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Abstract

Rift  Valley  fever  (RVF)  is  an  emerging,  zoonotic,  arboviral  haemorrhagic  fever  threatening
livestock  and  humans  mainly  in  Africa.  RVF  is  of  global  concern,  having  expanded  its
geographical range over the last decades. The impact of control measures on epidemic dynamics
using empirical data has not been assessed. Here, we combined seroprevalence livestock and
human RVF case data from the 2018-2019 epidemic in Mayotte, with a dynamic mathematical
model. Using a Bayesian inference framework, we estimated viral transmission potential amongst
livestock, and spillover from livestock to humans, through both direct contact and vector-mediated
routes. Model simulations were used to assess the impact of vaccination on reducing the human
epidemic size.  Reactive vaccination immunising 20% of  the livestock population reduced the
number of human cases by 30%. To achieve a similar impact, delaying the vaccination by one
month required using 50% more vaccine doses, and vaccinating only humans required 20 times
as more as the number of doses for livestock. Finally, with 53.92% (95%CrI [44.76-61.29]) of
livestock estimated to be immune at the end of the epidemic wave, viral re-emergence in the next
rainy season (2019-2020) was unlikely. We present the first mathematical model for RVF fitted to
real-world data to estimate virus transmission parameters, and able to inform potential control
programmes. Human and animal health surveillance, and timely livestock vaccination appear to
be key in reducing disease risk in humans. We furthermore demonstrate the value of  a One
Health quantitative approach to surveillance and control of zoonotic infectious diseases.

Introduction

Controlling  zoonotic  and  vector-borne  infections  is  complex,  as  it  requires  an  accurate
understanding of  pathogen transmission within  animal  populations,  and pathogen spillover  to
humans, whilst accounting for environmental factors affecting vector population dynamics (1,2).
Rift Valley fever (RVF) is an emerging zoonotic arbovirosis causing haemorrhagic fever. RVF is a
threat for both animal and human health, mainly in Africa (3).  Livestock (cattle, sheep and goats)
are RVF virus amplifying hosts, acquiring infection through the bites of infectious mosquitoes
(mainly  Aedes spp. and  Culex spp.) (4). Humans get infected by direct contact with infectious
animal tissues (upon abortions or animal slaughter), although vector transmission may also play a
role (4,5). Since 2015, RVF has been listed as a priority emerging disease by the WHO R&D
Blueprint (6). A major concern is the expansion of its geographical range over recent decades
(5,7).  Current  disease  control  options  for  reducing  disease  risk  in  humans  heavily  rely  on
controlling virus transmission in animal populations. The impact of disease control measures in
livestock on reducing RVF risk in humans has not yet been assessed, and doing so requires
estimating key transmission parameters between livestock, and from livestock to humans; using
animal and human epidemiological data.

Mayotte, an island located in the South Western Indian Ocean region, reported a RVF epidemic
in 2007-2008 (8). In a previous paper, we used longitudinal  livestock seroprevalence data to
model RVF virus emergence in the livestock population, and we estimated that the likelihood of
re-emergence was very low in a closed ecosystem (i.e. without introduction of infectious animals).
However, a few imported infectious animals could trigger another large epidemic, as the herd
immunity declined due to livestock population turnover (9). In 2018, about ten years after the
previous epidemic, RVF outbreaks were reported in several East African countries (e.g. Kenya,
South Sudan, Uganda, Rwanda) (10,11). In Mayotte, between November 2018 and August 2019,
a total of 143 human cases (RVF virus RT-PCR confirmed) were reported (Fig. 1A). The virus
belongs to the Kenya-2 clade (12),  which is closely  related to the strains detected in  recent
outbreaks in Eastern Africa. The Veterinary Services of Mayotte, the regional health authorities
(Agence de Santé Océan Indien) and the French Public Health Agency (Santé Publique France)
did  further  epidemiological  investigations  to  assess  temporal  patterns  in  occurrence  of  the
infection in the animal population, and to identify possible routes of human exposure to RVF
virus.  These  investigations  generated  a  uniquely  well  documented  RVF  epidemic  dataset,
including RVF seroprevalence and incidence data in animal and humans.
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We present  these data and use them to extend and fit  a  mathematical  model  of  RVF virus
transmission in livestock (9), and explicitly account for viral spillover from livestock into the human
population.  We fit  this model simultaneously to the infection patterns in livestock and human
observed during the 2018-2019 epidemic, allowing for the first time, (i) to estimate the level of
RVF virus transmission amongst livestock and spillover from livestock to humans by both direct
contact  and  vector-mediated  routes,  (ii)  to  estimate  the  likelihood  of  another  epidemic  the
following year, and (iii) to assess the impact of potential vaccination strategies in livestock and
humans on reducing disease occurrence in humans.

Results

The course of the epidemic in livestock and humans
Between November 2018 and August 2019, 143 RVF human cases were reported. The epidemic
peaked mid-February (February  11-17,  2019),  with  18 weekly  confirmed cases,  six  to  seven
weeks following the rainfall peak (Fig. 1A). About two-third of investigated cases reported a direct
contact with livestock or its tissues (incl.  milk  consumption) (68%, n=86), whilst 32% (n= 41)
reported no previous contact with animals (Fig 1A. cases in red and green, respectively).

Livestock sera (n=1,169) collected by the Veterinary Services between July 2018 and June 2019
were tested against RVF IgG. To assess the timing of emergence of the virus in the livestock
population, we plotted quarterly age-stratified RVF IgG prevalence, using only tested animals for
which the date of birth was available (n=493). In July - September 2018, that is before the report
of  the first  human case,  most seropositive  animals were in  the oldest  age groups (Fig.  1D),
possibly indicating viral exposure during the previous re-emergence (9). The IgG seroprevalence
increased in all age groups in January-March (Fig. 1E), and then in April-June 2019 (Fig. 1F),
evidencing that the emergence of the virus in the livestock population, was coincident with the
report of cases in humans.

Ongoing viral phylogenetic analyses on human derived-samples (12), and IgM positive livestock
seized from informal trade between June and August 2018 (Table S1), suggest that the virus was
likely introduced from Eastern Africa into Mayotte between June and August 2018, through the
movements of infectious animals.

Epidemic model
We modelled virus transmission amongst livestock as a function of  rainfall,  therefore varying
along the study period. RVF virus spillover from livestock to humans was modelled by both direct
contact, assuming a time-invariant transmission rate, and vector-mediated transmission, defined
as a function of rainfall (see Methods).

Transmission  parameters. By  fitting  this  model  to  the  RVF  datasets,  the  time-varying
reproduction  number  in  the  livestock  population  was  estimated  to  peak  at  Rs(t)=1.87  (95%
Credible Interval CrI [1.53-2.69]), in the second half of January (January 14-27, 2019) (Fig. S3),
two weeks following the rainfall peak, and three to four weeks prior to the predicted epidemic
peaks in livestock and humans (Fig.  2A).  This  corresponded to a transmission rate amongst
livestock  (βL−L ( t ))  at  8.92  per  100,000  livestock  heads  per  day  (95%CrI  [1.09-7.77]).  The

spillover rate from livestock to humans by direct contact (βL−H
C ) was estimated to 1.78 per 10

million persons per day (95%CrI [1.29 – 2.61]) (Table S2), and the maximum values of the time-

varying spillover transmission rate (βL−H
V

( t )) was 1.33 per 10 million persons per day (95%CrI

[2.25-8.46]).

Model predictions.  Using the estimated parameters, the simulated number of human reported
cases was 181 (95% CrI [138-233]), with two third resulting from direct contact (n=111, 95%CrI
[80-149]) and one third from vector transmission (n=70, 95%CrI [44-102]) (Table 1), in agreement
with the observed data (Fig. 1B-1C). The predicted age-stratified IgG seroprevalence in livestock
between January and June 2019 were in good agreement with the observed data as well (Fig.
1E-1F).  The  simulated  incidence  in  livestock  cases  peaked  mid-February  (February,  11-17),
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concomitantly with the peak in human vector-mediated transmission, whilst the number of human
cases by direct contact reached its maximum values one week later (February, 18-24) (Fig. 2A).
Finally, by the end of the epidemic wave, 18,460 (95%CrI [14,926-21,154]) animals were affected
resulting in 53.92 % (95%CrI [44.76-61.29]) of the livestock population being immune (Fig. 2B
and Table 1). The overall predicted number of human cases (both reported and not reported) was
estimated to  have reached 9,566 (95%CrI  [7,793-11,772]),  resulting in  3.73% (95%CrI  [3.03-
4.56]) of the human population being immune (Table 1).

In this setting, the likelihood of virus re-emergence the following rainy season (2019-2020) was
less than 2.5% (Fig. 2A), with the time-varying effective reproductive number Re(t) falling below
unity following the epidemic peaks and remaining very close to or below unity over the second
year of the simulations (Fig. 2C).

Vaccination scenarios. Probabilistic forecasts were also used to assess the impact of different
livestock and humans vaccination strategies on the size of the epidemic in both animals and
humans  (Fig  3A-3D  and  Table  1).  A  reactive  and  mass  vaccination  campaign  in  livestock
immediately after the report of the first human case (i.e. 6,000 doses in December 2018) allowed
a reduction in  the epidemic  size by a third (median number of  humans cases = 113 cases,
median number of livestock cases = 11,447), while waiting one more month would have required
50 % more vaccine doses to achieve a similar impact (9,000 doses in January 2019, median
number  of  humans  cases  =  115,  median  number  of  livestock  cases  =  11,573).  Finally,  a
vaccination programme targeting only humans would require immunising half of the population
(128,250 doses in December 2018) to reduce similarly the number of human cases (median=115
cases), whilst, of course, not impacting on the number of livestock cases.

Discussion

We present the first  RVF epidemic dataset  combining both livestock and human surveillance
data,  and  use  it  to  parameterise  a  mathematical  model.  We  estimated,  for  the  first  time,
transmission rates amongst livestock and spillover to humans using empirical epidemic data. This
also allowed the quantitative assessment  of  the importance of  timely livestock vaccination in
reducing  disease  risk  in  humans  during  an  epidemic,  useful  to  inform  potential  control
programmes, and illustrating the importance of One Health surveillance in the management of
zoonotic diseases.

The IgM testing of illegally imported livestock suggested that the virus may have been introduced
in Mayotte around June-August 2018, which is in agreement with the timing of RVF outbreaks on
the East African mainland (11) and corresponds to the dry season in Mayotte. Viral transmission
might have been maintained on the island at a low level in the dry season, or the virus might have
been several  times introduced, and the epidemic started only  following the start  of  the rainy
season (that is in October). The epidemic is likely to have therefore resulted from a recent viral
re-introduction, rather that viral persistence over the last ten years, as concluded about the 2007-
2008 epidemics, in a previous study (9).

The  systematic  testing  by  RT-PCR of  humans  showing  dengue-like  syndrome  performed  in
Mayotte for the last  ten years (since 2008),  provides additional evidence that  RVF had been
absent from the Island for a decade, and that the presented epidemic curve accurately reflected
its actual timing. During the epidemic, mitigation strategies such as vector control around houses
of  human  cases  (i.e.  post-detection)  and  the  diffusion  of  prevention  messages  on  milk
consumption and exposure to animals were communicated, from February 27 th onwards (13), that
is two weeks after the peak. Therefore, these measures are likely to have had a moderate impact
on the epidemic size, whilst not affecting the time of the epidemic peak. In addition, the timing of
the epidemic was corroborated by the observed changes in livestock seroprevalence, exhibiting a
clear pattern of viral emergence. Most livestock sera (90%) were collected and tested as part of
the regular annual surveillance campaign.  As 10% of  these samples were collected in areas
reporting human cases, the proportion of seropositive animals may have been overestimated.
However, most animal sampling was conducted from January 2019 onwards, when RVF virus
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had  already  spread  across  the  whole  island.  In  addition,  our  model  predicted  that  53.92 %
(95%CrI  [44.76-61.29]),  of  the livestock population was immune at  the end  of  the  simulated
epidemic wave (August 2019), which was in line with estimates from the previous emergence in
2007-2008 (9).

Previous RVF models parameterised the transmission rate from livestock to humans by direct
contact  as  an  input parameter  at  1.7  per  10  thousand  persons  per  day  (14-16).  The
epidemiological  investigations  conducted  in  this  epidemic assessed  whether  human  cases
reported a direct contact with animals or their infectious tissues, and human cases without prior
contact with such materials. This allowed for the first time estimating both RVF virus spillover to
humans  by  direct  contact  and by  vector  transmission  from epidemic  data.  These  estimated
transmission rates can be used as a benchmark for further modelling work. RVF human cases
with or without previous contact with animals or animal products have been reported in other
settings (17,18). Here, the reported fraction of cases without previous animal contact (32%) was
three  times  higher  than  in  South  Africa  (10%)  (17).  Several  reasons  may  explain  these
differences. For example, this could result from a recall bias from people interviewed in Mayotte,
or from the fact that in South Africa, people were tested following reports of RVF in animals (17).

Rainfall is a known driver for RVF virus transmission (19) and was used as a proxy for vector
abundance. We assumed a 14-days lag between rainfall  and its impact on vector abundance
based on previous modelling studies on RVF vectors population dynamics (20,21). Temperature
above 26ºC may also  promote RVF virus transmission (22-24).  The temperatures of  Mayotte
varying  annually  between  25ºC  and  35ºC  (9), we  assumed  that  in  this  specific  setting,
temperature would not be a major driver for viral transmission. In areas with cooler temperatures,
such as South Africa (25), temperature may need to be taken into account (26). The highest
estimated Rs(t) value was 1.87 (95%CrI [1.53-2.69]), yet in line with previous estimations of  R0

(14,27,28).  The baseline model, with constant transmission parameters, had a similar DIC than
the rainfall-dependent  model,  and showed  R0 values within  the same range. Whilst  this may
suggest  a smaller influence of environmental  factors on the RVF viral  transmission dynamics
during this epidemic, it may also suggest that upon the conditions met for emergence -(i) the
presence of the virus, (ii) a susceptible livestock population and (iii) the presence of vectors -  the
epidemic fade-out likely resulted from a depletion of susceptible livestock. This was corroborated
by  the  small  likelihood  of  re-emergence  in  the  following  rainy  season,  with  an  effective
reproductive number Re(t) remaining close or below unity in the months following the end of the
2018-2019 epidemic, due to the high proportion of immune animals.

A limitation of the model was that the reporting rate in humans was unknown, and defined based
on data from the 2007-2008 epidemic (29). This relied on the assumption that both the 2007-2008
and 2018-2019 epidemics affected the same number of people. Whilst there is no data available
on human infection patterns to support  this assumption,  our previous work  estimated a post-
epidemic livestock seroprevalence (9) which was similar to our current estimates, supporting the
assumption  that  both  epidemic  sizes  may  be  comparable.  Further  data  collection  estimating
human post-epidemic seroprevalence would allow an accurate estimation of this reporting rate.
Finally, the livestock model was built with similar assumptions than in our previous paper (9). This
included a latent (E) and an infectious (I) period of 7 days in livestock, accounting for the extrinsic
incubation period in the vector (3-7 days), and the latent (1-6 days) and infectious stages (3-6
days) in livestock (30-33), without explicitly modelling these processes. Although this may have
slightly impacted on the predicted timing of the epidemic peak in humans, our model predictions
were  in  agreement  with  the  observations.  In  addition,  this  did  not  impact  on  the  fitting  with
livestock data, as we fitted on the (R) compartment, aggregating data over three-month periods.
We also  assumed homogeneous mixing.  Mayotte  is  a  small  island (374km2),  the  ecosystem
shows limited spatial variations, livestock production systems are extensive with animals raised
outdoor year round (9), compatible with the assumption that the livestock population was equally
exposed to  RVF mosquito  vectors.  Accounting for  spatial  heterogeneity,  and testing for  finer
vaccination protocols would have required the use of epidemic data at a smaller spatio-temporal
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resolution. Our model can however be expanded into a metapopulation structure, and parameters
further refined, in ecosystems with epidemic data available at finer spatial and temporal scales.

The impact and cost-effectiveness of livestock vaccination has been assessed in specific RVF
high-risk  areas  in  Kenya  using  simulation  modelling  (32,33).  Instead,  our  analysis  allows
predicting the impact of vaccination strategies on reducing the number of human and animal
cases,  through  a  model  calibrated  from  epidemic  data.  Our  findings  provide  evidence  that
reactive animal vaccination is the most effective control measure, preventing both human and
livestock cases,  and  requiring a smaller number of  vaccine doses.  The characteristics  of  the
vaccine used in  the vaccination scenarios (highly immunogenic,  single  dose, and safe)  were
those targeted by WHO R&D Blueprint  (34),  and not  the  existing ones.  In practice,  currently
available RVF vaccines have different immunogenic and safety characteristics, with some of them
requiring boosters (35), and the choice of which vaccine to use on the field may vary upon the
epidemiological context. In addition, during this epidemic, livestock were not vaccinated due the
absence of a vaccine with a EU marketing authorisation (Mayotte is an  EU outermost region)
(36).  However,  we highlight  the  importance  of  the  development  of  contingency  planning,
availability of emergency funds and a suitable vaccine.

In  conclusion,  we  have  presented  a  uniquely  detailed  investigation  into  an  outbreak  of  an
emerging arbovirus,  combining animal  and human data,  with a mathematical  model for RVF.
Early detection and rapid vaccination are critical to RVF control at the early stage of the epidemic.
Disease surveillance in animals, contingency planning, and the timely implementation of livestock
vaccination,  are  key  for  reducing  human  disease  risk.  This  work  represents  a  collaboration
between  public  health  agency,  animal  health  surveillance  network,  farmers’  association,  and
researchers, initiated from the start of the epidemic, and conducted as a collaborative work as the
epidemic unfolded. Delays in getting livestock data were inherent to climatic conditions (storms)
and  field  work  constraints  in  remote  areas.  Nevertheless,  we  addressed  in  practice  the
challenges of a quantitative One Health approach (37), and illustrated its value to surveillance and
control of zoonotic emerging infectious diseases. Our model can be further expanded, refined and
recalibrated for other ecosystems.

Materials and Methods

RVF datasets

Human  data.  Human  incident  case  data  were  collected  from  patients  showing  dengue-like
symptoms and consulting a GP, and who subsequently tested positive for RVF virus RT-PCR
(38). Cases were interviewed using a structured questionnaire administered by Sante Publique
France health epidemiologists (39). The number of incident cases was aggregated by week.

Livestock data.  During  the  study period,  livestock  sera were  sampled by  field  veterinarians
according to two protocols: RVF targeted surveys around human cases and the regular annual
surveillance campaign (SESAM) which is implemented since 2008 (8). The sera from the RVF
targeted surveys were collected around human cases and were collected between January and
March  only.  However,  due  to  the  rapidly  increasing  number  of  human  cases  and  logistics
constraints, the Veterinary Services instead requested field veterinarians to sample animals from
the  annual  surveillance  campaign only,  depending  on  their  regular  field  visits,  therefore  not
depending on human cases. In total, between July 2018 and June 2019, a total of 1,169 livestock
sera were collected (842 from the annual surveillance and 146 from human investigations), and
tested against RVF IgG (ID Screen RVF Competition ELISA, IDVet, Grabels, France, Se=97 %,
Sp=100 % (40)). Date of birth was available for 493 of these sampled animals (with 9% from RVF
targeted  surveys,  Table  S3).  In  order  to  follow  the  emergence  of  the  virus  in  the  livestock
population over a year, we plotted quarterly age-stratified RVF IgG prevalence (Fig. 1D-1F).

Origin of the virus. To investigate the possible time window of virus introduction from imported
infected  animals,  we collated  serological  data  from illegally  imported  livestock seized by the
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Veterinary Services between  June and August 2018. These animals were tested RVF IgM by
ELISA (indicative of recent infections) (Table S1).

Epidemic model

We modelled RVF epidemic from the start of the rainy season, the first week of October 2018
(October, 1-7), one month prior to the report of the first human case, up to the first week of
August 2019 (July, 29-August, 4). No more human cases were reported after this date.

Transmission amongst livestock.  We adapted the previously developed SEIR model of RVF
virus transmission amongst Mayotte livestock (9) to the current epidemiological context. For full
details on the model structure and equations, see Metras et al. 2017 (9). We kept the previous
underlying  demographic  livestock  population  age-structure  (10  yearly  age-groups)  for  fitting
purpose, and we used a discrete-time deterministic framework,  with a daily time step.  In the
previous model, the transmission parameter amongst livestock (βL−L ( t )) and corresponding time-
varying reproductive number (Rs(t)) were assumed to be vector-borne and modelled as a function
of  monthly  NDVI  (Normalized  Difference  Vegetation  Index)  values,  as  a  proxy  for  vector
abundance. Here, instead of using monthly NDVI, we used rainfall data (41) at a daily time step,
since the model time step and the human epidemic curve available for fitting had a smaller time
resolution.  We also included a lag of  14 days between rainfall  and its  impact  on the vector
abundance (21,22). To look at the temporal pattern of the viral transmission over time, we also
calculated Re(t), the time-varying effective reproduction number, as the product of  Rs(t)  with the
proportion of susceptible livestock at time t (SI Methods).

Spillover  into humans.  We added a module simulating RVF virus transmission from livestock
into the human population. We assumed that susceptible humans (SH ) became infected following

exposure with infectious livestock by direct contact (EH
C ) at a constant rate βL−H

C , and by vector-

mediated route (EH
V )  at  a  time-varying rate  βL−H

V
( t ),  scaled on the rainfall-dependent  within-

livestock transmission (βL−L ( t )).  Infected individuals  EH
C  and  EH

V  successively moved to their

respective infectious states (I H
C  and I H

V ) ; after which they moved into the immune compartment (

RH) (Fig. S1), assuming they remained immune until the end of the study period. The model
equations, transmission parameters and the formulation of the forces of infection from livestock
λcontact(t) and vectors λvector(t) are presented in SI Methods.

Parameterisation and model fitting. Input parameters were those related to the natural history
of  infection  and  demographics  in  both  livestock  and  human  populations  (Table  S4).  The
proportion of immune animals at t0 was informed from the aggregated July-September 2018 IgG
livestock seroprevalence campaign (Fig. 1D). The reporting fraction of human cases was set to
ρ=1.9%,  as  a  post-epidemic  serological  study  in  humans,  conducted  in  2011  in  Mayotte,
estimated  that  3.5% (95%CI  [2.6-4.8])  of  the  human  population  was  RVF IgG-positive  (30).
Assuming a population size of 212,645 inhabitants in 2012 (42),  this corresponded to an average
of 7,442 persons being seropositive. Assuming that the sizes of the 2007-2008 and 2018-2019
epidemics  were  similar,  the  detection  of  143  cases  in  the  2018-2019 epidemics  suggests  a
reporting fraction of 1.9% (95% CI [1.4-2.6]). Finally, input rainfall data were downloaded from the
Meteofrance website, as cumulated rainfall over 10-day periods (41). Daily rainfall was calculated
by dividing these values by ten over each 10-day period.
Five parameters were estimated by fitting the model to the human and livestock epidemic data
(Table S3). Two parameters related to the rainfall-dependent transmission amongst livestock (A

and B), two parameters estimated the spillover to humans, via contact with livestock (βL−H
C ) and

via vector (scaling factor X), and the fifth parameter was the number of infectious livestock at t0

(Iliv0).  Parameter  estimation  was done by  fitting  simultaneously  the  (i)  quarterly  age-stratified
simulated proportion of immune livestock (pa,q) to quarterly RVF IgG prevalence (Fig. 1E-1F); (ii)
the simulated weekly number of reported incident cases in humans by direct contact (Fig. 1B) and
(iii) the simulated weekly number of reported incident cases in humans by vector-mediated route
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(Fig. 1C), to the observed weekly number of reported cases via both transmission routes. Values

of  those  five  parameters  were  sampled  from their  prior  distribution  θ={A , B , βL− H
C , X , I liv 0 }

using a Monte Carlo Markov Chain Metropolis-Hastings (MCMC-MH) algorithm, implemented in
the fitR package (43). Finally, to assess the impact of rainfall over the course of the epidemic, we
also fitted a baseline model for which all transmission parameters were constant over time (Table
S5). Details on models equations, parameter estimation, model fitting, and model comparison are
presented in SI Methods.

Forecasting and vaccination scenarios.  We  did  probabilistic projections for seven scenarios
(Table 1). For all  scenarios, we simulated 2,500 stochastic trajectories by sampling randomly
parameter  values  from  the  joint  posterior  distribution.  Scenario  1  aimed  at  estimating  the
likelihood  of  virus  re-emergence,  without  disease  control  intervention,  in  the  following  rainy
season (in 2019-2020), in a closed ecosystem, using the same rainfall data as during the 2018-
2019  rainy  season.  Scenarios  2-6  aimed  at  assessing  the  impact  that  different  livestock
vaccination strategies could have had on the number of human and livestock cases during the
2018-2019 epidemic. We assumed the use of a single-dose highly immunogenic vaccine (90 %
vaccine  efficacy)  (34,35),  and  a  14-days  lag  between vaccination  and  build-up  of  immunity.
Figures of  vaccination campaigns in Mayotte  in  2017 (against  blackleg,  a livestock disease),
showed that about 3,000 vaccine doses are routinely administered to livestock over a year by
local veterinarians. Scenario 2 tested the impact of administrating all these 3,000 doses in one
month, in December 2018, immediately after the report of the first human case (joint animal-
human alert date for response), corresponding to the current vaccinating capacity in Mayotte in
an emergency setting. Scenario 3 assumed an extra-vaccine supply and an emergency mass
vaccination, allowing 6,000 doses to be administered in December 2018. We also assessed the
impact of vaccinating livestock in January 2019, one month following the report of first human
case, allowing extra time for organising the vaccination campaign : 3,000 doses (Scenario 4),
6,000  doses  (Scenario  5)  and 9,000  doses  (Scenario  6).  Finally,  to  assess  the  impact  of  a
reactive and mass vaccination only in humans, we simulated a 50% vaccination coverage of the
human population in December 2018 (i.e.  128,250 doses) (Scenario 7).  Vaccination equations
and diagram are presented in SI Methods and Fig. S2.

Acknowledgments
The authors wish to thank the Agence de Santé océan Indien that has participated in collecting
human cases data, the laboratory of Centre Hospitalier de Mayotte which has performed the
virological  analyses on human samples,  the animal SESAM (Système d’Epidémiosurveillance
Animale à  Mayotte)  surveillance system,  the CoopADEM (Coopérative  agricole  des  éleveurs
mahorais),  the Cirad-CYROI,  the Veterinary Services,  and the LVAD (Laboratoire  Vétérinaire
d’Analyses Départemental de Mayotte) for the data collection and the serological analyses on
livestock  samples.  Finally,  we  thank  Harold  Noël  from Santé  publique  France  for  facilitating
human data access in the early stage of the epidemic.

Author Contributions

RM, WJE, LD, YH, MS conceptualized and designed the study. CY, LD, SC, YH, MS collated the
data and did data management. RM, GF performed the analyses. RM, WJE, CY, LD, GF, AC, SF,
GLG, CS, EC, LF, YH, MS interpreted and discussed the data and results. RM was responsible
for drafting the manuscript. All authors reviewed and approved the final manuscript.

8

329
330
331
332
333
334
335

336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357

358
359
360
361
362
363
364
365
366

367

368
369
370
371

8

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 30, 2020. ; https://doi.org/10.1101/2020.02.14.20022996doi: medRxiv preprint 

https://doi.org/10.1101/2020.02.14.20022996
http://creativecommons.org/licenses/by-nc/4.0/


References

1. M E. J. Woolhouse, C. Dye, Preface. Philos. Trans. Roy. Soc. London Ser B.  356, 981– 982
(2001).

2. B. A. Jones, D. Grace, R. Kock, S. Alonso, J. Rushton, M. Y. Said, D. McKeever, F. Mutua, J.
Young, J. McDermott, D. U. Pfeiffer, Zoonosis emergence linked to agricultural intensification and
environmental change. Proc. Natl. Acad. Sci. U. S. A. 110, 8399-8404 (2013).

3. M. H. A. Clark, G. M. Warimwe, A. Di Nardo, N. A. Lyons, S. Gubbins, Systematic literature
review of Rift Valley fever virus seroprevalence in livestock, wildlife and humans in Africa from
1968 to 2016. PLoS Negl. Trop. Dis. 12, e0006627 (2018).

4. B. H. Bird, T. G. Ksiazek, S. T. Nichol, N. J. MacLachlan, Rift Valley fever virus. J. Am. Vet.
Med. Assoc. 234, 883–893 (2009).

5. M.O. Nanyingi, P. Munyua, S. G. Kiama, G. M. Muchemi, S. M. Thumbi, A. O. Bitek, B. Bett, R.
M. Muriithi,  M. K.  Njenga, A systematic review of  Rift  Valley Fever epidemiology 1931-2014.
Infect. Ecol. Epidemiol. 5 (2015).

6. World Health Organization. Epidemic and pandemic-prone diseases, List of Blueprint priority
diseases.  Available  at  http://www.emro.who.int/fr/pandemic-epidemic-diseases/news/list-of-
blueprint-priority-diseases.html Accessed on 8 March 2020 (2018).

7. R. Hatchett, N. Lurie, Outbreak responses as an essential component of vaccine development.
Lancet. Infect. Dis. 19, e399-e403 (2019).

8. R. Métras, L. Cavalerie, L. Dommergues, P. Mérot P, W. J. Edmunds, M. J. Keeling, C. Cêtre-
Sossah,  E.  Cardinale,  The  Epidemiology  of  Rift  Valley  Fever  in  Mayotte:  Insights  and
Perspectives from 11 Years of Data. PLoS Negl. Trop. Dis. 10, e0004783 (2016).

9. R. Métras, G. Fournié, L. Dommergues, A. Camacho, L. Cavalerie, P. Mérot, M. J.  Keeling, C.
Cêtre-Sossah, E. Cardinale, W. J. Edmunds, Drivers for Rift Valley fever emergence in Mayotte:
A Bayesian modelling approach. PLoS Negl. Trop. Dis. 11, e0005767 (2017).

10.  ProMED.  Rift  Valley  fever  -  Kenya  (02):  (Wajir).  Published  Date:  2018-06-09.  Archive
Number: 20180609.5847216. Accessed on 05 December 2019 (2018).

11. Food and Agriculture Organization of the United Nations. EMPRES-i. Global Animal Disease
Information System. Available at :  http://empres-i.fao.org/eipws3g/  Accessed on 11 December
2019.

12. A. Kwasiborski, L. Collet, V. Hourdel,  M. Vandenbogaert, C. Batejat, J. C. Manuguerra, J.
Vanhomwegen, V. Caro. Molecular investigation of Rift Valley Fever outbreak in Mayotte, 2018.
Available  at:  https://programme.europa-organisation.com/slides/programme_ricai-2019/CO-
095.pdf , Accessed on 20 March 2020 (2019)

13. ProMED. Rift Valley fever - Mayotte (12): human, cattle. Published Date: 2019-05-28. Archive
Number: 20190528.6489852. Accessed on 09 March 2020 (2019).

14.  L.  Xue,  M.  H.  Scott,  L.  W.  Cohnstaedt,  C.  Scoglio,  A  network-based  meta-population
approach to model Rift Valley fever epidemics. J Theor. Biol. 306, 129–144 (2012).

15. S. C. Mpeshe, H. Haario, J. M. Tchuenche, A Mathematical Model of Rift Valley Fever with
Human Host. Acta Biotheor. 59, 231 (2011).

9

372

373
374

375
376
377

378
379
380

381
382

383
384
385

386
387
388

389
390

391
392
393

394
395
396

397
398

399
400
401

402
403
404
405

406
407

408
409

410
411

9

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 30, 2020. ; https://doi.org/10.1101/2020.02.14.20022996doi: medRxiv preprint 

https://programme.europa-organisation.com/slides/programme_ricai-2019/CO-095.pdf
https://programme.europa-organisation.com/slides/programme_ricai-2019/CO-095.pdf
http://www.emro.who.int/fr/pandemic-epidemic-diseases/news/list-of-blueprint-priority-diseases.html
http://www.emro.who.int/fr/pandemic-epidemic-diseases/news/list-of-blueprint-priority-diseases.html
http://empres-i.fao.org/eipws3g/
https://doi.org/10.1101/2020.02.14.20022996
http://creativecommons.org/licenses/by-nc/4.0/


16. J. Lugoye, J. Wairimu, C. B. Alphonce, M. Ronoh, Modeling Rift Valley fever with treatment
and trapping control strategies. Appl. Math. 7, 556-568 (2016).

17. B. N. Archer, J. Thomas, J. Weyer, A. Cengimbo, D. E. Landoh, C. Jacobs, S. Ntuli,  M.
Modise, M. Mathonsi, M. S. Mashishi, P. A. Leman, C. le Roux, P. J. van Vuren, A. Kemp, J. T.
Paweska,  L.  Blumberg,  Epidemiologic  Investigations  into  Outbreaks  of  Rift  Valley  Fever  in
Humans, South Africa, 2008-2011. Emerg. Infect. Dis. 19, 1918–1925 (2013).

18.  T.  R.  Shoemaker,  L.  Nyakarahuka,  S.  Balinandi,  J.  Ojwang,  A.  Tumusiime,  S.  Mulei,  J.
Kyondo,  B.  Lubwama,  M.  Sekamatte,  A.  Namutebi,  P.  Tusiime,  F.  Monje,  M.  Mayanja,  S.
Ssendagire, M. Dahlke, S. Kyazze, M. Wetaka, I. Makumbi, J. Borchert, S. Zufan, K. Patel, S.
Whitmer,  S.  Brown,  W.  G.  Davis,  J.  D.  Klena,  S.  T.  Nichol,  P.  E.  Rollin,  J.  Lutwama,  First
Laboratory-Confirmed Outbreak of Human and Animal Rift Valley Fever Virus in Uganda in 48
Years. Am. J. Trop. Med. Hyg. 100,659–671 (2019).

19.  R.  Sang, J.  Lutomiah,  M. Said,  A.  Makio,  H.  Koka,  E.  Koskei,  A.  Nyunja,  S.  Owaka, D.
Matoke-Muhia, S Bukachi, J. Lindahl, D. Grace, B. Bett, Effects of Irrigation and Rainfall on the
Population Dynamics of Rift Valley Fever and Other Arbovirus Mosquito Vectors in the Epidemic-
Prone Tana River County, Kenya. J. Med. Entomol. 54, 460–470 (2017).

20. C. Talla, D. Diallo, I. Dia, Y. Ba. J. A. Ndione, A. A. Sall, A. Morse, A. Diop, M. Diallo M,
Statistical modeling of the abundance of vectors of West African Rift  Valley fever in Barkédji,
Senegal. PLoS One. 12, e114047 (2014).

21. D. Diallo, C. Talla, Y. Ba, I. Dia, A. A. Sall AA, M. Diall, Temporal distribution and spatial
pattern of abundance of the Rift Valley fever and West Nile fever vectors in Barkedji, Senegal. J
Vector Ecol. 2, 426-436 (2011).

22. M. J. Turell, C. A. Rossi, C. L. Bailey, Effect of extrinsic incubation temperature on the ability
of Aedes taeniorhynchus and Culex pipiens to transmit Rift Valley fever virus. Am. J. Trop. Med.
Hyg. 134, 1211-1218 (1985).

23. J. F. Brubaker, M. J. Turell, Effect of environmental temperature on the susceptibility of Culex
pipiens (Diptera: Culicidae) to Rift Valley fever virus. J. Med. Entomol. 35, 918-921 (1998).

24.  G.  Lo  Iacono,  A.  A.  Cunningham,  B.  Bett,  D.  Grace,  D.  W.  Redding,  J.  L.  N.  Wood,
Environmental limits of Rift Valley fever revealed using ecoepidemiological mechanistic models.
Proc. Natl. Acad. Sci. U. S. A. 115, E7448-E7456 (2018).

25. R. Métras, M. Baguelin, W. J. Edmunds, P. N. Thompson, A. Kemp, D. U. Pfeiffer, L. M.
Collins, R. G. White RG. Transmission potential of Rift Valley fever virus over the course of the
2010 epidemic in South Africa. Emerg. Infect. Dis. 6, 916-924 (2013).

26.  H.  J.  Esser,  R.  Mögling,  N. B.  Cleton,  H. van der Jeugd, H. Sprong, A.  Stroo,  M. P.  G.
Koopmans,  W.  F.  de  Boer,  C.  B.  E.  M.  Reusken,  Risk  factors  associated  with  sustained
circulation of six zoonotic arboviruses: a systematic review for selection of surveillance sites in
non-endemic areas. Parasit. Vectors. 12, 265 (2019).

27.  C.  M.  Barker,  T.  Niu,  W.  K.  Reisen,  D.  M.  Hartley,  Data-Driven  Modeling  to  Assess
Receptivity for Rift Valley Fever Virus. PLoS Negl. Trop. Dis. 7, e2515 (2013).

28. M. L. Danzetta, R. Bruno, F. Sauro, F. Savini, P. Calistri  P, Rift Valley fever transmission
dynamics described by compartmental models. Prev. Vet. Med. 134, 197–210 (2010).

10

412
413

414
415
416
417

418
419
420
421
422
423

424
425
426
427

428
429
430

431
432
433

434
435
436

437
438

439
440
441

442
443
444

445
446
447
448

449
450

451
452

10

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 30, 2020. ; https://doi.org/10.1101/2020.02.14.20022996doi: medRxiv preprint 

https://doi.org/10.1101/2020.02.14.20022996
http://creativecommons.org/licenses/by-nc/4.0/


29. T. Lernout, E. Cardinale, M. Jego, P. Desprès, L. Collet, B. Zumbo, E Tillard, S. Girard, L.
Filleul, Rift Valley Fever in Humans and Animals in Mayotte, an Endemic Situation? PLoS ONE.
8, e74192 (2013).

30. Cavalerie L, Charron MVP, Ezanno P, Dommergues L, Zumbo B, Cardinale E. A Stochastic
Model  to  Study  Rift  Valley  Fever  Persistence  with  Different  Seasonal  Patterns  of  Vector
Abundance: New Insights on the Endemicity in the Tropical Island of Mayotte.  PLoS One.  10,
e0130838 (2015).

31.  Nicolas  G,  Chevalier  V,  Tantely  LM,  Fontenille  D,  Durand  B.  A  Spatially  Explicit
Metapopulation Model and Cattle Trade Analysis Suggests Key Determinants for the Recurrent
Circulation of Rift Valley Fever Virus in a Pilot Area of Madagascar Highlands. PLoS Negl. Trop.
Dis. 8, e3346 (2014).

32. Gachohi JM, Njenga MK, Kitala P, Bett B. Modelling Vaccination Strategies against Rift Valley
Fever in Livestock in Kenya. PLoS Negl. Trop. Dis. 10 doi: 10.1371/journal.pntd.0005049 (2016).

33. T. Kimani, E. Schelling, B. Bett, M. Ngigi, T. Randolph, S. Fuhrimann, Public Health Benefits
from Livestock Rift Valley Fever Control: A Simulation of Two Epidemics in Kenya. EcoHealth. 13,
729–742 (2016).

34. World Health Organization, R&D Blueprint, Target Product Profiles for Rift Valley Fever Virus
Vaccines – version 3. Available at :
https://www.who.int/docs/default-source/blue-print/call-for-comments/tpp-rift-valley-fever-
vaccines-draft3-0pc.pdf?sfvrsn=f2f3b314_2 Accessed 06 March 2020 (2019).

35. B. Dungu, B. A. Lubisi, T. Ikegami, Rift Valley fever vaccines : current and future needs. Curr
Opin Virol. 29, 8-15 (2018).

36. European Centre for Diseases Prevention and Control. Rift Valley fever outbreak in Mayotte,
France.  Rapid  Risk  assessment.  Available  at
https://www.ecdc.europa.eu/sites/default/files/documents/RRA-Rift-Valley-fever-Mayotte-France-
March-2019.pdf  Accessed 17 March 2020 (2019).

37. I. Scoones, K. Jones, G. Lo Iacono, D. W. Redding, A. Wilkinson, J. L. N. Wood, Integrative
modelling for One Health: pattern, process and participation. Philos Trans R Soc Lond B Biol Sci.
372, 20160164 (2017).

38. B. H. Bird, D. A. Bawiec, T. G. Ksiazek, T. R. Shoemaker, S. T. Nichol, Highly sensitive and
broadly reactive quantitative reverse transcription-PCR assay for high-throughput detection of Rift
Valley fever virus. J. Clin. Microbiol. 45, 3506–3513 (2007).

39.  H.  Youssouf,  M.  Subiros,  G.  Dennetiere,  L.  Collet,  L.  Dommergues,  A.  Pauvert  A,  P.
Rabarison, C. Vauloup-Fellous, G. Le Godais, M. C. Jaffar-Bandjee, M. Jean, M. C. Paty, H.
Noel, S. Oliver, L. Filleul,  C. Larsen, Rift  Valley fever outbreak, Mayotte, France, 2018–2019.
Emerg. Infect. Dis. Apr [08 March 2020] (2020).

40. J. Kortekaas, J. Kant, R. Vloet, C. Cêtre-Sossah, P. Marianneau, S. Lacote, A. C. Banyard, C.
Jeffries, M. Eiden, M. Groschup, S. Jäckel, E. Hevia, A. Brun, European ring trial to evaluate
ELISAs for the diagnosis of infection with Rift Valley fever virus.  J. Virol. Methods.  1, 177-181
(2013).

41. Meteofrance. Donnees decadaires agrometeorologiques. Available at :
https://donneespubliques.meteofrance.fr/?fond=produit&id_produit=113&id_rubrique=37
Accessed on 23 September 2019 (2019).

11

453
454
455

456
457
458
459

460
461
462
463

464
465

466
467
468

469
470
471
472

473
474

475
476
477
478

479
480
481

482
483
484

485
486
487
488

489
490
491
492

493
494
495

11

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 30, 2020. ; https://doi.org/10.1101/2020.02.14.20022996doi: medRxiv preprint 

https://www.ecdc.europa.eu/sites/default/files/documents/RRA-Rift-Valley-fever-Mayotte-France-March-2019.pdf
https://www.ecdc.europa.eu/sites/default/files/documents/RRA-Rift-Valley-fever-Mayotte-France-March-2019.pdf
https://donneespubliques.meteofrance.fr/?fond=produit&id_produit=113&id_rubrique=37
https://www.who.int/docs/default-source/blue-print/call-for-comments/tpp-rift-valley-fever-vaccines-draft3-0pc.pdf?sfvrsn=f2f3b314_2
https://www.who.int/docs/default-source/blue-print/call-for-comments/tpp-rift-valley-fever-vaccines-draft3-0pc.pdf?sfvrsn=f2f3b314_2
https://doi.org/10.1101/2020.02.14.20022996
http://creativecommons.org/licenses/by-nc/4.0/


43. Institut National de la statistique et des etudes economiques (Insee). Habitants a Mayotte.
Available  at :  https://www.insee.fr/fr/statistiques/3286558#documentation,  Accessed  on  05
October 2019 (2017).

43. A. Camacho, S. Funk, fitR: Tool box for fitting dynamic infectious disease models to time
series. R package version 0.1.

Ethics statement
The livestock  data  were  collected  under  the  under  the  Mayotte  disease  surveillance  system
(Système d’Epidémiosurveillance Animale à Mayotte, SESAM) with the approval of the Direction
of Agriculture, Food and Forestry (DAAF) of Mayotte. For human data, according to French law,
only “research involving a human being” (research defined by article L. 1121–1 and article R.
1121–1  of  the  Code  de  la  santé  publique)  are  compelled  to  receive  the  approval  of  ethics
committee. This study was based on anonymous data collected from health professionals for
public health purposes relating to the health surveillance mission entrusted to Santé publique
France by the French Law (article L. 1413-1 code de la santé publique). Therefore, the study did
not meet the criteria for qualifying a study “research involving a human being” and did not require
the approval of an ethics committee. Furthermore, as the data were anonymous, it did not require
an authorization of the French data protection authority (Commission Nationale informatique et
libertés).

Role of the funding sources
The funding sources have no role in study design; in the collection, analysis, and interpretation of
data; in the writing of the report; and in the decision to submit the paper for publication.

Declaration of interests
The authors declare no conflict of interest.

Funding sources
RVF RT-PCR were conducted as part as the surveillance system on dengue-like syndrome since
2008, funded by Agence de Santé océan Indien. The animal sampling and analyses were funded
by EAFRD (European Agricultural Fund for Rural Development) and RITA (Réseau d’Innovation
et de Transfert Agricole) Mayotte. WJE and AC were funded by the Department of Health and
Social Care using UK Aid funding managed by the NIHR (VEEPED: PR-OD-1017-20007). The
views expressed in this publication are those of the authors and not necessarily those of the
Department  of  Health  and  Social  Care.  SF  was  funded  by  a  Wellcome  Senior  Research
Fellowship (210758/Z/18/Z).

12

496
497
498

499
500

501
502
503
504
505
506
507
508
509
510
511
512
513

514
515
516

517
518

519
520
521
522
523
524
525
526
527

12

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 30, 2020. ; https://doi.org/10.1101/2020.02.14.20022996doi: medRxiv preprint 

https://www.insee.fr/fr/statistiques/3286558#documentation
https://doi.org/10.1101/2020.02.14.20022996
http://creativecommons.org/licenses/by-nc/4.0/


Figure 1AF. RVF epidemic data in humans and livestock, and model fit. (A) Weekly number
of  reported  human  cases  and  average  daily  rainfall  pattern  (solid  blue  line).  Human  cases
reporting direct contact with animals or their  products are presented in red (86 cases), those
reporting no prior contact with animals or their  products are in green (41 cases),  and lost to
follow-up are in grey (16 cases). (B) Predicted median (red solid line) and 95%CrI (red envelope)
of the number of weekly reported human cases by direct contact, and weekly incident observed
cases by contact (red dots). (C) Predicted median (green solid line) and 95%CrI (green envelope)
of the number of weekly reported human cases by vector-mediated route, and weekly incident
observed cases with no prior contact with animals (green dots). (D) Quarterly age-stratified RVF
IgG seroprevalence in livestock for the trimesters July-September 2018 (N=173),  (E) January-
March 2019 (N=252), and (F) April-June 2019 (N=67). In (D),(E),(F), the black dots and vertical
black lines represent the observed age-stratified average IgG seroprevalence and their 95%CI.
The  model  predicted  values  are  showed  by  the  median  (solid  blue  line)  and  95%CrI  (blue
envelopes).
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Figure  2AC.  Model  predictions  over  two  rainy  seasons  (2018-2019  and  2019-2020):
epidemic  curves,  proportion  of  susceptible  and  immune  livestock,  and  time-varying
effective  reproduction  (Re(t))  number.  (A) Predicted  (reported  and  unreported)  number  of
infectious livestock (blue) and humans by direct contact (red), and vector-mediated route (green).
(B) Predicted  median  (solid  lines)  and  95.%CrI  envelopes  of  the  predicted  proportion  of
Susceptible (green) and Immune (black) livestock over the course of the epidemic. (C) Values of
Re(t)= Rs(t)*S(t)  over the course of the epidemic. In all panels, the vertical blue and red vertical
lines correspond to the predicted epidemic peaks in livestock and humans, respectively.  The
vertical black line corresponds to the end of the fitting period (August 2019).
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Figure 3AD. Figure 3AD. Impact of vaccination strategies on the epidemic size. (A) Median
weekly number of predicted incident human cases, and corresponding (B) human epidemic size
(reported  cases).  (C) Median  weekly  number  of  predicted  incident  infected  livestock,  and
corresponding  (D) total  livestok epidemic size.  In  (A)  and  (C) the red solid line presents the
scenario with no intervention (Scenario 1); the black lines present vaccinations in December 2018
(black solid: 3,000 doses, dashed black: 6,000 doses) (Scenarios 2-3); the blue lines present the
vaccinations in January 2019 (blue solid: 3,000 doses, dashed blue: 6,000 doses; dotted blue:
9,000 doses) (Scenarios 4-6); the red line represent the human vaccination only (Scenario 7).
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Table 1. Predicted epidemic sizes (total and reported cases) and post-epidemic prevalence in
humans and livestock, for the different scenarios, predicted median (95% Credible Interval, CrI).

Epidemic size Post-epidemic prevalence

Scenarios Livestock total Humans total Humans 

reported

Reported 

contact

Reported 

vector

Livestock Humans

1. No 

intervention

18,461 

(14,926-21,153)

9,566 

(7,793-11,772)

181 

(138-233)

111 

(79-149)

70 

(44-102)

53.92 

(44.76-61.29)

3.73 

(3.03-4.56)

Livestock vaccination

2. Dec 3,000 14,415 

(11,154-17,237)

7,465 

(5,980-9,381)

142 

(106-186)

87 

(61-119)

54 

(34-80)

42.40 

(34.21-50.33)

2.90 

(2.33-3.65)

3. Dec 6,000 11,447 

(8,863-14,046)

5,936 

(4,683-7,674)

113 

(83-151)

69 

(46-97)

43 

(26-67)

34.17 

(27.66-41.15)

2.31 

(1.82-2.99)

4. Jan, 3000 15,311 

(12,237-17,985)

7,867 

(6,302-9,956)

149 

(112-197)

91 

(63-126)

58 

(35-84)

44.72 

(36.85-51.72)

3.06 

(2.45-3.88)

5. Jan, 6000 13,229 

(10,545-15,693)

6,872 

(5,470-8,752)

131 

(96-175)

80 

(55-112)

51 

(32-77)

38.87 

(32.21-45.44)

2.68 

(2.13-3.41)

6. Jan, 9000 11,573 

(9,296-13,784)

6,014 

(4,665-7,992)

115 

(83-158)

90 

(47-101)

44 

(27-68)

34.27 

(28.52-39.86)

2.34 

(1.82-3.12)

Human vaccination

7. Dec, 50 % 18,436 

(14,987-21,099)

6,032 

(4,708-7,942)

115 

(82-157)

70 

(46-102)

44 

(26-67)

53.79 

(45.05-61.20)

2.35 

(1.83-3.10)
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