- 1 Title: Estimation of the asymptomatic ratio of novel coronavirus infections (COVID-19)
- $\mathbf{2}$
- 3 Article type: Letter to the Editor
- 4
- 5 Authors:
- 6 Hiroshi Nishiura, M.D., Ph.D.¹
- 7 Tetsuro Kobayashi, M.D., M.P.H.¹
- 8 Takeshi Miyama, D.V.M.²
- 9 Ayako Suzuki, M.D., M.P.H.¹
- 10 Sung-mok Jung, M.P.H.¹
- 11 Katsuma Hayashi, M.D.¹
- 12 Ryo Kinoshita, M.H.Sc.¹
- 13 Yichi Yang, B.Sc.¹
- 14 Baoyin Yuan, M.Sc.¹
- 15 Andrei R. Akhmetzhanov, Ph.D.¹
- 16 Natalie M. Linton, M.P.H.¹
- 17 1. Graduate School of Medicine, Hokkaido University, Sapporo, 060-8638, Japan
- 18 2. Osaka Institute of Public Health, Osaka, 537-0025, Japan
- 19 (Correspondence to Hiroshi Nishiura at: Address: Kita 15 Jo Nishi 7 Chome, Kita-ku,
- 20 Sapporo-shi, Hokkaido 060-8638, Japan, Tel: +81-11-706-5066; Fax: +81-11-706-7819;
- 21 Email: nishiurah@med.hokudai.ac.jp)
- 22
- 23 The number of novel coronavirus (COVID-19) cases worldwide continues to grow, and
- the gap between reports from China and statistical estimates of incidence based on cases

25	diagnosed outside China indicates that a substantial number of cases are underdiagnosed
26	(Nishiura et al., 2020a). Estimation of the asymptomatic ratio—the percentage of carriers
27	with no symptoms—will improve understanding of COVID-19 transmission and the
28	spectrum of disease it causes, providing insight into epidemic spread. Although the
29	asymptomatic ratio is conventionally estimated using seroepidemiological data (Carrat et
30	al., 2008; Hsieh et al., 2014), collection of these data requires significant logistical effort,
31	time, and cost. Instead, we propose to estimate the asymptomatic ratio by using
32	information on Japanese nationals that evacuated from Wuhan, China on chartered
33	flights.
34	Figure 1 illustrates the flow of the evacuation process. By 6 February 2020 a
35	total of $N=565$ citizens were evacuated. Among them, $pN=63$ (11.2%) were considered
36	symptomatic upon arrival based on (1) temperature screening before disembarkation,
37	and (2) face-to-face interviews eliciting information on symptoms including fever,
38	cough, and other non-specific symptoms consistent with COVID-19. All passengers
39	additionally undertook reverse transcription polymerase chain reaction (RT-PCR)
40	testing, and $m=5$ asymptomatic and $n=7$ symptomatic passengers tested positive for
41	2019-nCoV.
42	Employing a Bayes theorem, the asymptomatic ratio is defined as
	$Pr(asymptomatic \mid infection) = \frac{Pr(infection \mid asymptomatic) Pr (asymptomatic)}{Pr (infection)},$
43	which can be calculated as $m/(n+m)$, as seen in Figure 1. The asymptomatic ratio is thus

estimated at 41.6% (95% confidence interval (CI): 16.7%, 66.7%) among evacuees.

45 Because fourteen days have elapsed since their departure from Wuhan—longer than the

46 95th percentile estimate of the COVID-19 incubation period (Li et al., 2020; Linton et

47	al., 2020)—there is very little probability that the five virus-positive asymptomatic
48	individuals will develop symptoms. Should one of the five becomes symptomatic in the
49	future, the overall asymptomatic ratio would decrease to 33.3% (95% CI: 8.3%, 58.3%).
50	In general, asymptomatic infections cannot be recognized if they are not
51	confirmed by RT-PCR or other laboratory testing, and symptomatic cases may not be
52	detected if they do not seek medical attention (Nishiura et al., 2020b). Estimates such as
53	this therefore provide important insight by using a targeted population to assess
54	prevalence of asymptomatic viral shedding (Kupferschmidt & Cohen, 2020). Despite a
55	small sample size, our estimation indicates that perhaps nearly a half of
56	COVID-19-infected individuals are asymptomatic. This ratio is slightly smaller than
57	that of influenza, which was estimated at 56-80% (Hsieh et al., 2014) using similar
58	definitions for symptomatic individuals. There is great need for further studies on the
59	prevalence of asymptomatic COVID-19 infections to guide epidemic control efforts.
60	

61 Acknowledgments

62	H.N. 1	received	funding	g support	from .	Tapan A	Agency	for	Me	dica	11	Research	and
----	---------------	----------	---------	-----------	--------	---------	--------	-----	----	------	----	----------	-----

63 Development [grant number: JP18fk0108050] the Japan Society for the Promotion of

- 64 Science (JSPS) Grants-in-Aid for Scientific Research (KAKENHI in Japanese
- abbreviation) grant nos. 17H04701, 17H05808, 18H04895 and 19H01074, and the
- 66 Japan Science and Technology Agency (JST) Core Research for Evolutional Science
- and Technology (CREST) program [grant number: JPMJCR1413]. NML received a

68	graduate study	scholarship	from the	Ministry	of Education,	Culture,	Sports,	Science	and
----	----------------	-------------	----------	----------	---------------	----------	---------	---------	-----

- 69 Technology, Japan. The funders had no role in study design, data collection and analysis,
- 70 decision to publish, or preparation of the manuscript.

71 **Conflict of interest:**

- 72 We declare that we have no conflict of interest.
- 73

74	References:

- 1. Nishiura H, Jung SM, Linton NM, Kinoshita R, Yang Y, Hayashi K, Kobayashi T,
- 76 Yuan B, Akhmetzhanov AR. The Extent of Transmission of Novel Coronavirus in
- 77 Wuhan, China, 2020a. J Clin Med. 2020;9(2). pii: E330. doi: 10.3390/jcm9020330.
- 2. Carrat F, Vergu E, Ferguson NM, Lemaitre M, Cauchemez S, Leach S, Valleron AJ:
- 79 Time lines of infection and disease in human influenza: a review of volunteer challenge
- 80 studies. Am J Epidemiol. 2008 ; 167 (7): 775-785. doi: 10.1093/aje/kwm375.
- 3. Hsieh Y, Tsai C, Lin C, et al. Asymptomatic ratio for seasonal H1N1 influenza
- 82 infection among schoolchildren in Taiwan. BMC Infect Dis 2014;14: 80. doi:
- 83 10.1186/1471-2334-14-80.
- 4. Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, Ren R, Leung KSM, Lau EHY, Wong
- JY, Xing X, Xiang N, Wu Y, Li C, Chen Q, Li D, Liu T, Zhao J, Li M, Tu W, Chen C,
- ⁸⁶ Jin L, Yang R, Wang Q, Zhou S, Wang R, Liu H, Luo Y, Liu Y, Shao G, Li H, Tao Z,
- 87 Yang Y, Deng Z, Liu B, Ma Z, Zhang Y, Shi G, Lam TTY, Wu JTK, Gao GF, Cowling
- 88 BJ, Yang B, Leung GM, Feng Z. Early Transmission Dynamics in Wuhan, China, of
- 89 Novel Coronavirus-Infected Pneumonia. N Engl J Med. 2020; in press. doi:
- 90 10.1056/NEJMoa2001316

- 91 5. Linton NM, Kobayashi T, Yang Y, Hayashi K, Andrei, AR, Jung S-M, Yuan B,
- 92 Kinoshita R, Nishiura H. Epidemiological characteristics of novel coronavirus infection:
- 93 A statistical analysis of publicly available case data. medRxiv. 2020; doi:
- 94 10.1101/2020.01.26.20018754.
- 95 6. Nishiura H, Kobayashi T, Yang Y, Hayashi K, Miyama T, Kinoshita R, Linton NM,
- 96 Jung SM, Yuan B, Suzuki A, Akhmetzhanov AR. The Rate of Underascertainment of
- 97 Novel Coronavirus (2019-nCoV) Infection: Estimation Using Japanese Passengers Data
- 98 on Evacuation Flights. J Clin Med. 2020b;9(2). pii: E419. doi: 10.3390/jcm9020419.
- 99 7. Kupferschmidt K, Cohen J. 'This beast is moving very fast.' Will the new coronavirus
- 100 be contained—or go pandemic? Science 2020; 5 February 2020.
- 101 doi:10.1126/science.abb1701
- 102
- 103 Figure legend
- 104 Figure 1. Flow of symptom screening and viral testing for passengers on chartered
- 105 evacuation flights from Wuhan, China to Japan
- 106 The flow of Japanese residents evacuating from Wuhan and screened in Japan. A total of
- 107 *N* passengers were evaluated of which a fraction *p* were symptomatic upon arrival.
- 108 Among symptomatic and asymptomatic individuals, *n* and *m* persons tested positive for
- 109 the virus via reverse transcription polymerase chain reaction (RT-PCR).

5

