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Abstract 
An outbreak of the novel coronavirus 2019-nCoV has led to 7818 cases as of 30th January 2020. 
Understanding the transmission dynamics of the infection is crucial for evaluating the likely 
effectiveness of control measures and potential for sustained transmission to occur in new areas. 
We combined a stochastic transmission model with data on cases 2019-nCoV in Wuhan and 
exported cases originating in Wuhan to estimate how transmission had varied over time and the 
likely prevalence of symptomatic cases in the city as of 23rd January 2020. Based on these 
estimates, we then calculated the probability that newly introduced cases would generate 
outbreaks in other areas. We estimated that the median reproduction number, R, fluctuated 
between 1.6–2.9 from mid-December to mid-January 2020. We found that the US, Australia and 
France had more confirmed cases with travel history to Wuhan than the model predicted, and 
estimated that there were 29,500 (14,300-85,700) prevalent symptomatic cases in Wuhan on 
23rd January 2020, when travel restrictions were introduced. Based on our estimates of R, we 
calculated that in locations with similar transmission potential as Wuhan, once there are more 
than three introduced cases, there is a more than 50% chance the infection will establish within 
that population. Our  results show that 2019-nCoV has substantial potential for ongoing 
human-to-human transmission, and exported cases from Wuhan may have increased prior to 
travel restrictions being introduced on 23rd January 2020. As more cases arrive in international 
locations, it is likely many chains of transmission will fail to establish initially, but may still 
cause new outbreaks eventually. 
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Introduction 
 
As of 30th January 2020, an outbreak of the novel coronavirus 2019-nCoV has resulted in 7,818 
confirmed cases (1) . The outbreak was first identified in Wuhan, China, in December 2019, with 
the majority of early cases being reported in the city. The majority of internationally exported 
cases reported to date have a travel history to Wuhan (2) . In the early stages of a new infectious 
disease outbreak, it is crucial to understand the transmission dynamics of the infection. In 
particular, estimation of changes in transmission over time can provide insights into the current 
epidemiological situation (3)  and identify whether outbreak control measures are having a 
measurable effect (4,5) . Such analysis can inform predictions about potential future growth (6) , 
help estimate risk to other countries (7) , and guide the design of alternative interventions (8) .  
 
There are several challenges to such analysis, however, particularly in real-time. There can be a 
delay to symptom appearance resulting from the incubation period and delay to confirmation of 
cases resulting from detection and testing capacity (9) . Modelling approaches can account for 
such delays and uncertainty, by explicitly incorporating delays resulting from the natural history 
of infection and reporting processes (10) . In addition, individual data sources may be biased, 
incomplete, or only capture certain aspects of the outbreak dynamics. Evidence synthesis 
approaches, which fit to multiple data sources rather than a single dataset (or data point) can 
enable more robust estimation of the underlying dynamics of transmission from noisy data 
(11,12) . Combining a mathematical model of nCoV transmission with four datasets from within 
and outside Wuhan, we estimated how transmission in Wuhan varied during December and 
January 2020. We then used these estimates to assess the potential for sustained 
human-to-human transmission to occur in locations outside Wuhan if cases are introduced. 
 
Methods 
 
To estimate the early dynamics of transmission in Wuhan, we fitted a stochastic transmission 
dynamic model (18)  to multiple publicly available datasets on cases in Wuhan and 
internationally exported cases from Wuhan. The three datasets we fitted to were: daily incidence 
of internationally exported cases (or lack thereof) in countries with high connectivity to Wuhan 
(i.e. top 20 most at risk), by date of onset, as of 21st January 2020 (1) ; daily incidence of initial 
cases in Wuhan with no market exposure, by date of onset, between 1st December 2019 and 1st 
January 2020 (19) ; daily incidence of initial cases in China, by date of onset, between 29th 
December 2019 and 23rd January 2020 (1,2) . We also used an additional dataset as an 
out-of-sample validation of the model outputs: daily incidence of exported cases from Wuhan (or 
lack thereof) in countries with high connectivity to Wuhan (i.e. top 20 most at risk), by date of 
confirmation, as of 30th January 2020 (2) . 
 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 2, 2020. ; https://doi.org/10.1101/2020.01.31.20019901doi: medRxiv preprint 

https://www.zotero.org/google-docs/?T8L5e4
https://www.zotero.org/google-docs/?rf9wSb
https://www.zotero.org/google-docs/?c9sSoF
https://www.zotero.org/google-docs/?TKrokk
https://www.zotero.org/google-docs/?JYa39q
https://www.zotero.org/google-docs/?1Suovq
https://www.zotero.org/google-docs/?JL7hs5
https://www.zotero.org/google-docs/?dSXzwl
https://www.zotero.org/google-docs/?AJoPY5
https://www.zotero.org/google-docs/?fDiNgU
https://www.zotero.org/google-docs/?N9aIr6
https://www.zotero.org/google-docs/?d48LhM
https://www.zotero.org/google-docs/?MitzE5
https://www.zotero.org/google-docs/?JXd5DM
https://www.zotero.org/google-docs/?hfjhFE
https://doi.org/10.1101/2020.01.31.20019901
http://creativecommons.org/licenses/by/4.0/


In the model, individuals were divided into four infection classes (Figure 1): susceptible, 
exposed (but not yet infectious), infectious, and removed (i.e. isolated, recovered or otherwise no 
longer infectious). The model accounted for delays in symptom onset and reporting, as well as 
uncertainty in case observation (see Supplementary Materials for full model details). The 
incubation period was assumed to be Erlang distributed with mean 5.2 days (16)  and delay from 
onset-to-isolation Erlang distributed with mean 2.9 days (2,15) . The delay from 
onset-to-reporting was assumed to be exponentially distributed with mean 6.1 days (2) . Once 
exposed to infection, a proportion of individuals travelled internationally and we assumed that 
the probability of cases being exported from Wuhan to a specific other country depended on the 
number of cases in Wuhan, the number of outbound travellers (assumed to be 3300 per day 
before travel restrictions were introduced on 23rd January (20)  and zero after), the relative 
connectivity of different countries (21), and the relative probability of reporting a case outside 
Wuhan. We considered the 20 countries outside China most at risk of exported cases in the 
analysis. Transmission was modelled as a geometric random walk process, and we used 
sequential Monte Carlo to infer the transmission rate over time, as well as the resulting number 
of cases and the time-varying reproduction number, R, defined as the average number of 
secondary cases generated by a typical infectious individual on each day (18) . The model had 
two unknown parameters, which we estimated: magnitude of temporal variability in transmission 
and relative probability of reporting a confirmed case within Wuhan compared to an 
internationally exported case originated in Wuhan. We assumed the outbreak started with a 
single infectious case on 2nd December 2019 and the entire population was initially susceptible. 
Once we had estimated R, we used a branching process simulation with a negative binomial 
offspring distribution to calculate the probability an introduced case would cause a large 
outbreak. More details of methodology and sensitivity analysis are provided in the 
Supplementary Materials. 
 

 
Figure 1: Model structure. The population is divided into four classes: susceptible, exposed (and 
not yet symptomatic), infectious (and symptomatic), removed (i.e. isolated, recovered, or 
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otherwise non-infectious). A fraction of exposed individuals subsequently travel and are 
eventually detected in their destination country. 
 
Results 
 
The model reproduced the observed temporal trend of cases observed within Wuhan and cases 
exported internationally (Figure 2A–B). It could also reproduce the pattern of confirmed 
exported cases from Wuhan, which was not explicitly used in the model fitting (Figure 2C). We 
found that confirmed and estimated exported cases among the twenty countries most connected 
to China were generally in good correspondence, with the USA and Australia as notable outliers, 
having had more confirmed cases reported with a travel history to Wuhan than would be 
expected in the model (Figure 2D). Accounting for under-reporting and delays to confirmation, 
our estimates suggest that the prevalence of symptomatic 2019-nCoV cases in Wuhan was 
29,500 (14,300-85,700) on 23rd January 2020 (Figure 2E). We estimated that the daily 
reproduction number, R, varied during December and January, with median values ranging from 
1.6–2.9 between 15th December 2019 and the introduction of travel restrictions on 23rd January 
2020 (Figure 2F). 
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Figure 2: Dynamics of transmission in Wuhan, fitted up to 28 January 2020. Red line marks 
travel restrictions starting on 23 January 2020. A) Onset dates of confirmed cases in Wuhan 
(triangles) and China (diamonds). Blue lines and shaded regions: median, 50% and 95% 
credible intervals of model estimate. B) Reported cases by date of onset (black) and estimated 
internationally exported cases from Wuhan by date of onset (blue line). C) Cumulative confirmed 
cases by date in Wuhan (circles) and estimated cumulative cases (blue line). D) International 
exportation events by date of confirmation of case, and expected number of exports in the fitted 
model. E) Estimated prevalence of symptomatic cases over time in Wuhan. F) Estimated daily 
reproduction number (R) over time. Datasets that were fitted to shown as solid points; non-fitted 
data shown as circles.  
 
To examine the potential for new outbreaks to establish in locations outside of Wuhan, we used 
our estimates of the reproduction number to simulate new outbreaks with potential 
individual-level variation in transmission (i.e. ‘superspreading’ events) (14,21,22) . Such 
variation increases the fragility of transmission chains, making it less likely that an outbreak will 
take off following a single introduction; if transmission is more homogeneous, with all infectious 
individuals generating a similar number of secondary cases, it is more likely than an outbreak 
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will establish (21) . Based on the median reproduction number observed during January before 
travel restrictions were introduced, we estimated that a single introduction of 2019-nCoV with 
SARS-like or MERS-like individual-level variation in transmission would have a 20–28% 
probability of causing a large outbreak (Figure 3A). Assuming SARS-like variation and 
Wuhan-like transmission, we estimated that once more than three infections have been 
introduced into a new location, there is an over 50% chance that an outbreak will occur (Figure 
3B). 
 
 

 
Figure 3: Risk that introduced infections will establish in a new population. A) Probability a 
single case will lead to a large outbreak for different assumptions about the extent of 
homogeneity in individual-level transmission (i.e. the dispersion parameter k in a negative 
binomial offspring process). Results are shown for the median reproduction number estimated 
for nCoV-2019 in Wuhan between 1st January and 23rd January 2020 and. B) Probability a 
given number of introductions will result in a large outbreak, assuming SARS-like 
superspreading events can occur. 
 
 
Discussion 
 
Combining a mathematical model with multiple datasets, we found that the median daily 
reproduction number, R, of 2019-nCoV in Wuhan likely varied between 1.6–2.9 during 
December and January 2020. The estimated fluctuations in R  were driven by the rise and fall in 
number of cases both in Wuhan and internationally (Figures 2A–B). Such fluctuations could be 
the result of changes in behaviour in the population at risk, or specific superspreading events that 
inflated the average estimate of transmission (14,21,22) . We did not find evidence of a 
significant reduction in R in the days prior to the introduction of travel restrictions in Wuhan, 
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which may have been expected if outbreak control efforts and growing awareness of 2019-nCoV 
during this period were having a substantial effect on transmission. Our estimates for 
international cases were broadly consistent with the number of subsequently confirmed exported 
cases outside of Wuhan. However, there were notably more cases exported to France, US, and 
Australia compared to what our model predicted. This may be the result of increased surveillance 
and detected as awareness of 2019-nCoV grew in late January, which would suggest earlier 
exported cases may have missed; it may also be the result of increased travel out of Wuhan 
immediately prior to travel restrictions being introduced on 23rd January. 
 
Based our on estimated reproduction number, and published estimates of individual-level 
variation in transmission for SARS and MERS-CoV, we found that a single case introduced to a 
new location would not necessarily lead to an outbreak. Even if the reproduction number is as 
high as it has been in Wuhan, it may take several introductions for an outbreak to establish. This 
highlights the importance of rapid case identification, and subsequent isolation and other control 
measures to reduce the chance of onward chains of transmission. 
 
Our analysis highlights the value of combining multiple data sources in analysis of 2019-nCoV. 
For example, the rapid growth of confirmed cases globally during late January 2020, with case 
totals in some instances apparently doubling every day or so, would have the effect of inflating R 
estimates to implausibly large values if only these recent data points were used in analysis. Our 
results also have implications for the estimation of transmission dynamics using the number of 
exported cases from a specific area (13) . Once extensive restrictions are introduced, as they were 
in Wuhan, the signal from such data gets substantially weaker. If restrictions and subsequent 
delays in detection of cases is not accounted for, it could lead to artificially low estimates of R or 
inferred case totals from the apparently declining numbers of exported cases. 
 
There are several limitations to our analysis. We used plausible biological parameters for 
2019-nCoV based on current evidence, but these values may be refined as more comprehensive 
data become available. However, because we fitted to multiple datasets to infer model 
parameters, and performed sensitivity analyses on key areas of uncertainty, we would not expect 
our findings to change substantially if new information becomes available. Further, we used 
publicly available connectivity and risk estimates based on international travel data to predict the 
number of exported cases into each country. These estimates have shown good correspondence 
with the distribution of exported cases to date (23) , and are similar to another risk assessment for 
2019-nCoV with different data (17,24) . 
 
We also assumed that the latent period is equal to the incubation period (i.e. individuals become 
infectious and symptomatic at the same time) and all infected individuals will eventually become 
symptomatic. However, there is some limited evidence that transmission of 2019-nCoV can 
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occur without reported symptoms (25) . If this only happens for a small proportion of cases, we 
would not expect our results to change noticeably. If a large fraction are infectious prior to 
showing symptoms, but the difference between latent and incubation period is small (e.g. one or 
two days), then we would expect the overall patterns in our predicted incidence to be broadly 
consistent, but the estimates of transmissibility would shift slightly to reflect the different delay 
in time-to-infectiousness. If it turns out that a proportion of cases are asymptomatic throughout 
their infection and contribute to transmission, the estimated prevalence of infectious individuals 
shown in Figure 1E should be interpreted as showing only the prevalence of the proportion of 
infectious individuals who will eventually become symptomatic cases. In our analysis of new 
outbreaks, we also used estimates of individual-level variation in transmission for SARS and 
MERS-CoV to illustrate potential dynamics. However, it remains unclear what the precise extent 
of such variation is for 2019-nCoV (14) ; if transmission were more homogenous than SARS of 
MERS-CoV, it would increase the risk of outbreaks following introduced cases. 
 
Our results demonstrate that there is likely to be substantial variation in 2019-nCoV transmission 
over time. Understanding this range of transmission dynamics in different settings will be crucial 
for evaluating the effectiveness of control measures, and determining the likelihood of secondary 
transmission becoming established in new locations. 
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Supplementary materials 
 
Supplementary methods  
Transmission model structure 
We used a stochastic SEIR model implemented using the Euler-Maruyama algorithm with a 6 
hour timestep, with the transmission rate following geometric brownian motion. The model 
structure is described below and shown in Figure 1 in the main text. 
 
Model compartments for individuals in Wuhan: 
 
S(t+1)= S(t) –𝛽(t)/N S(t) [ I1w(t) + I2w(t) ]  
 
E1w(t+1)= E1w(t) + (1 – f ) 𝛽(t) S(t) [ I1w(t) + I2w(t) ]– 2𝜎 E1w(t) 
 
E2w(t+1)= E2w(t) + 2𝜎 E1w(t) – 2𝜎 E2w(t) 
 
I 1w(t+1)= I1w(t) + 2𝜎 E2w(t) – 2γ I1w(t) 
 
I 2w(t+1)= I2w(t) + 2γ I1w(t) – 2γ I2w(t) 
 
Q w(t+1)= Qw(t) + 2𝜎 E2w(t) – κ Qw(t) 
 
D w(t+1)= Dw(t) + 2𝜎 E2w(t) 
 
Cw(t+1)= Cw(t) + κ Qw(t) 
 
Here S(t)  is the number of individuals in Wuhan susceptible at time t; E 1w(t) and E 2w(t) are 
individuals in Wuhan the first and second period of their Erlang distributed incubation period 
respectively; I1w(t) and I 2w(t) are individuals in Wuhan in the first and second period of their 
Erlang distributed incubation period respectively; Qw(t) is the number of symptomatic cases in 
Wuhan yet to be reported at time t ; D w(t) is the cumulative number of cases with symptoms in 
Wuhan at time t; C w(t) is the cumulative number of confirmed cases in Wuhan at time t. Here 𝛽(t) 
is the transmission rate at time t; 𝜎 is the rate of becoming symptomatic (i.e. 1/incubation 
period); γ = rate of isolation (i.e. 1/delay from onset-to-hospitalisation); κ is rate of reporting (i.e. 
1/delay from onset-to-confirmation); f is the fraction of cases that travel; N is the population size 
in Wuhan. We therefore implicitly assume that all individuals become symptomatic, and this 
happens at the same time as they become infectious. 
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Model compartments for traveller cases from Wuhan: 
 
E1T(t+1)= E1T(t) + f  𝛽 (t) S(t) [ I1w(t) + I2w(t) ] – 2𝜎 E1T(t) 
 
E2T(t+1)= E2T(t) + 2𝜎 E1T(t) – 2𝜎 E2T(t) 
 
I 1T(t+1)= I1T(t) + 2𝜎 E2T(t) – 2γ I1T(t) 
 
I 2T(t+1)= I2T(t) + 2γ I1T(t) – 2γ I2T(t) 
 
Q T(t+1)= QT(t) + 2𝜎 E2T(t) – κ QT(t) 
 
D T(t+1)= DT(t) + 2𝜎 E2T(t) 
 
CT(t+1)= CT(t) + κ QT(t) 
 
Here E 1T(t)  and E 2T(t) are individuals who have travelled from Wuhan and who are in the first 
and second period of their Erlang distributed incubation period respectively; I1T(t) and I 2T(t) are 
individuals who have travelled from Wuhan and who are in the first and second period of their 
Erlang distributed incubation period respectively; QT(t) is the number of symptomatic cases 
among travellers from Wuhan yet to be reported at time t; D T(t) is the cumulative number of 
cases among travellers from Wuhan with symptoms at time t; C T(t) is the cumulative number of 
confirmed cases among travellers from Wuhan at time t.  
 
Transmission is modelled as geometric Brownian motion: 
 
d log(𝛽 ) = a  dBt  
 
where a  is the volatility of transmission over time and Bt is Brownian motion. 
 
Internationally exported cases 
Cases that travelled internationally and became symptomatic, DT(t), and were later confirmed, 
CT(t), were distributed among other countries based on proportional risk inferred from 
connectivity to those countries (23,24) . For example, if a country had a relative risk of export W 
from Wuhan, then we would expect W D T(t) f N  new symptomatic cases in this country at time t . 
We assumed no travel out of Wuhan occurred after 23rd January 2020, when extensive 
restrictions were put in place in Wuhan.  
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Branching process simulation model 
We used a branching process with a negative binomial offspring distribution (21)  to calculate the 
probability PE that an outbreak starting with a single imported case would fail to go extinct (i.e. 
would cause a large outbreak). We also calculated the probability that an outbreak would occur 
after n  introductions: 1–(1–PE) n 

 
Model fitting 
We estimated the time-varying transmission rate, beta(t) , using sequential Monte Carlo (SMC) 
by jointly fitting to three datasets, with one used for validation: 
 

1. Daily incidence of exported cases from Wuhan (or lack thereof) in countries with high 
connectivity to Wuhan (i.e. top 20 most at risk), by date of onset. We only consider 
onsets up to 21st January, as many of the cases detected after this point were not 
travellers from Wuhan. 

2. Daily incidence of initial cases in Wuhan with no market exposure, by date of onset. 
Source: Huang et al 

3. Daily incidence of early cases in China, by date of onset. We assume that these are all in 
Wuhan. The most recent two data points were omitted during fitting as they are likely to 
be strongly influenced by delays in reporting. 

4. Validation dataset (not used for fitting): Daily incidence of exported infection from 
Wuhan (or lack thereof) in countries with high connectivity to Wuhan (i.e. top 20 most at 
risk), by date of confirmation. We only considered individual export events (i.e. a family 
of travellers was counted as a single export). 

 
We created a single timeseries for case onset data by in Wuhan by combining datasets 3 and 4 
above. To calculate the likelihood, we used a Poisson observation model fitted jointly to 
expected values based on three model outputs: DW(t), DT(t), CT(t). To calculate the daily 
expectation for each Poisson observation process, we converted these outputs into new case 
onset and new reported cases inside Wuhan and travelling internationally. We assumed a 
different relative reporting probability for Wuhan cases compared to international cases, as 
assumed only a proportion of confirmed Wuhan cases had known onset dates (fixed at 0.15 
based on available line list data (26) ). As destination country was known for confirmed exported 
cases, we used 20 timeseries for cases exported (or not) to most at-risk countries each day and 
calculated the probability of obtaining each of these datasets given the model outputs. 
International onset data was not disaggregated by country and so we used the total daily exported 
cases in our Poisson probability calculation.  
 
Estimates for time-varying R  were generated by running 200 repetitions of SMC with 1000 
particles. The transmission volatility and relative reporting of cases outside Wuhan were selected 
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based on a grid search to find the marginal MLE (Figure S1–S2). We assumed the outbreak 
started on 22nd November with 1 infectious individual (27)  and the population was initially fully 
susceptible. We also assumed all infectious people eventually became symptomatic and would 
be eventually be detected in destination country if they travelled by plane. We assumed that the 
population in Wuhan was 11m. All data and code required to reproduce the analysis is available 
here: https://github.com/adamkucharski/2020-ncov/stoch_model_V1_paper 
 
 
 

Parameter Value Distribution 

Incubation period 4.8 days Erlang (rate=2) 

Infectious period 2.9 days Erlang (rate=2) 

Delay onset-to-confirmation 
 

6.1 days Exponential 

Daily outbound passengers 3300  

Population of Wuhan 11m  

Initial cases 1  

Introduction date 22nd November 2019  

Proportion of cases with 
onsets known 

0.16  

Relative reporting outside of 
Wuhan (W ) 

67 (fitted)  

Transmission volatility (a) 0.4 (fitted)  
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Figure S1: Sliced likelihood for the relative reporting of confirmed cases within Wuhan 
compared to internationally exported cases (equal to parameter 1/W in the calculation of 
exported cases from Wuhan confirmed). 
 

 
Figure S2: Sliced likelihood for the transmission volatility parameter, a. 
 
 
Sensitivity analysis 
 
To check the robustness of our results, we repeated our analysis with a larger assumed initial 
number of cases (i.e. 10 rather than 1), but this did not change our overall conclusions (Figure 
S3). As another sensitivity analysis, we also used flight data from WorldPop rather than MOBS 
lab, but again this did not change our overall conclusions (Figure S4). 
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Figure S3: Model outputs when we assumed 10 initial cases rather than 1 on 22nd November 
2019. 
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Figure S4: Model outputs when international traveller data from WorldPop is used instead of 
MOBS Lab estimates. 
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