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Abstract: 
Risk of COVID-19 infection in Wuhan has been estimated using imported case counts of international 

travelers, often under the assumption that all cases in travelers are ascertained. Recent work indicates 

variation among countries in detection capacity for imported cases. Singapore has historically had very 

strong epidemiological surveillance and contact-tracing capacity and has shown in the COVID-19 epidemic 

evidence of a high sensitivity of case detection. We therefore used a Bayesian modeling approach to 

estimate the relative imported case detection capacity for other countries compared to that of Singapore. 

We estimate that the global ability to detect imported cases is 38% (95% HPDI 22% - 64%) of Singapore’s 

capacity. Equivalently, an estimate of 2.8 (95% HPDI 1.5 - 4.4) times the current number of imported cases, 

could have been detected, if all countries had had the same detection capacity as Singapore. Using the 

second component of the Global Health Security index to stratify likely case-detection capacities, we found 

that the ability to detect imported cases relative to Singapore among high surveillance locations is 40% 

(95% HPDI 22% -  67%), among intermediate surveillance locations it is 37% (95% HPDI 18% - 68%), and 

among low surveillance locations it is 11% (95% HPDI 0% - 42%). Using a simple mathematical model, we 

further find that treating all travelers as if they were residents (rather than accounting for the brief stay of 

some of these travelers in Wuhan) can modestly contribute to underestimation of prevalence as well. We 

conclude that estimates of case counts in Wuhan based on assumptions of perfect detection in travelers 
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2 
may be underestimated by several fold, and severity correspondingly overestimated by several fold. 

Undetected cases are likely in countries around the world, with greater risk in countries of low detection 

capacity and high connectivity to the epicenter of the outbreak. 

 
Introduction: 
During the outbreak of a new virus SARS-Cov2 and its associated disease COVID-19, infection in travelers 

has been used to estimate the risk of infection in Wuhan, Hubei Province, China, the epicenter of the 

outbreak1. This approach is similar to that used for the the 2009 influenza pandemic where infections in 

tourists returning from Mexico were used to estimate the time-specific risk of infection (incidence or 

cumulative incidence) with the novel pandemic H1N1 influenza strain in Mexico (or parts thereof). The idea 

was that surveillance for the novel virus was not intense during the early days of the pandemic in Mexico, 

the source country, and that detection would be far more sensitive in travelers leaving Mexico, who would 

be screened when returning home as a means of preventing introductions of cases into destination 

countries 2,3. Reports that health systems in Wuhan are overwhelmed and many cases are not being 

counted have led to the use of outgoing traveler data to estimate the time-specific risk of COVID-19 in 

Wuhan 4. This estimate, in turn, has been used to estimate the cumulative incidence of infection by a certain 

date in Wuhan, and from there (often assuming exponential growth and no appreciable depletion of 

susceptibles) the cumulative number of cases. Two important assumption underlie this calculation: i) that 

the detection of cases in the destination country has been 100% sensitive and specific, whether they are 

detected at the airport (prevalent cases with symptoms) or later after arrival at their destination (cases that 

were incubating during travel); ii) that travelers have the same prevalence of infection as the average 

resident of Hubei , so the prevalence inferred in travelers may be directly applied in Hubei. Here we 

consider the extent to which these two assumptions are justified. We conclude that the first assumption is 

strongly inconsistent with observed data, resulting in potentially substantial underestimates of prevalence in 

Hubei and corresponding overestimates of case-severity measures that are normalised by case counts.  

We previously showed that there was variability between locations in the world in the relationship 

between the number of travelers from Wuhan to each international destination and the number of imported 

cases detected in that destination. On average, for countries presumed to have high surveillance capacity, 

one imported case reported over the period 8th January to 4th February was associated with each 

additional 14 passengers/day historical travel volume 5. However there was variation around this average. 

Among countries with substantial travel volume, Singapore showed the highest ratio of detected imported 

cases to daily travel volume, a ratio of one case per 5 daily travelers. Singapore is historically known for 

exceptionally sensitive detection of cases, for example in SARS6, and has had extremely detailed case 

reporting during the COVID-19 outbreak7. We therefore use Singapore in this work as the upper limit of 

case detection capacity. And we estimate this capacity of other locations relative to Singapore.  

Regarding the second assumption, we demonstrate that the point prevalence of infection may be 

lower in visitors who have stayed only briefly in the source population (Wuhan) than in residents. All else 

equal, the discrepancy between resident and visitor prevalence is most pronounced if the visitors’ durations 
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3 
of stay are shorter, for slower-growing epidemics, and for longer durations of detectable infection; 

conversely, visitors are more similar to residents in their prevalence of infections if they stay longer, if the 

epidemic is growing faster, and if the duration of detectable infection is shorter. We quantify this 

discrepancy as a function of these features using a simple model. 

 

 

 

Methods:  
 

Data 

 

From a total of 195 worldwide locations (reflecting mainly countries without taking any position on territorial 

claims), we included n=194, which excludes the epicenter China. Data on imported cases aggregated by 

location were obtained from the WHO technical report dated 4th February 2020 1 (a zero case count was 

assumed for all locations not listed). We used case counts up to the 4th February, because after this date 

the number of exported cases from Hubei province drops rapidly1, likely due to the Hubei-wide lockdowns. 

We defined imported cases as those with known travel history from China (of those, 83% had travel history 

from Hubei province, and 17% from unknown locations in China 1). Estimates on daily air travel volume were 

obtained from Lai et al.8. They are based on historical (February 2018) data from the International Air Travel 

Association and include estimates for the 27 locations that are most connected to Wuhan. They capture the 

daily average number of passengers traveling via direct and indirect flight itineraries from Wuhan to 

destinations outside of China. For all 167 locations not listed by Lai et al.8, we set the daily air travel volume 

to 1.5 passengers per day, which is one half of the minimum reported by Lai et al. Surveillance capacity 

was assessed using the Global Health Security Index9, which is an assessment of health security across 

195 countries agreeing to the International Health Regulations (IHR [2005]). Specifically, we use the 

second category of the index, Early Detection and Reporting Epidemics of Potential International Concern, 

henceforth referred to as simply the GHS2 index. We classify locations with GHS2 index above the 80th 

percentile as high surveillance locations, those with GHS2 index below the 20th percentile as low 

surveillance locations, with all others classified as locations with intermediate surveillance. We treat 

Singapore as a special case for surveillance of COVID-19, and we assign it it’s own category of 

highest-achieved surveillance. This study did not include human subjects, used publicly available data, and 

therefore no ethical approval was required. 

 

Estimating detection probability relative to Singapore 

 

We consider the detection of 18 cases by 4th February 2020 in Singapore 1 to reflect the highest 

surveillance capacity among all locations, and estimate the probability of detection in other countries 

relative to Singapore according to the following model. We model the case detection across i = 1,...,n 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 18, 2020. .https://doi.org/10.1101/2020.02.13.20022707doi: medRxiv preprint 

https://paperpile.com/c/xLrhI8/5PS2B
https://paperpile.com/c/xLrhI8/5PS2B
https://paperpile.com/c/xLrhI8/5PS2B
https://paperpile.com/c/xLrhI8/LKIt
https://paperpile.com/c/xLrhI8/LKIt
https://paperpile.com/c/xLrhI8/JUUb
https://paperpile.com/c/xLrhI8/5PS2B
https://doi.org/10.1101/2020.02.13.20022707
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 
worldwide locations, where the n = 194 locations are indexed with Singapore being i = 1, followed by the 

rest of the locations in order of decreasing GHS2 index. We assume that the observed case count across 

the n locations follows a Poisson distribution, and that the expected case count is linearly proportional to 

the daily air travel volume and a random variable,  reflecting the capacity of detecting cases relative,θlevel   

to Singapore:  

 

where yi denotes the reported case count in the i-th location, λi denotes the expected case count in the i-th 

location, β denotes the regression coefficient, xi denotes the daily air travel volume of the i-th location, and 

denotes a proportion of Singapore’s detection capacity, with  being a realisation of forθ 
level θ 

level[i] θ 
level  

location i. We assume that there are three different levels: low, medium and high. For each

 we assign a uniform prior over [0,1], and for log(β) we assign a weaklyθ , θ , θ }θlevel ∈ { low  med  high  

informative Normal prior with mean zero and standard deviation 50. Having fit the model (see details below) 

we approximate the distribution of the average detection probability, realisations of which, , areθglobal  

obtained by transforming draws from the posterior distributions of . Specifically, we take the, θ , θθlow  med  high  

weighted mean of the posterior draws of  for i  = 2,...n  where weights are proportional to daily, θ , θθlow  med  high  

air travel volume, xi. Exclusion of Singapore (i=1) enables the estimation of the global detection probability 

relative to Singapore. Conversely,  is an estimate of the multiplier of the case count that could have1/θglobal  

been detected globally under a capacity equivalent to that of Singapore. We discuss the mean and 95% 

highest posterior density interval (HPDI) of the numerical approximation of the posterior distribution of 

, as well as the mean and 95% HPDI of the numerical approximation of the posterior distribution ofθglobal  

. Note that the latter two are not reciprocals of the former two because the inverse of a mean is not1/θglobal  

equal to the mean of the inverse, and similarly for the HPDIs.  

We fit this model using Stan software (v2.19.1)10 and we draw 80,000 samples from the posterior 

using four independent chains (20,000 samples each), each with a burn-in of 500. Diagnostic plots of the 

MCMC sampler for each of the inferred variables (  and ) are shown in Supplementary, θ , θθlow  med  high β  

Figure 1 . All analyses are fully reproducible with the code available online 

(https://github.com/c2-d2/detect_prob_corona2019). 

 

Testing the effect of length of stay in point prevalence of  travelers 
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5 
In 2009, during the influenza pandemic which originated in Mexico, it was assumed that most travelers 

leaving Mexico were tourists, or other temporary visitors, with relatively short stays in Mexico, and that the 

risk that they were infected represented a cumulative hazard over the period of their stay2,3. The basic 

assumption was that short term visitors faced the same hazard of infection as residents of Mexico, but, 

given the shorter stay, they had a somewhat lower prevalence of infection when returning to their home 

country. Many estimates in 2019-20 for COVID19 have instead made the assumption of equal prevalence 

in travelers leaving Wuhan and in residents, which is equivalent to assuming either that all travellers are 

Wuhan residents, or that all visitors had stayed long enough during the epidemic that their prevalence was 

similar to that of residents.  

To quantify the difference between these two scenarios – assuming that all travellers are short term 

visitors versus assuming that all travellers are residents or long term visitors – we considered a simple 

model of an exponentially growing epidemic, in which the hazard of infection at time  is  increasingt (t)λ  

exponentially at rate . At the beginning of the epidemic, which we call time 0, the hazard of infection isr  

 and thereafter . Then the point prevalence of infection at time in residents who have(0)λ (t)λ = (0)e λ  
rt  u  

stayed in Wuhan for the duration of the epidemic will be the probability that they have become infected and 

not recovered by time , assuming that the cumulative hazard remains small enough by that point thatu  

there has been no appreciable depletion of susceptibles:  

,(u) (x)e dxP res = ∫
u

0
λ −γ(u−x)  

 e e dx  e e dx (e )|= ∫
u

0
λ 0

rx −γ(u−x) = ∫
u

0
λ 0

−γu (r+γ)x = r+γ
λ e 0

−γu (r+γ)x u
0  

= ,(e )r+γ
λ e 0

−γu (r+γ)u − 1  

assuming exponentially distributed duration of detectable infectiousness, with mean duration  The .γ −1  

same quantity for a visitor who had only been in Wuhan for days prior to departure would bed  

, assuming that they differ from residents only in the duration of exposure,(e  )P vis = r+γ
λ e 0

−γu (r+γ)u − e (r+γ)(u−d)  

not in the intensity of exposure. Under these assumptions, the ratio of prevalence in visitors to that in 

residents, which we call V, would be . Once the number of cases is substantial, thisV = P res

P vis =
e −1(r+γ)u

e −e (r+γ)u (r+γ)(u−d)
 

term can be well approximated as  We plot this approximation of V given doubling times.V ≈ 1 − e−(r+γ)d  

aligned with 4 , a range of durations of detectable infection and a range of lengths of stay2 (Figure 2 ). 
 

Results: 
We estimate that the global ability to detect imported cases is 38% (95% HPDI 22% - 64%) of Singapore’s 

capacity. Equivalently, an estimate of 2.8 (95% HPDI 1.5 - 4.4) times the current number of imported cases, 

could have been detected, if all countries had had the same detection capacity as Singapore, which leads 

to 1.8 (95% CI 0.5 - 3.4) undetected cases per detected case. The ability to detect imported cases among 

high surveillance countries is 40% (95% HPDI 22% -  67%), among intermediate surveillance countries it is 

37% (95% HPDI 18% - 68%), and among low surveillance countries it is 11% (95% HPDI 0% - 42%).  
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6 
We further find that the prevalence ratio between temporary visitors and residents approaches 1 as 

the epidemic growth rate, the duration of stay, and the recovery rate increase and it approaches zero for 

short duration of stay, long duration of infection, and slower epidemic growth (Figure 2).  
 
  

Figure 1.  Posterior distributions of detection probabilities relative to Singapore. The bottom panel shows 

the posterior distributions of . The top panel is a density plot of . HPDI: Highest, θ , θθlow  med  high θglobal  

Posterior Density Interval.  
 
 
 
 
Figure 2. Ratio of infection prevalence in temporary visitors relative to that in residents (V). Plot shows V 

over a range of durations of visit (d) and a range of durations of detectable infection ( ). In the upper γ −1  

panel the doubling time of the epidemic is 5 days and in the lower panel it is 7 days. The ratios are given as 

numbers (rounded to two decimals) with lighter areas as V approaches 1.  
 
Discussion: 
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In this paper, we have aimed to test two assumptions underlying the estimation of incidence at the 

epicentre of the SARS-Cov2 outbreak. The first of these is that the capacity for detection of international 

imported cases is 100% sensitive and specific across locations. While we know of no reason to doubt 

specificity of detection, we tested the assumption of perfect sensitivity.  Based on our previous estimates5 

we assumed Singapore has the highest capacity of surveillance with respect to COVID-19. We regressed 

the cumulative cases against Wuhan-to-location air travel volume considering Singapore to have the 

greatest detection capacity and estimating the relative underdetection compared to Singapore in the 

remaining 190 locations classified  according to the GHS2 index9. While it is unlikely that this index reflects 

the true ranking of countries for any specific epidemic, such as the current one of COVID-19, we assume 

that it captures different levels of surveillance capacity. We therefore grouped the remaining locations into 

three big classes high, medium, and low surveillance capacity instead of using exact ranking.  

We estimated that detection of exported cases from Wuhan worldwide is 38% (95% HPDI 

22%-64%) as sensitive as it has been in Singapore. Put another way, this implies that the true number of 

cases in travelers is at least 2.8 (95% HPDI 1.5 - 4.4) times the number that has been detected. 

Equivalently, for each detected case there are at least 1.8 (95% CI 0.5-3.4) undetected cases. If the model 

is correct, this is an upper bound on the detection frequency because (1) Singapore’s detection is probably 

not 100% efficient. Singapore had as of 12 February 2020 eight documented cases of COVID-19 

transmission for which there were no known epidemiological links to China or other known cases11, implying 

that imported cases in Singapore may have gone undetected (although it is not certain that these imports 

came from Wuhan or China, and links may still be found). (2) Singapore’s detection like that in other 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 18, 2020. .https://doi.org/10.1101/2020.02.13.20022707doi: medRxiv preprint 

https://paperpile.com/c/xLrhI8/sTs9
https://paperpile.com/c/xLrhI8/JUUb
https://paperpile.com/c/xLrhI8/Z15D
https://doi.org/10.1101/2020.02.13.20022707
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 
countries has relied largely on symptoms and travel history, so the number of asymptomatic or low-severity 

cases missed by such a strategy is unknown.  

The second assumption we tested is that the true prevalence in travelers is similar to that of 

residents. It may be different for either of two reasons, one of which we attempt to quantify here. It could be 

less if those who travel for some reason are less well integrated into the social mixing that produces 

infection, for example if they tend to have stayed in certain parts of the city or in hotels. This aspect could 

conceivably increase or decrease prevalence in travelers relative to residents. Here we quantify a second 

difference, which is that some travelers (whom we refer to as visitors) will have been in the city only for a 

short time and had less exposure to the infection than residents. This effect, we find, is most pronounced 

when the epidemic is growing slowly, when the visitors have stayed only briefly, and when the duration of 

detectable infection is short. We find that for plausible parameters for COVID-19, prevalence in visitors 

staying only 3 days could be as little as half that of residents, but for longer stays of over a week the visitor 

prevalence should be 80% or more that of residents. Assuming that the traveler population is a mix of 

visitors of various durations and residents, this suggests that underestimation of source population 

prevalence due to the presence of short-stay visitors could be appreciable but more modest than the effect 

of imperfect detection. 

These findings that detected cases in travelers likely underrepresent the source population 

prevalence have two important implications for public health response to SARS-CoV2.  First, this finding 

has implications for approaches to case burden and severity estimation which use cases in travelers to 

impute cases in Wuhan, which are then compared (for severity estimation) against deaths in Wuhan. If the 

true number of cases in travelers is higher than previously thought, this implies more cases in Wuhan and a 

larger denominator, resulting in reduced estimates of severity compared to estimates assuming perfect 

detection in travelers. Future studies should account for our evolving understanding of detection capacity 

when estimating case numbers and severity in source population on the basis of traveler case numbers. 

Second, the scenario where the virus has been imported from Wuhan and remained undetected in various 

worldwide locations is a plausible one, at least until the city lockdown (23rd January 2020), and one might 

speculate that detection capacity remained limited beyond this period as travelers infected elsewhere in 

China continued to leave China. Based on our model, the risk of undetected circulation correlates both with 

air travel connectivity and (inversely) to outbreak detection capacity, but could have happened in virtually 

any location worldwide leading to the potential risk of self-sustained transmission, which may be an early 

stage of a global pandemic. 
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11 
Appendix - Supplementary Figures 
 
 
 

 
Supplementary Figure 1 Diagnostic plots of the MCMC sampler. Shows the rank plots12 of the posterior 
samples of the four parameters used in our model. Uniform distributions indicate well-mixed MCMC chains.  
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