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Abstract

Background

A novel coronavirus (2019-nCoV) has recently emerged as a global threat. As the epidemic
progresses, many disease modelers have focused on estimating the basic reproductive num-
ber R0, the average number of secondary cases caused by a primary case in an otherwise
susceptible population. The modeling approaches and resulting estimates of R0 vary widely,
despite relying on similar data sources.

Aim

We aimed to develop a framework for comparing and combining different estimates of R0

across a wide range of models.

Methods

We reviewed 7 model-based analyses of the 2019-nCoV outbreak that were published online
between January 23–26, 2020. We decompose their R0 estimates into three key quantities:
the exponential growth rate r, the mean generation interval Ḡ, and the generation-interval
dispersion κ. We use a Bayesian multilevel model to construct pooled estimates and measure
uncertainties associated with these quantities.

Results

We find that most early estimates of R0 rely on strong assumptions, especially about the
generation-interval dispersion. Estimates that rely on narrow generation-interval distribu-
tions are overly sensitive to estimates of the exponential growth rate.

Conclusion

Our results emphasize the importance of propagating uncertainties in all components of R0,
including the shape of the generation-interval distribution, in efforts to estimate R0 at the
outset of an epidemic.

2

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 7, 2020. ; https://doi.org/10.1101/2020.01.30.20019877doi: medRxiv preprint 

https://doi.org/10.1101/2020.01.30.20019877
http://creativecommons.org/licenses/by-nc-nd/4.0/


Keywords

Basic reproductive number, 2019-nCoV, novel coronavirus, Bayesian multilevel model

Funding

BMB and DJDE were supported by Natural Sciences and Engineering Research Council
(NSERC). ML was supported by Canadian Institutes of Health Research (CIHR). The fun-
ders had no role in study design, data collection and analysis, decision to publish, or prepa-
ration of the manuscript.

Declaration of interests

We declare no competing interests.

Acknowledgements

We thank Daihai He for providing helpful comments on the manuscript.

Contribution

SWP and JD developed the statistical framework. SWP reviewed the published literature.
SWP performed the analysis. SWP, BMB, and JD created the figures. SWP and JD wrote
the first draft. All authors contributed to the writing and approval of the final report.

Data availability

R code is available in GitHub (https://github.com/parksw3/nCoV_framework).

3

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 7, 2020. ; https://doi.org/10.1101/2020.01.30.20019877doi: medRxiv preprint 

https://github.com/parksw3/nCoV_framework
https://doi.org/10.1101/2020.01.30.20019877
http://creativecommons.org/licenses/by-nc-nd/4.0/


1 Introduction

Since December 2019 [1], a novel coronavirus (2019-nCoV) has been spreading in China
and other parts of the world. Although the virus is believed to have originated from animal
reservoirs, the ability of 2019-nCoV to directly transmit between humans has posed a greater
threat for its spread [2]. As of February 3, 2020, the World Health Organization (WHO)
has confirmed 17391 cases, including 153 confirmed cases in 23 different countries, outside
China [3].

As the disease continues to spread, many researchers have published their preliminary
analyses of the outbreak as pre-prints [4–10], focusing in particular on estimates of the
basic reproductive number R0 (i.e., the average number of secondary cases generated by
a primary case in a fully susceptible population [11]). Estimates of the basic reproductive
number are of interest during an outbreak because they provide information about the level
of intervention required to interrupt transmission, and about the final size of the outbreak
[11]. We commend these researchers for their timely contribution and those who made the
data publicly available. However, it can be difficult to compare a disparate set of estimates
of R0 from different research groups when the estimation methods and their underlying
assumptions vary widely.

Here, we show that a wide range of approaches to estimating R0 can be understood
and compared in terms of estimates of three quantities: the exponential growth rate r,
the mean generation interval Ḡ, and the generation-interval dispersion κ. The generation
interval, defined as the interval between the time when an individual becomes infected and
the time when that individual infects another individual [12], plays a key role in shaping the
relationship between r and R0 [13]; therefore, estimates of R0 from different models directly
depend on their implicit assumptions about the generation-interval distribution and the
exponential growth rate. Early in an epidemic, information is scarce and there is inevitably a
great deal of uncertainty surrounding disease transmission. We suggest that disease modelers
should make sure their assumptions about these three quantities are clear and reasonable,
and that estimates of uncertainty in R0 should propagate error from all three sources [14].

We compare seven disparate models published online between January 23–26, 2020 that
estimated R0 for the 2019-nCoV outbreak [4–10]. We use our framework to construct pooled
estimates for the three key quantities: r, Ḡ, and κ; the pooled estimates reflect the uncer-
tainties present in modeling approaches. We use these pooled estimates to illustrate the
importance of propagating different sources of error, particularly uncertainty in both the
growth rate and the generation interval. We also use our framework to tease apart which as-
sumptions of these different models led to their different estimates and confidence intervals.
Despite the availability of more recent and/or updated estimates of R0, we restrict ourselves
to the estimates above in order to focus on the resolution of uncertainty in the earliest stages
of an epidemic.
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Basic reproductive
number R0

Mean generation
interval Ḡ (days)

Generation-interval
dispersion κ

Study 1 1.5–3.5 10 1 Bedford et al. [4]

Study 2 2.5 (1.5–3.5)∗ 8.4 unspecified† Imai et al. [5]
Study 3 2.92 (95% CI: 2.28–3.67) 8.4 0.2 Liu et al. [6]
Study 4 3.8 (95% CI: 3.6–4.0) 7.6 0.5 Read et al. [8]
Study 5 2.2 (90% CI: 1.4–3.8) 7–14 0.5 Riou and Althaus [10]

Study 6 5.47 (95% CI: 4.16–7.10)‡ 7.6–8.4 0.2 Zhao et al. [9]
Study 7 2.0–3.1 6–10 0 Majumder and Mandl [7]

Table 1: Reported estimates of the basic reproductive number and the assump-
tions about the generation-interval distributions. Estimates of R0 and their assump-
tions about the shape of the generation interval distributions were collected from 7 studies.
∗We treat these intervals as a 95% confidence interval in our analysis. †We assume κ = 0.5
in our analysis. ‡The authors presented R0 estimates under different assumptions regarding
the reporting rate; we use their baseline scenario in our analysis to remain consistent with
other studies, which do not account for changes in the reporting rate.

2 Methods

2.1 Description of the studies

We gathered information on estimates of R0 and their assumptions about the underlying
generation-interval distributions from 7 articles that were published online between January
23–26, 2020 (Table 1). Five studies [6–10] were uploaded to pre-print servers (bioRxiv,
medRxiv, and SSRN); one report was posted on the web site of Imperial College London [5];
and one report was posted on nextstrain.org [4]. Their modeling approaches vary widely: a
branching process model [4, 5, 10], a deterministic Susceptible-Exposed-Infected-Recovered
(SEIR) model [8], an exponential growth model [9], a Poisson offspring distribution model
[6], and the Incidence Decay and Exponential Adjustment (IDEA) model [7]. Four studies
estimated R0 by directly fitting their models to incidence data [6–9]. The remaining three
studies estimated R0 by comparing the predicted number of cases from their models with
the estimated number of total cases by January 18 (between 1,000 and 9,7000 [15]) Some
of these studies have now been published in peer-reviewed journals [16, 17] or have been
updated with better uncertainty quantification [18].

2.2 Gamma approximation framework for linking r and R0

Early in an outbreak, R0 is difficult to estimate directly; instead, R0 is often inferred from
the exponential growth rate r, which can be estimated reliably from incidence data [19].
Given an estimate of the exponential growth rate r and an intrinsic generation-interval
distribution g(τ) [20], the basic reproductive number can be estimated via the Euler-Lotka
equation [13]:

1/R0 =

∫
exp(−rτ)g(τ) dτ. (1)
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In other words, estimates of R0 must depend on the assumptions about the exponential
growth rate r and the shape of the generation-interval distribution g(τ).

Here, we use the gamma approximation framework [21] to (i) characterize the amount of
uncertainty present in the exponential growth rates and the shape of the generation-interval
distribution and (ii) assess the degree to which these uncertainties affect the estimate of R0.
Assuming that generation intervals follow a gamma distribution with the mean Ḡ and the
squared coefficient of variation κ, we have

R0 =
(
1 + κrḠ

)1/κ
. (2)

This equation demonstrates that a generation-interval distribution that has a larger mean
(higher Ḡ) or is less variable (lower κ) will give a higher estimate of R0 for the same value
of r.

2.3 Statistical framework

As most studies do not report their estimates of the exponential growth rate, we first re-
calculate the exponential growth rate that correspond to their model assumptions. We do
so by modeling reported distributions of the reproductive number R0, the mean generation
interval Ḡ, and the generation-interval dispersion parameter κ with appropriate probability
distributions; we used gamma distributions to model values reported with confidence inter-
vals and uniform distributions to model values reported with ranges. For example, Study 3
estimated R0 = 2.92 (95% CI: 2.28–3.67); we model this estimate as a gamma distribution
with a mean of 2.92 and a shape parameter of 67, which has a 95% probability of containing
a value between 2.28 and 3.67 (see Table 2 for a complete description). For each study i, we
construct a family of parameter sets by drawing 100,000 random samples from the probabil-
ity distributions (Table 2) that represent the estimates of R0i and the assumed values of Ḡi

and κi and calculate the exponential growth rate ri via the inverse of Eq. 2:

ri =
Rκi

0i − 1

κiḠi

. (3)

This allows us to approximate the probability distributions of the estimated exponential
growth rates by each study; uncertainties in the probability distributions that we calculate
for the estimated exponential growth rates will reflect the methods and assumptions that
the studies rely on.

We construct pooled estimates for each parameter (r, Ḡ, and κ) using a Bayesian mul-
tilevel modeling approach, which assumes that the parameters across different studies come
from the same gamma distribution. The pooled estimates, which are represented as proba-
bility distributions rather than point estimates, allow us to average across different modeling
approaches, while accounting for the uncertainties in the assumptions they make:

ri ∼ Gamma(mean = µr, shape = µ2
r/σ

2
r),

Ḡi ∼ Gamma(mean = µG, shape = µ2
G/σ

2
G),

κi ∼ Gamma(mean = µκ, shape = µ2
κ/σ

2
κ),

(4)
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Basic reproductive
number R0

Mean generation
interval Ḡ (days)

Generation-interval
dispersion κ

Study 1 Uniform(1.5, 3.5) 10 1
Study 2 Gamma(mean = 2.6, α = 28) 8.4 0.5
Study 3 Gamma(mean = 2.92, α = 67) 8.4 0.2
Study 4 Gamma(mean = 3.8, α = 1400) 7.6 0.5
Study 5 Gamma(mean = 2.2, α = 12) Uniform(7, 14) 0.5
Study 6 Gamma(mean = 5.47, α = 54) Uniform(7.6, 8.4)∗ 0.2

Study 7 exp(rḠ)† Uniform(6, 10) 0

Table 2: Probability distributions for R0, Ḡ, and κ. We use these probability distri-
butions to obtain a probability distribution for the exponential growth rate r. The gamma
distribution is parameterized by its mean and shape α. Constant values are fixed accord-
ing to Table 1. ∗We do not account for this uncertainty during our recalculation of the
exponential growth rate r because the reported estimate of R0 and its uncertainty assumes
Ḡ = 8; the original article reports three R0 (and 95% CIs) estimates using three different
values of Ḡ: 7.6 (MERS-like), 8 (average), and 8.4 (SARS-like). We still account for this
uncertainty in our pooled estimates (µG). †Study 6 uses the IDEA model [22], through which
the authors effectively fit an exponential curve to the cumulative number of confirmed cases
without propagating any statistical uncertainty. Instead of modeling R0 with a probability
distribution and recalculating r, we use r = 0.114 days−1, which explains all uncertainty in
the reported R0, when combined with the considered range of Ḡ.

where µr, µG, µκ represent the pooled estimates, and σr, σG, and σκ represent between-study
standard deviations. We account for uncertainties associated with ri, Ḡi and κi (and their
correlations), by drawing a random set from the family of parameter sets for each study
at each Metropolis-Hastings step. Since the gamma distribution does not allow zeros, we
use κ = 0.02 instead for Study 7. We note that this approach does not account for non-
independence between the parameter estimates made by different modelers. As we add more
models, the pooled estimates can become sharper even when the models no longer add more
information. Thus, the pooled estimator should be interpreted with care.

We use weakly informative priors on hyperparameters:

µr ∼ Gamma(mean = 1 week−1, shape = 2)

µG ∼ Gamma(mean = 1 week, shape = 2)

µκ ∼ Gamma(mean = 0.5, shape = 2)

(σr, σG, σκ) ∼ half-normal(0, 10).

(5)

We followed recommendations outlined in Gelman et al. [23], parameterizing the top-level
gamma distributions in terms of their means and standard deviations and imposing weakly
informative prior distributions on between-study standard deviations, i.e., half-normal(0, 10).
We had initially used gamma priors with small shape parameters (< 1) on between-study
shape parameters (= µ2/σ2) but found this put too much prior probability on large between-
study variances. This phenomenon is a known problem [23]. Alternative choices of prior for
the between-study shape parameters are also suboptimal: imposing strong priors (e.g. half-
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Figure 1: Comparisons of the reported parameter values with our pooled esti-
mates. We inferred point estimates (black), uniform distributions (orange) or confidence
intervals (purple) for each parameter from each study, and combined them into pooled esti-
mates (red; see text). Open triangle: we assumed κ = 0.5 for Study 2 which does not report
generation-interval dispersion.

t(µ = 0, σ = 1, ν = 4) assumes a priori that between-study variance is large, while weak
priors (e.g. half-Cauchy(0,5)) can lead to poor mixing.

We run 4 independent Markov Chain Monte Carlo chains each consisting of 500,000
burnin steps and 500,000 sampling steps. Posterior samples are thinned every 1000 steps.
Convergence is assessed by ensuring that the Gelman-Rubin statistic is below 1.01 for all
hyperparameters [24]; trace plots and marginal posterior distribution plots are presented in
Appendix. 95% confidence intervals are calculated by taking 2.5% and 97.5% quantiles from
the marginal posterior distribution for each parameter.

3 Results

Fig. 1 compares the reported values of the exponential growth rate r, mean generation in-
terval Ḡ, and the generation-interval dispersion κ from different studies with the pooled
estimates that we calculate from our multilevel model. We find that there is a large uncer-
tainty associated with the underlying parameters; many models rely on stronger assumptions
that ignore these uncertainties. Surprisingly, no studies take into account how the variation
in generation intervals affects their estimates of R0: all studies assumed fixed values for κ,
ranging from 0 to 1.

Fig. 2 shows how propagating uncertainty in different combinations would affect estimates
and CIs for R0. For illustrative purposes, we use our pooled estimates, which may represent
a reasonable proxy for the state of knowledge as of January 23–26 (Fig. 2A). Comparing
the models that include only some sources of uncertainty to the “all” model, we see that
propagating error from the growth rate (which all but one of the studies reviewed did)
is absolutely crucial: the middle bar (“GI mean”), which lacks growth-rate uncertainty,
is relatively narrow. In this case, propagating error from the mean generation interval
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has negligible effect compared to propagating the uncertainty in r. Uncertainty in the
generation-interval dispersion also has important effects as it determines the functional form
of the relationship between r and R0 (compare “growth rate + GI mean” with “all”). For
example, reducing the dispersion parameter κ from 1 (assuming exponentially distributed
generation intervals) to 0 (assuming fixed generation intervals) changes the r–R0 relationship
from linear to exponential, therefore increasing the sensitivity of R0 estimates to r and Ḡ.

As uncertainty associated with the exponential growth rate decreases, accounting for
uncertainties in generation intervals becomes even more important (Fig. 2B). Propagating
error only from the growth rate gives very narrow confidence intervals in this case. Likewise,
propagating errors from the growth rate and the mean generation interval gives wider but
still too narrow confidence intervals. We expect this hypothetical example to better reflect
more recent scenarios, as increased data availability will allow researchers to estimate r with
more certainty.
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B. Reduced uncertainty in the growth rate

Figure 2: Effects of r, Ḡ, and κ on the estimates of R0. We compare estimates of
R0 under five scenarios that propagate different combinations of uncertainties (A) based on
our pooled estimates (µr, µG, and µκ) and (B) assuming a 4-fold reduction in uncertainty of
our pooled estimate of the exponential growth rate (using (µr + 3×median(µr))/4, instead).
base: R0 estimates based on the median estimates of µr, µG, and µκ. growth rate: R0

estimates based on the the posterior distribution of µr while using median estimates of µG
and µκ. GI mean: R0 estimates based on the the posterior distribution of µG while using
median estimates of µr and µκ. growth rate + GI mean: R0 estimates based on the
the joint posterior distributions of µr and µG while using a median estimate of µκ. all: R0

estimates based on the joint posterior distributions of µr, µG, and µκ. Vertical lines represent
the 95% confidence intervals.

We also compare the estimates of R0 across different studies by replacing their values
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of r, Ḡ, and κ with our pooled estimates (µr, µG, and µκ, respectively) one at a time
and recalculating the basic reproductive number R0 (Fig. 3). This procedure allows us to
assess the sensitivity of the estimates of R0 across appropriate ranges of uncertainties. We
find that incorporating uncertainties one at a time increases the width of the confidence
intervals in all but 7 cases. We estimate narrower confidence intervals for Study 3, Study 6,
and Study 7 when we account for proper uncertainties in the generation-interval dispersion
because they assume a narrow generation-interval distribution (compare “base” with “GI
variation”); when higher values of κ are used, their estimates of R0 become less sensitive to
the values of r and Ḡ, giving narrower confidence intervals. We estimate narrower confidence
intervals for Study 5 and Study 7 when we account for proper uncertainties in the mean
generation interval (compare “base” with “GI mean”) because the range of uncertainty in
the mean generation interval Ḡ they consider is much wider than the pooled range (Fig. 1).
Substituting the reported r or Ḡ from Study 1 with our pooled estimates give narrower
confidence intervals for similar reasons.

We find that accounting for uncertainties in the estimate of r has the largest effect on the
estimates of R0 in most cases (Fig. 3). For example, recalculating R0 for Study 7 by using
our pooled estimate of r gives R0 = 3.9 (95% CI: 2.3–8.6), which is much wider than the
uncertainty range they reported (2.0–3.1). There are two explanations for this result. First,
even though the exponential growth rate r and the mean generation interval Ḡ have identical
mathematical effects on R0 in our framework (Eq. 2 in Methods), r is more influential in
this case because it is associated with more uncertainty (Fig. 1). Second, assuming a fixed
generation interval (κ = 0) makes the estimate of R0 too sensitive to r and Ḡ. One exception
is Study 1: we find this estimate of R0 is most sensitive to generation-interval dispersion κ.
This is because Study 1 assumes an exponentially distributed generation interval (κ = 1):
estimates that rely on this assumption make R0 relatively insensitive and thus tend to have
particularly narrow confidence intervals.

Finally, we incorporate all uncertainties by using posterior samples for µr, µG, and µκ to
recalculate R0 and compare it with the reported R0 estimates. Our estimated R0 from the
pooled distribution has a median of 2.9 (95% CI: 2.1–4.5). While the point estimate of R0

is similar to other reported values from this date range, the confidence intervals are wider
than all but one study. This result does not imply that assumptions based on the pooled
estimate are too weak; we believe that this confidence interval more accurately reflects the
level of uncertainties present in the information that was available when these models were
fitted. In fact, because the pooled estimate does not account for overlap in data sources
used by the models, we feel that it is more likely to be over-confident than under-confident.
Our median estimate averages over the various studies, and therefore particular studies have
higher or lower median estimates. We note in particular that, while the baseline example
we used from Study 6 may appear to be an outlier, the authors of this study also explore
different scenarios involving changes in reporting rate over time, under which their estimates
of R0 are similar to other reported estimates. Here, our focus is on estimating uncertainty,
not on identifying potential explanations for these discrepancies.
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Figure 3: Sensitivity of the reported R0 estimates with respect to our pooled
estimates of the underlying parameters. We replace the reported parameter values
(growth rate r, GI mean Ḡ, and GI variation κ) with our corresponding pooled estimates
(µr, µG, and µκ) one at a time and recalculate R0 (growth rate, GI mean, and GI
variation). The pooled estimate of R0 is calculated from the joint posterior distribution
of µr, µG, and µκ (all); this corresponds to replacing all reported parameter values with
our pooled estimates, which gives identical results across all studies. Horizontal dashed
lines represent the 95% confidence intervals of our pooled estimate of R0. The reported
R0 estimates (base) have been adjusted to show the approximate 95% confidence interval
using the probability distributions that we defined if they had relied on different measures
for parameter uncertainties.

4 Discussion

Estimating the basic reproductive number R0 is crucial for predicting the course of an out-
break and planning intervention strategies. Here, we use a gamma approximation [21] to
decompose R0 estimates into three key quantities (r, Ḡ, and κ) and apply a multilevel
Bayesian framework to compare estimates of R0 for the novel coronavirus outbreak. Our
results demonstrate the importance of accounting for uncertainties associated with the un-
derlying generation-interval distributions, including uncertainties in the amount of dispersion
in the generation intervals: our analysis of individual studies shows that assuming too nar-
row a generation-interval distribution can make the estimate of R0 overly sensitive to the
estimates of the exponential growth rate r.
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Of the seven studies that we reviewed, two of them directly fit their models to cumulative
number of confirmed cases. This approach can be appealing because of its simplicity and
apparent robustness, but fitting a model to cumulative incidence instead of raw incidence
can both bias parameters and give overly narrow confidence intervals, if the resulting non-
independent error structures are not taken into account [19, 25]. Naive fits to cumulative
incidence data should therefore be avoided.

Many sources of noise affect real-world incidence data, including both dynamical, or
“process”, noise (randomness that directly or indirectly affects disease transmission); and
observation noise (randomness underlying how many of the true cases are reported). Disease
modelers face the choice of incorporating one or both of these in their data-fitting and
modeling steps. This is not always a serious problem, particularly if the goal is inferring
parameters rather than directly making forecasts [19]. Modelers should however be aware
of the possibility that ignoring one kind of error can give overly narrow confidence intervals
[25, 26].

There are other important phenomena not covered by our simple framework. Exam-
ples that seem relevant to this outbreak include: changing reporting rates, reporting delays
(including the effects of weekends and holidays), and changing generation intervals. For
emerging pathogens such as 2019-nCoV, there may be an early period of time when the
reporting rate is very low due to limited awareness or diagnostic resources; for example,
Zhao et al. [9] (Study 6) demonstrated that estimates of R0 can change from 5.47 (95%
CI: 4.16–7.10) to 3.30 (95% CI: 2.73–3.96) when they assume 2-fold changes in the report-
ing rate between January 17, when the official diagnostic guidelines were released [27], and
January 20. Delays between key epidemiological timings (e.g., infection, symptom onset,
and detection) can also shift the shape of an observed epidemic curve and, therefore, affect
parameter estimates as well as predictions of the course of an outbreak [28]. Finally, gener-
ation intervals can become shorter throughout an epidemic as intervention strategies, such
as quarantine, can reduce the infectious period [29]. Accounting for these factors is crucial
for making accurate inferences.

Here, we focused on the estimates of R0 that were published within a very short time
frame (January 23–26). During early phases of an outbreak, it is reasonable to assume that
the epidemic grows exponentially [11]. However, as the number of susceptible individuals
decreases, the epidemic will saturate, and estimates of r used for R0 should account for
the possibility that r is decreasing through time. Although our analysis only reflects a
snapshot of a fast-moving epidemic, we expect certain lessons to hold: confidence intervals
must combine different sources of uncertainty. In fact, as epidemics progress and more
data becomes available, it is likely that inferences about exponential growth rate (and other
epidemiological parameters) will become more precise; thus the risk of over-confidence when
uncertainty about the generation-interval distribution is neglected will become greater.

We strongly emphasize the value of attention to accurate characterization of the trans-
mission chains via contact tracing and better statistical frameworks for inferring generation-
interval distributions from such data [30]. A combined effort between public-health workers
and modelers in this direction will be crucial for predicting the course of an epidemic and
controlling it. We also emphasize the value of transparency from modelers. Model estimates
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during an outbreak, even in pre-prints, should include code links and complete explanations.
We suggest using methods based on open-source tools allow for maximal reproducibility.

In summary, we have provided a basis for comparing exponential-growth based estimates
of R0 and its associated uncertainty in terms of three components: the exponential growth
rate, mean generation interval, and generation interval dispersion. We hope this framework
will help researchers understand and reconcile disparate estimates of disease transmission
early in an epidemic.
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[12] Åke Svensson. A note on generation times in epidemic models. Math Biosci, 208(1):
300–311, 2007.

[13] Jacco Wallinga and Marc Lipsitch. How generation intervals shape the relationship
between growth rates and reproductive numbers. Proc R Soc Lond B Biol Sci, 274
(1609):599–604, 2007.

[14] Bret D. Elderd, Vanja M. Dukic, and Greg Dwyer. Uncertainty in predictions of disease
spread and public health responses to bioterrorism and emerging diseases. Proc Natl
Acad Sci USA, 103(42):15693 –15697, October 2006. doi: 10.1073/pnas.0600816103.
URL http://www.pnas.org/content/103/42/15693.abstract.

[15] Natsuok Imai, Ilaria Dorigatti, Anne Cori, Chirstl A. Donelly, Steven Ri-
ley, and Neil M. Ferguson. Report 3: Transmissibility of 2019-nCoV.
2020. https://www.imperial.ac.uk/media/imperial-college/medicine/sph/ide/gida-
fellowships/2019-nCoV-outbreak-report-22-01-2020.pdf. Accessed 3, February, 2020.

[16] Julien Riou and Christian L Althaus. Pattern of early human-to-human transmission
of Wuhan 2019 novel coronavirus (2019-nCoV), December 2019 to January 2020. Euro
Surveill, 25(4):2000058, 2020.

[17] Shi Zhao, Qianyin Lin, Jinjun Ran, Salihu S Musa, Guangpu Yang, Weiming Wang,
Yijun Lou, Daozhou Gao, Lin Yang, Daihai He, et al. Preliminary estimation of the
basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to
2020: A data-driven analysis in the early phase of the outbreak. Int J Infect Dis, 2020.

[18] Jonathan M. Read, Jessica R.E. Bridgen, Derek A.T. Cummings, Anto-
nia Ho, and Chris P. Jewell. Novel coronavirus 2019-nCoV: early es-
timation of epidemiological parameters and epidemic predictions. 2020.
https://www.medrxiv.org/content/10.1101/2020.01.23.20018549v2. Accessed 5,
February, 2020.

[19] Junling Ma, Jonathan Dushoff, Benjamin M Bolker, and David JD Earn. Estimating
initial epidemic growth rates. Bull Math Biol, 76(1):245–260, 2014.

15

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 7, 2020. ; https://doi.org/10.1101/2020.01.30.20019877doi: medRxiv preprint 

http://www.pnas.org/content/103/42/15693.abstract
https://doi.org/10.1101/2020.01.30.20019877
http://creativecommons.org/licenses/by-nc-nd/4.0/


[20] David Champredon and Jonathan Dushoff. Intrinsic and realized generation intervals
in infectious-disease transmission. Proc R Soc Lond B Biol Sci, 282(1821):20152026,
2015.

[21] Sang Woo Park, David Champredon, Joshua S Weitz, and Jonathan Dushoff. A practical
generation-interval-based approach to inferring the strength of epidemics from their
speed. Epidemics, 27:12–18, 2019.

[22] David N Fisman, Tanya S Hauck, Ashleigh R Tuite, and Amy L Greer. An IDEA for
short term outbreak projection: nearcasting using the basic reproduction number. PloS
One, 8(12), 2013.

[23] Andrew Gelman et al. Prior distributions for variance parameters in hierarchical models
(comment on article by Browne and Draper). Bayesian analysis, 1(3):515–534, 2006.

[24] Andrew Gelman, Donald B Rubin, et al. Inference from iterative simulation using
multiple sequences. Stat Sci, 7(4):457–472, 1992.

[25] Aaron A King, Matthieu Domenech de Cellès, Felicia MG Magpantay, and Pejman
Rohani. Avoidable errors in the modelling of outbreaks of emerging pathogens, with
special reference to Ebola. Proc R Soc Lond B Biol Sci, 282(1806):20150347, 2015.

[26] Bradford P Taylor, Jonathan Dushoff, and Joshua S Weitz. Stochasticity and the limits
to confidence when estimating R0 of Ebola and other emerging infectious diseases. J
Theor Biol, 408:145–154, 2016.

[27] World Health Organization. Laboratory testing for 2019 novel coronavirus (2019-nCoV)
in suspected human cases. 2020. https://www.who.int/publications-detail/laboratory-
testing-for-2019-novel-coronavirus-in-suspected-human-cases-20200117. Accessed
February 4, 2020.

[28] A Tariq, K Roosa, K Mizumoto, and G Chowell. Assessing reporting delays and the
effective reproduction number: The Ebola epidemic in DRC, May 2018–January 2019.
Epidemics, 26:128–133, 2019.

[29] Herbert Hethcote, Ma Zhien, and Liao Shengbing. Effects of quarantine in six endemic
models for infectious diseases. Math Biosci, 180(1-2):141–160, 2002.

[30] Tom Britton and Gianpaolo Scalia Tomba. Estimation in emerging epidemics: Biases
and remedies. J R Soc Interface, 16(150):20180670, 2019.

16

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 7, 2020. ; https://doi.org/10.1101/2020.01.30.20019877doi: medRxiv preprint 

https://doi.org/10.1101/2020.01.30.20019877
http://creativecommons.org/licenses/by-nc-nd/4.0/


Appendix

0.1

0.2

0.3

0 100 200 300 400
MCMC steps (thinned every 400 steps)

µ r
 (d

ay
s−1

)

0.0

0.1

0.2

0.3

0.4

0.5

0 100 200 300 400
MCMC steps (thinned every 400 steps)

σ r

6

8

10

0 100 200 300 400
MCMC steps (thinned every 400 steps)

µ G
 (d

ay
s)

2

4

6

0 100 200 300 400
MCMC steps (thinned every 400 steps)

σ G

0.5

1.0

1.5

0 100 200 300 400
MCMC steps (thinned every 400 steps)

µ κ

0

1

2

3

0 100 200 300 400
MCMC steps (thinned every 400 steps)

σ κ

Figure A1: Trace plots of the multilevel model. Each chain is represented by a different
color.
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Figure A2: Marginal posterior distributions of the multilevel model. Each chain is
represented by a different color.
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