Networks of information token recurrences derived from genomic sequences may reveal hidden patterns in epidemic outbreaks: A case study of the 2019-nCoV coronavirus
View ORCID ProfileMarkus Luczak-Roesch
doi: https://doi.org/10.1101/2020.02.07.20021139
Markus Luczak-Roesch
1Victoria University of Wellington, School of Information Management

Article usage
Posted February 17, 2020.
Networks of information token recurrences derived from genomic sequences may reveal hidden patterns in epidemic outbreaks: A case study of the 2019-nCoV coronavirus
Markus Luczak-Roesch
medRxiv 2020.02.07.20021139; doi: https://doi.org/10.1101/2020.02.07.20021139
Subject Area
Subject Areas
- Addiction Medicine (427)
- Allergy and Immunology (753)
- Anesthesia (220)
- Cardiovascular Medicine (3281)
- Dermatology (274)
- Emergency Medicine (478)
- Epidemiology (13340)
- Forensic Medicine (19)
- Gastroenterology (896)
- Genetic and Genomic Medicine (5130)
- Geriatric Medicine (479)
- Health Economics (781)
- Health Informatics (3253)
- Health Policy (1138)
- Hematology (427)
- HIV/AIDS (1014)
- Medical Education (475)
- Medical Ethics (126)
- Nephrology (522)
- Neurology (4900)
- Nursing (261)
- Nutrition (725)
- Oncology (2516)
- Ophthalmology (722)
- Orthopedics (280)
- Otolaryngology (346)
- Pain Medicine (323)
- Palliative Medicine (90)
- Pathology (539)
- Pediatrics (1297)
- Primary Care Research (554)
- Public and Global Health (7482)
- Radiology and Imaging (1702)
- Respiratory Medicine (979)
- Rheumatology (478)
- Sports Medicine (424)
- Surgery (546)
- Toxicology (71)
- Transplantation (235)
- Urology (203)