list is a well validated set of general curated biological pathways that can give 673 

insight into specific biological and cellular processes. Additionally, we obtained a list of well validated active TB 674 

signatures from the TBSignatureProfilier R package (David Jenkins, Yue Zhao, W. Evan Johnson and Aubrey 675 

Odom (2020). TBSignatureProfiler: Profile RNA-Seq Data Using TB Pathway Signatures. R package version 676 

0.0.0.9005. https://github.com/compbiomed/TBSignatureProfiler. Variance stabilized transformed (vst) counts 677 

derived from DESeq2 were used as input into the GSVA function in the GSVA R package with default parameters 678 

and scaled Normalized Enrichment Scores (NES) were plotted as heatmaps. Importantly, unlike classical GSEA, 679 

this analysis is agnostic to sample phenotype. 680 
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Supplementary Figures 815 

 816 
Supplementary Figure S1: Pretreatment abundance of Phylum Actinobacteria predicts post-treatment 817 

domination status (p=0.0576).  818 
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 820 

Supplementary Figure S2: Pretreatment abundance of Class Bacilli predicts post-treatment domination status 821 

(p=0.0326).  822 
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 824 

Supplementary Figure S3. A. Receiver operating characteristic (ROC) curves with confidence intervals for 825 

random forests and support vector machines generated through comparison of microbiome data and peripheral 826 

RNAseq gene expression data for volunteers before treatment and after 14 days of either HRZE or NTZ therapy. 827 

Solid lines indicate the true comparison, and dotted lines indicate random (scrambled) labels. B. PCA plot of 828 

RNAseq peripheral gene expression comparing pretreatment samples randomized to either NTZ or HRZE.  829 
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 831 

 832 

 833 

Supplementary Figure S4. Summary of Random Forest Regression results for all differentially expressed 834 

transcripts between pretreatment/posttreatment samples (not just those previously associated with active TB) 835 

that were found significantly affected by HRZE or NTZ (See Methods). Frequency indicates the ratio between 836 

the number of times a predictor is found to be significantly important in predicting gene abundance over the 837 

total number of surveyed genes.  838 
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 840 

Supplementary Figure S5. Application of linear mixed effect modeling to predict the abundance of transcripts 841 

that are found to be significantly affected by TB bacterial load as measured by TTP in the NTZ cohort as a function 842 

of NTZ and by using patient ID as random effect. Even though NTZ does not affect TTP, variability in change in 843 

TTP for these individuals is found to explain changes in expression for several host genes previously associated 844 

with active TB. The y axis shows the change in each gene’s expression from 0 to 14 days, and the x axis shows 845 

the change in TTP across that same time.  846 

  847 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted February 27, 2020. ; https://doi.org/10.1101/2020.02.25.20027870doi: medRxiv preprint 

https://doi.org/10.1101/2020.02.25.20027870


 37 

 848 

Supplementary Figure S6: Peripheral gene expression changes in HRZE and NTZ treated groups. A. Top 10 849 

predictors of gene expression change in the HRZE cohort. Bacterial load (TTP) is the primary quantity that 850 

predicts the change in gene expression for almost three quarters of the genes that change in the HRZE cohort, 851 

with significant contributions of Clostridia. B. Top 10 predictors of gene expression change in the NTZ cohort. 852 

Change in abundance of Gemmiger formicilis is the primary quantity that predicts change in gene expression in 853 

the NTZ cohort. C. Scaled relative abundance of the top predictors and the genes that are significantly altered 854 

for HRZE. D. Scaled relative abundance of the top predictors and the genes that are significantly altered for NTZ. 855 
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 856 

Supplementary Figure S7: Within-sample GSEA analysis (ssGSEA) of common TB pathways from the R package 857 

TBSignatureProfiler. These pathways represent well validated gene lists that predict active TB from LTBI 858 

progression, and were the inputs used to generate the meta-signature in the primary analysis of this paper 17. 859 
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