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3

Abstract4

Yellow Fever (YF) is an arbovirus capable of causing haemorrhagic fever which is endemic in tropical5

regions of Africa and South America. In recent years, it has resurged – leading to large outbreaks and6

expanding its endemic zone, the causes of which are unknown. In Africa, the disease is currently considered7

endemic in 34 countries where it is estimated to cause 78,000 deaths a year. As the mosquito vectors of8

YF sensitive to environmental conditions, climate change may have substantial effects on the transmission9

of YF. Here we present the first analysis of the potential impact of climate change on YF transmission10

and disease burden. We extend an existing model of YF transmission in Africa to account for rainfall and11

a temperature suitability index. From this, we project transmission intensity across the African endemic12

region in the context of four climate change scenarios (representative concentration pathways (RCPs) 2.6,13

4.5, 6.0 and 8.5). We use these transmission projections to assess the change from current to future disease14

burden in 2050 and 2070 for each emission scenario. We find that disease burden changes heterogeneously15

with temperature and rainfall across the region. In RCP 2.6, we find a 93.0% [95% CI 92.7, 93.2%] chance16

that deaths will increase in 2050. We find that the annual expected number of deaths may increase by17

between 10.8% [95% CrI -2.4, 37.9%] for RCP 2.6 and 24.9% [95% CrI -2.2, 88.3%] for RCP 8.5 in 2050,18

with the most notable changes occurring in East and Central Africa. Changes in temperature and rainfall19

will affect the transmission dynamics of YF. Such a change in epidemiology will complicate future control20

efforts. As such, we may need to consider the effect of changing climactic variables on future intervention21

strategies.22

1 Introduction23

Yellow Fever (YF) is a zoonotic arbovirus endemic in tropical regions of Africa and Latin America. It is24

responsible for approximately 78,000 deaths per year although under reporting is high and since YF has a25

non-specific symptom set, misdiagnosis is an issue (Garske et al. 2014). YF has three transmission ‘cycles’26

in Africa: urban, zoonotic and intermediate. The urban cycle, mediated by Aedes Aegypti mosquitoes, is27

responsible for explosive outbreaks such as the one seen in Angola in 2016 (Ingelbeen et al. 2018; Wilder-Smith28

and Monath 2017). While the urban cycle can rapidly amplify transmission, the majority of YF infections are29

thought to occur as a result of zoonotic spillover from the sylvatic reservoir in non-human primates (NHP).30

This zoonotic cycle is mediated by a variety of mosquito vectors including Aedes Africanus and, as the NHP31

hosts are mostly unaffected by the disease in Africa, the force of infection due to spillover is fairly constant,32

unless land use changes (Monath and Vasconcelos 2015). The intermediate cycle is sometimes called the33

savannah cycle and is mediated by mosquitoes such as Ae. luteocephalus, who feed opportunistically on34

humans and NHP (Barrett and Higgs 2007).35

The Intergovernmental Panel on Climate Change (IPCC) states that global mean temperatures are likely36

to rise by 1.5◦C, compared with pre-industrial levels, by between 2030 and 2052 if current trends continue37

(Masson-Delmotte et al. 2018). Increases are projected not only in mean temperature but in the extremes of38
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temperature, extremes of precipitation and the probability of drought (Kharin et al. 2013; Dunning, Black,39

and Allan 2018).40

With multiple mosquito vectors and a zoonotic cycle depending on NHP hosts, the impact of climate change41

on YF is likely to be complex. Focusing on the main urban vector, Ae. Aegypti, there is strong evidence42

that projected climate change will alter its global distribution and thus, the risk of diseases it carries (Ryan43

2019; World Health Organisation 2018). Climate change has been predicted to increase the regions at risk44

from dengue and Zika transmission, though seasonal variation in temperature may mitigate the likelihood of45

outbreaks ion areas at the edges of the endemic zone (Mordecai et al. 2017; Huber et al. 2018).46

Long-term projections of the future disease burden of YF are needed to inform vaccination planning (VIMC47

2019). Furthermore, differences due to climate change may increase the risk of epidemics, a key consideration48

for the Eliminate YF Epidemics (EYE) strategy (World Health Organization 2017).49

In this manuscript we extend an existing model of YF occurrence and disease burden to incorporate a50

nonlinear temperature suitability metric. This measure of temperature suitability depends on the thermal51

responses of the vector, Ae. Aegypti, and virus which we estimate specifically for YF. We combine this with52

YF occurrence data in a Bayesian hierarchical model in order to account for uncertainty at each stage of the53

modelling process. This, along with established estimates of transmission intensity informed by serological54

survey data, allow us to predict current and future transmission intensity. Finally we use ensemble climate55

model predictions of future temperature and precipitation to project transmission and thus, burden in 205056

and 2070. Our results are the first examination of YF burden under the effect of climate change.57

2 Materials and methods58

2.1 Datasets59

We use a number of data sets to inform both the generalised linear model (GLM) of YF occurrence and60

the temperature suitability model. Additionally, we rely on estimates of transmission intensity informed by61

serological studies which are detailed in Gaythorpe et al. (2019) and described below.62

2.1.1 YF occurrence63

Details of YF outbreaks occurring from 1984 to present day were collated into a database of occurrence.64

These data were collected from the World Health Organisation (WHO) weekly epidemiological record (WER),65

disease outbreak news (DON), published literature and internal WHO reports (World Health Organization66

2009; World Health Organization, n.d.). Additionally, reports of suspected YF cases were collected in the67

WHO African Regional Office YF surveillance database (YFSD); this included data from 21 countries in68

West and Central Africa. The database was based on the broad case definition of fever and jaundice leading69

to a large proportion of cases attributed to non-YF causes. However, the incidence of suspected cases can be70

used as a measure of surveillance effort and is included as a covariate in the generalised linear model.71

2.1.2 YF serological status72

Surveys of seroprevalence were conducted in Central and East Africa. We use these to asses transmission73

intensity in specific regions of the African endemic zone. The current study includes surveys from published74

sources (Diallo et al. 2010; Kuniholm et al. 2006; Merlin et al. 1986; Omilabu et al. 1990; Tsai et al. 1987;75

Werner, Huber, and Fresenius 1984) and unpublished surveys from East African countries conducted between76

2012 and 2015 as part of the YF risk assessment process (Tsegaye et al. 2018). The surveys were included77

only if they represent the population at steady state, as such outbreak investigations were omitted (Garske78

et al. 2014). Additionally, in the majority of surveys, vaccinated individuals were not included; however,79

in South Cameroon, vaccination status is unclear an so we fit an additional vaccine factor for this survey.80

Summary details of the seroprevalence studies are included in the supplementary material.81
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2.1.3 Past vaccination coverage and demography82

Vaccination coverage is estimated using data on historic large-scale mass vaccination activities (Durieux83

1956; Moreau et al. 1999), routine infant immunization reported by the WHO and UNICEF (World Health84

Organization/ UNICEF 2015), outbreak response campaigns detailed in the WHO WER and DON and85

recent preventive mass-vaccination campaigns carried out as part of the yellow fever initiative (World Health86

Organization 2009; World Health Organization, n.d.). The coverage is estimated with the methodology of87

Garske et al. and Hamlet et al. and is visualised in the polici shiny application (Garske et al. 2014; A Hamlet,88

Jean, and Garske 2018). The application provides vaccination coverage estimates at province level for 3489

endemic countries in Africa which can be downloaded for years between 1940 and 2050.90

Demography is obtained from the UN World Population Prospect (UN WPP) (United Nations DoE 2017).91

We dis-aggregate this to province level by combining it with estimates of spatial population distributions92

from LandScan 2014 (Dobson et al. 2000). This allows us to estimate population sizes at province level for93

each year of interest assuming that the age structure is relatively similar across all provinces in each country.94

2.1.4 Environmental and climate projections95

We use three main environmental covariates within the generalised linear model of YF occurrence: mean96

annual rainfall, average temperature and temperature range, shown in figure 1. These are gridded data at97

various resolutions, ranging from approximately 1km to 10km, which we average at the first administrative98

unit level (NASA 2001; Xie and Arkin 1996; Hijmans et al. 2004).99

Projected temperature and rainfall changes under climate change scenarios were obtained from worldclim100

version 1.4 (Hijmans et al. 2005; Fick and Hijmans 2017). These data provided the 5th Intergovernmental101

panel on climate change (IPPC5) climate projections for four Representative Concentration Pathways (RCPs):102

2.6, 4.5, 6.0 and 8.5 (Van Vuuren et al. 2011). The different RCPs indicate different possible emission103

scenarios and represent the resulting radiative forcing in 2100, measured in W/m2 or watts per square metre.104

Each scenario is assumed to peak at a different times, with emissions peaking between 2010 and 2020 for105

RCP 2.6, but rising throughout the century for RCP 8.5. Projections of the mean global temperature rise by106

2046 - 2065 are 1 or 2 ◦C for RCPs 2.6 or 8.5 respectively, compared to pre-industrial levels of the 1880s. By107

the end of the century, these projections suggest a rise of 1 [0.3 to 1.7] or 3.9 [2.6 to 4.8]◦C for RCPs 2.6 or108

8.5 (Stocker et al. 2013; Rogelj, Meinshausen, and Knutti 2012). Current warming is estimated to be 0.85 ◦C109

since pre-industrial levels (Stocker et al. 2013). Based on current commitments through aspects such as the110

Paris agreement, scenarios where temperatures are expected to rise by more than 3 ◦C have been suggested111

to be most likely (Sanford et al. 2014). As such, a recent study omitted the RCP 2.6 scenario as it is unlikely112

now to occur (Mora et al. 2013; Vliet, Elzen, and Vuuren 2009).113

Projected mean rainfall, maximum temperature and minimum temperature are available for each RCP114

scenario in years 2050 and 2070. We take the midpoint and range of the temperature as inputs for the model115

of YF occurrence, where the midpoint temperature is used to calculate the temperature suitability index. A116

comparison of the temperature mean and midpoint for the baseline/ current scenario is shown in figure S2 in117

the supplementary information.118

We do not model changes in climate prior to 2018, instead using Worldclim baseline estimates described as119

representative of conditions from 1960 - 1990 (Hijmans et al. 2005).120
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(a) Estimated mean monthly rainfall (mm) for baseline/ current
scenario.

(b) Average temperature at baseline/ current scenario in ◦C.

(c) Longitude (d) Range in temperature at baseline/ current scenario in ◦C.

Figure 1: Spatial data inputs for generalised linear model. Countries shown in black are not considered
endemic for YF.

2.1.5 Temperature suitability121

We estimate the components of the temperature suitability index from YF-specific sources of information on122

extrinsic incubation period, vector mortality and bite rate for Aedes Aegypti, the urban vector of YF (Davis123

1932; Tesla et al. 2018; Arran Hamlet et al. 2018; Mordecai et al. 2017). The extrinsic incubation period was124

estimated from the experimental results of Davis which were calculated specifically for YF in Aedes Aegypti125

(Davis 1932). We included bite rate data from both Mordecai et al. (2017) and Martens (1998) which both126

describe Aedes Aegypti. Finally, vector mortality was estimated from the experimental data of Tesla et al.127

(2018). Where data was provided in figure form, plots were digitised to extract the information. All data128

used for fitting the temperature suitability model are made available as Supplementary Information.129

2.2 Models130

We reformulate an established model of YF occurrence to accommodate nonlinear dependence on temperature131

and rainfall. We couple this with established results from a transmission model of serological status to estimate132

transmission intensity across the African endemic region at baseline/ current environmental conditions (Garske133
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et al. 2014; Jean et al. 2018; Gaythorpe et al. 2019). Then, we project transmission intensity for four climate134

scenarios given projected changes in temperature and rainfall.135

2.2.1 YF occurrence136

The generalised linear model (GLM) of YF occurrence provides the probability of a YF report at first137

administrative unit level for the African endemic region dependent on key climate variables. In order to138

assess the effect of climate change on YF transmission, we use the same methodology as (Garske et al.139

2014; Jean et al. 2018; Gaythorpe et al. 2019); and incorporate covariates indicative of climate change that140

also have projections available in years 2050 and 2070 for different emission scenarios. As such, we omit141

enhanced vegetation index and land cover from the best fitting model of Garske et al. (2014) in favour of142

the temperature suitability index which depends on the average temperature, the temperature range and143

average rainfall. Temperature and rainfall are known to have implications on both the vectors of YF and the144

distribution of the non-human primate reservoir (Reinhold, Lazzari, and Lahondère 2018; Cowlishaw and145

Hacker 1997). However, the effect of temperature, particularly on vectors, is highly non-linear with increased146

mortality seen at very low and high temperatures; as such, we include the range in temperature as a covariate147

of our occurrence model as well as the non-linear temperature suitability index (Mordecai et al. 2017; Tesla148

et al. 2018). A full listing of covariates used in given in Supplementary table S2.149

2.2.2 Temperature suitability150

We model suitability of the environment for YF transmission through temperature dependence. It has been151

shown that the characteristics of the virus and vector change with temperature (Brady et al. 2014; Kraemer152

et al. 2015; Mordecai et al. 2017; Tjaden et al. 2018). We model this using a function of temperature for the153

mosquito biting rate, the extrinsic incubation period and mortality rate for the mosquito which we combine154

to calculate the temperature suitability based on the Ross-MacDonald formula for the basic reproduction155

number of a mosquito-borne disease (Macdonald and others 1957). In the below, we focus on Aedes Aegypti.156

The functional form used to model temperature suitability varies in the literature. We continue to use a form157

which can be parameterised solely from data specific to YF (Arran Hamlet et al. 2018; Garske, Ferguson,158

and Ghani 2013). However, alternative formulations have been published in the context of other arboviral159

infections (Mordecai et al. 2017; Ryan 2019; Brady et al. 2014, 2013; Tjaden et al. 2018).160

Each input of the temperature suitability, z(T ), is modelled as a function of average temperature where the161

individual thermal response follow the forms of Mordecai et al. The temperature suitability equation is as162

follows:163

z(T ) = a(T )2 exp(−µ(T )ρ(T ))
µ(T ) , (1)

where T denotes mean temperature, ρ is the extrinsic incubation period, a is the bite rate and µ is the
mosquito mortality rate. The thermal response models for ρ, a and µ follow Mordecai et al. (2017) as follows:

a(T ) = acT (T − aT0)(aTm − T )0.5,

ρ(T ) = 1/ρcT (T − ρT0)(ρTm
− T )0.5,

µ(T ) = 1/(−µc(T − µT0)(µTm
− T )),

where the subscripts T0 and Tm indicate respectively the minimum and maximum values of each variable,164

and subscript c labels the positive rate constant for each model. The three resulting parameters for each165

model are estimated by fitting to available experimental data. The mortality rate µ is limited to be positive.166

2.2.3 Mapping probability of occurence to force of infection167

We utilise previously estimated models of seroprevalence informed by serological survey data, demography168

and vaccination coverage information (Garske et al. 2014; Gaythorpe et al. 2019). The transmission intensity169
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is assumed to be a static force of infection, akin to the assumption that most YF infections occur as a result170

of sylvatic spillover (Garske et al. 2014; Gaythorpe et al. 2019). The force of infection is assumed to be171

constant in each province over time and age. As such, we may model the serological status of the population172

in age group u as the following:173

S(λ, u) = 1 −
(

1 −
∑
a∈u(1 − exp(−λa))pa∑

a∈u pa

)(
1 −

∑
a∈u vapa∑
a∈u pa

)
where λ is the force of infection, pa the population in annual age group a and va the vaccination coverage in174

annual age group a. This provides us with estimates of force of infection in specific locations where serological175

surveys are available.176

In order to estimate transmission intensity in areas where no serological survey data is available, we link the177

GLM predictions with seroprevalence estimates through a Poisson reporting process. The force of infection178

can be used to estimate the number of infections in any year. Thus, we may calculate the number of infections179

over the observation period. These will be reported with a certain probability to give the occurrence shown180

in the GLM. As such, we assume that the probability of at least one report in a province over the observation181

period, qi, depends on the number of infections in the following way:182

qi = 1 − (1 − ρi)ninf,i

where ρc is the per-country reporting factor which we relate to the GLM in the following way:183

ninf,i ln(1 − ρc) = − exp(Xβ)

where X are the model covariates and β, the coefficients. The probability of detection can then be written in184

terms of the country factors, which are GLM covariates, βc, and b, the baseline surveillance quality calculated185

from the serological survey data:186

ln(− ln(1 − ρc)) = βc + b.

2.3 Estimation187

We estimate the models of temperature suitability and YF report together within a Bayesian framework using
Metropolis-Hastings Markov Chain Monte Carlo sampling with an adaptive proposal distribution (Andrieu
and Thoms 2008; McKinley et al. 2014; Tennant, McKinley, and Recker 2019). The pseudo-likelihood
contains components for the GLM of YF reports as well as the thermal response models and is given by the
following:

log(L) = log(LGLM ) + log(La) + log(Lρ) + log(Lµ),

where log(Lx) denotes the log likelihood of element x. The log likelihood for the GLM assumes that the
binary YF occurrence data is Bernoulli distributed (Garske et al. 2014):

log(LGLM ) =
∑
i

(
yi log(qi) + (1 − yi) log(1 − qi)

)
, (2)

where yi is the binary occurrence and qi is the probability of at least one YF report in province i. We188

propogate uncertainty in the estimation of the GLM from the thermal response models as well as that from189

the seroprevalence into the resulting transmission intensity estimates.190

The thermal response likelihoods are provided by an exponential distribution for bite rate, a Bernoulli191

distribution for mortality and a normal distribution for extrinsic incubation period.192

The estimation, analysis and manuscript were all performed or written in R version 3.5.1, ridgeline plots193

were generated with packages ggplot2 and ggridges (R Core Team 2014; Wickham 2016; Wilke 2018; Garnier194

2018).195
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2.4 Future projections196

In order to assess future changes in force of infection, and thus disease burden, we incorporate ensemble197

climate projections of temperature change and precipitation. We assume that the force of infection is constant198

until 2018 and then changes linearly between 2018, 2050 and 2070, the years for which climate projections are199

available. Furthermore, in order to compare only the influence of changing population and force of infection,200

we assume that vaccination after 2019 is kept at the routine levels of 2018. As such, the results will not be201

affected by country specific preventive vaccination campaigns but, future burden will be over estimated as202

there are likely to be preventive and reactive campaigns in future. We estimate burden by calculating the203

proportion of infections who become severe cases and then, of those, the proportions that die, using published204

case fatality ratio estimates (Johansson, Vasconcelos, and Staples 2014). We compare burden estimates with205

a baseline scenario assuming the same demographic conditions and vaccination levels as the climate change206

scenarios but no change in climate variables (precipitation and temperature) over time.207

3 Results208

3.1 Model predictions for baseline scenario209

Figure 2 (left) shows occurrence of YF across Africa from 1984 to 2018. Incidence is focused in the West of210

Africa and, more recently, Angola and the Democratic Republic of the Congo. The model predicts a high211

probability of YF report in these areas and reflects the general patterns of YF occurrence, see figure 2 for212

comparison. Model fit can be characterized by the Area Under the Curve (AUC) statistic (Huang and Ling213

2005), which was 0.9004, similar to the original model formulation of Garske et al. (2014).214
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Figure 2: Observed YF occurrence (left) and median probability of a YF report predicted by the GLM.

The predicted probability of a YF report is positively informed by temperature suitability with the median215

posterior predicted distribution shown in figure 3a). This highlights the high suitability of countries such216

as Nigeria and South Sudan for YF transmission. In contrast, Rwanda, Burundi and areas of Mali and217

Mauritania have low average temperature suitability. The fit of the thermal response models is shown in the218

supplementary information, figures S11, S12 and S13.219
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(a) Median posterior predicted temperature suitability for the
African endemic region with average temperature.

(b) Median predicted FOI for the African endemic region at
baseline.

Figure 3: Median predicted model outputs for baseline scenario.

Projected transmission intensity220

Figure 3b) shows the median posterior predicted estimates of the force of infection for the baseline/ current221

scenario. When we incorporate the ensemble projections of temperature and precipitation change we see222

heterogeneous impacts on force of infection. Figure 4 shows the percentage change in median force of infection223

for the year 2070. Projections for 2050 are shown in figure S16 in the supplementary information.224
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Figure 4: Percentage change in force of infection in 2070. Median predicted change in force of infection in the
African endemic region in 2070 for the four emission scenarios.

The posterior distributions of predicted changes in force of infection in different African regions are shown in225

figure 5 (region definitions shown in figure S1). Projections for individual countries are given in supplementary226

information in figures S17 and S18. In West Africa, the predicted change is clustered around zero in the227

majority of scenarios; this is particularly the case for year 2050. However, due to wider uncertainty in 2070228

and for RCP scenario 8.5 in general, there is a more discernible increase. In the East and Central regions,229

a predicted increase in force of infection is more apparent. Whilst the differences between 2050 and 2070230

are difficult to see for RCP scenario 2.6, both peak above zero. In RCP scenarios 4.5, 6.0 and 8.5, the231

distinction between years is clear, particularly in 8.5, with the greatest increases seen in 2070 as temperatures232
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are expected to continue to rise.233

When we examine the changes at country level, shown in the supplementary information, the changes are234

more heterogeneous. For RCP 2.6 Guinea Bissau the change in force of infection in 2070 is potentially broad,235

with a credible interval spaning zero: 10.3% (95%CrI [-33.2% , 96.3%]). Whereas, in Central African Republic,236

there is a notable increase by 87.1% (95%CrI [12.4% , 390.2% ]).237

Figure 5: Predicted force of infection change (%) for each region of Africa, year and climate scenario.

Projected burden238

The projected percentage change in the annual number of deaths caused by YF across Africa is given in table239

1; the projected annual deaths per capita for endemic countries are shown in figure 6 and in figure S19 in the240

supplementary information. These projections assume vaccination is static from 2019 onwards ie.e that only241

routine vaccination continues at 2018 levels. Aggregated numbers of deaths per country and region are shown242

in the supplementary information.243

While lower 95% credible intervals in table 1 are negative, the overall posterior probabilities that climate244

change will increase YF mortality are very high for each climate scenario. The probability that deaths will245

increase is 95.5% (95% CI [95.3%, 95.7%]) for RCP 2.6 in year 2070, rising to 95.9% (95% CI [95.7%, 96.1%])246
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Table 1: Predicted percentage change in deaths in the African endemic region in 2050 and 2070 compared to
the baseline/ current scenario.

Year Scenario 95% CrI low 50% CrI low Median 50% CrI high 95% CrI high
2050 RCP 2.6 -2.36 4.49 10.84 18.58 37.91
2050 RCP 4.5 -2.40 7.32 16.71 28.16 57.43
2050 RCP 6.0 -2.78 6.79 15.49 25.86 51.85
2050 RCP 8.5 -2.17 11.03 24.92 41.84 88.33
2070 RCP 2.6 -0.74 4.11 9.99 17.03 34.10
2070 RCP 4.5 -2.76 7.77 19.28 33.56 71.08
2070 RCP 6.0 -4.56 8.63 21.35 36.70 77.70
2070 RCP 8.5 -2.90 16.08 39.57 72.43 178.63

for RCP 8.5 in year 2070, values for all scenarios and years are shown in supplementary table S4.247

As with the force of infection projections, the most severe increases are seen for RCP scenario 8.5, especially248

in year 2070. The distinction between current projected deaths per capita and those under each RCP scenario249

are most clearly seen for countries in Central Africa, such as Central African Republic, and East Africa, such250

as Ethiopia. The four countries with the least distinct change, Liberia, Guinea, Sierra Leone and the Gambia,251

are all in West Africa, commonly thought to see the most intense YF transmission. As such, it appears that252

the most marked increases in burden are found in East and central Africa.253
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Figure 6: Posterior predicted annual YF deaths per capita for each country in the African endemic region in
2070. Countries are ordered by longitude. 13
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4 Discussion254

We developed on an established model of YF occurrence and transmission to accommodate temperature255

and precipitation projections for four climate emissions scenarios. Non-linear dependence on temperature256

was incorporated by utilising a function of temperature suitability, informed by thermal response data for257

Ae. Aegypti. We jointly estimated parameters for the temperature suitability and occurrence models in a258

Bayesian framework, allowing us to quantify the uncertainty in our projections. We found, despite changes to259

the covariates used in the occurrence model compared with past work (Garske et al. 2014), that model fit260

remained good with a median AUC of 0.9004. This gave us some confidence in the suitability of the model261

for projecting the impact of climate change on YF transmission through to 2070, the last year for which262

climate emission scenario projections are available for temperature and precipitation.263

The force of infection is projected to increase for the majority of countries in each scenario. Consistently,264

the Central African Republic is one of the countries most likely to see an increase in transmission, while265

Liberia and Guinea Bissau have much less clear projections. This highlights that the most severe proportional266

increases in force of infection are seen away from West Africa. However, as transmission is highest in267

West Africa, even a small relative increase of 3% (seen for Liberia in scenario RCP 2.6 in year 2050, see268

supplementary figures S17) could equate to a substantial increase in the projected absolute number of annual269

YF deaths.270

In all scenarios there is a high probability that the number of deaths and deaths per capita will increase.271

The most marked changes are seen for RCP 8.5, the most severe emission scenario; however, changes are272

heterogeneous geographically with large proportional increases occurring in Central and East Africa. We273

expect the number of deaths per year to increase by 10.0% (95% CrI [-0.7, 34.1]) under RCP scenario 2.6 or274

40.0% (95% CrI [-2.9, 178.6]) under RCP scenario 8.5 by 2070 (see table 1 for other values).275

We assume that the force of infection changes linearly between 2018 and 2050, and between 2050 and 2070.276

The online supplementary video illustrates this by showing posterior saples of the change in deaths by region277

for all years between 2018 and 2070. For RCP scenario 2.6, deaths largely cease increasing after year 2050, in278

line with the assumption that RCP 2.6 represents the situation where contributing carbon activities peak by279

2030; however, this scenario has been suggested to be ‘unfeasible’ (Mora et al. 2013; Vliet, Elzen, and Vuuren280

2009). In RCP scenario 8.5, carbon contribution activities are assumed to continue increasing throughout the281

century and the consequent effects are seen in the projected number of deaths in East and Central Africa,282

with an acceleration after 2050.283

Climate change will effect not only the magnitude of YF disease burden but also its distribution. This may284

lead to changing priorities with respect to vaccination. However, it is unclear whether the comparatively285

low proportional increase in burden seen for West Africa is due to more intensive vaccination or due to the286

limited increase in force of infection. Despite the ambiguity in mechanism, our results suggest that there287

could be drastic proportional increases in burden in East and Central Africa that may lead to greater vaccine288

demand in areas which have previously been of lower risk. Thus, whilst the countries experiencing the highest289

numbers of deaths will remain high risk, see figures S22 and S23 for the median distribution of deaths per290

year, countries such as Ethiopia and Somalia may become higher priority targets for vaccination.291

Our analysis has a number of limitations. In order to utilise emission scenario projections we were limited292

to covariates with projections in 2050 and 2070, namely temperature and precipitation. This meant that293

we adapted our previous best-fit model (Garske et al. 2014) to include temperature range, temperature294

suitability and precipitation rather than enhanced vegetation and landcover. This change slightly reduced295

fit quality, giving an AUC of 0.9004 as opposed to to 0.9157 (Gaythorpe et al. 2019). Vegetation is a key296

factor determining habitat of non-human primates, an element that may not be captured by the temperature297

suitability index which focuses on the vector Ae. Aegypti. This omission may lead to an overestimation of the298

future burden as elements such as desertification and the impact of increasing frequencies of forest fires are299

not considered (Overpeck, Rind, and Goldberg 1990; Huang et al. 2016; James, Washington, and Rowell300

2013).301
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Similarly, whilst the RCP scenarios model socio-economic and land-use changes, we do not explicitly include302

these aspects here (Van Vuuren et al. 2011). As such, we omit the human choices that may affect population303

distributions and behaviour, for example urbanization which has been shown to both reduce disease burden304

(Wood et al. 2017) and increase emergence of arboviruses (Gubler 2011; Hotez 2017). In the same way, while305

our model accounts for migration through use of the UN WPP population data, climate scenario-specific306

migration is not included in the model.307

Data availability constrains aspects of our modelling approach. We use Ae. Aegypti and YF-specific datasets308

to inform the thermal response relationships and thus, temperature suitability index. However, some data,309

such as information on the extrinsic incubation period are severely limited; we use a dataset of experimental310

results from 1930s (Davis 1932). These data may be outdated due to current mosquito species potentially311

adapting to different climates as well as improved experimental procedures. This is a key data gap for YF312

and new experimental results concerning the extrinsic incubation period could provide valuable insight into313

the dynamics of the virus in mosquitoes today.314

As further experimental data on thermal responses for Ae. Aegypti and other vectors of YF become available,315

the temperature suitability index developed here will be able to be enhanced. YF is known to have multiple316

vectors, each contributing to transmission cycles differently (Monath and Vasconcelos 2015), which are likely317

to have different thermal responses.318

We focus only on a constant force of infection model which is similar to assuming the majority of transmission319

occurs as a result of zoonotic spillover. This assumption is supported by recent studies (Gaythorpe et al.320

2019); however, the urban transmission cycle, driven by Ae. Aegypti plays a crucial role in YF risk and was321

responsible for recent severe outbreaks such as that in Angola in 2016. Incorporating climate projections into322

models that examine multiple transmission routes and thermal responses for multiple vectors, would produce323

a more realistic picture of how the dynamics of this disease may change with climate.324

Climate change is projected to have major global impacts on disease distribution and burden (Mordecai et al.325

2017; Huber et al. 2018; Kraemer et al. 2015). Here we examined the specific effects on YF and find that326

disease burden and deaths are likely to increase heterogeneously across Africa. This emphasises the need to327

implement and prepare for new vaccination activities, and consolidate existing control strategies in order328

to mitigate the rising risk from YF. Intervention through vaccination is the gold standard for YF, and new329

approaches are being implemented with respect to fractional dosing which is a useful resort to respond to330

urban outbreaks in case of vaccine shortage (Vannice, Wilder-Smith, and Hombach 2018). Yet, vaccination331

is not the only potentially effective control for YF, with novel vector control measures such as the use of332

Wolbachia showing promise and perspectives to improve clinical management or urban resilience (Rocha et al.333

2019; World Health Organization 2017). Finally, in order to monitor and respond to changing transmission334

patterns, effective and sensitive surveillance will be essential.335
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