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Abstract.

BACKGROUND: The benefits of mammography screening have been controversial, with con-

flicting findings from various studies.

METHODS: We hypothesize that unmeasured heterogeneity in tumor aggressiveness underlies

these conflicting results. Based on published data from the Canadian National Breast Screening

Study (CNBSS), we develop and parameterize an individual-based mechanistic model for breast

cancer incidence and mortality that tracks five stages of breast cancer progression and incorporates

the effects of age on breast cancer incidence and all-cause mortality.

RESULTS: The model accurately reproduces the reported outcomes of the CNBSS. By varying

parameters, we predict that the benefits of mammography depend on the effectiveness of cancer

treatment and tumor.

CONCLUSIONS: In particular, patients with the most rapidly growing or potentially largest

tumors have the highest benefit and least harm from the screening, with only a relatively small

effect of age. However, the model predicts that confining mammography populations with a high

risk of acquiring breast cancer increases the screening benefit only slightly compared with the full

population.

1. Background

Breast cancer is one of three most commonly diagnosed cancers in women, making up 30%

of all cancer cases in women in the United States in 2018 [1]. Screening mammography was

introduced to detect small and more treatable tumors before they cause symptoms. Several trials,

such as the Health Insurance Trial [2], the Edinburgh randomised trial [3,4], the Canadian National

Breast Screening Study (CNBSS) [5] and the Swedish Two-Country Trial [6,7], have quantified the

benefits of screening mammography. The Swedish study and many others reported that breast

cancer mortality was significantly reduced due to screening mammography [6,8], while the CNBSS

found no benefits [5, 9]. In addition, Welch et. al. also found no benefit in their analysis of the

SEER data [10]. These contradictory conclusions have spurred intense debate over the benefits

of screening mammography. The wide implementation of screening mammography has led to an

increased rate of small tumor detection and a decreased rate of large tumor detection over the last

decades [10]. The primary cost of screening is overdiagnosis of small benign or unaggressive tumors

that would have remained asymptomatic during a patient’s lifetime, turning a healthy individual
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into a patient, and requiring follow-up tests and treatments with deleterious side effects including

death [11]. Overdiagnosis also results in unwanted economic and psychological burdens. To address

the controversy, the WISDOM study based on a woman’s individual risk was initiated in the United

States in 2016 [12].

Studies based on statistical or stochastic models [13–15] have quantified the influence of various

factors such as age, screening frequency and adherence behavior on the benefits and harmful ef-

fects of mammography screening based on different data sources or trials other than the CNBSS.

Most of transition probabilities in these models were held constant or age-dependent, and thus did

not include the effects of tumor heterogeneity across patients. Using the CNBSS, several analyses

( [16,17] and references therein) have estimated screening sensitivities, transition probabilities and

sojourn time distributions. As far as we know, no study has developed a mathematical model to

quantify the benefits and harm of screening that explicitly takes tumor heterogeneity into consider-

ation. In this work, we propose a mechanistic model focusing on differences among individuals that

provides a mathematical tool to gain insight into breast cancer progression. This model includes all

possible transitions of breast cancer before and after detection from cancer incidence and detection

through progression, treatment and mortality. Our central focus is on unmeasured heterogeneity,

which we include through variation in the aggressiveness of tumor growth and maximum tumor

size. By including unaggressive cancers, we are able to model the role of unmeasured heterogeneity

in incidence levels, detected tumor sizes, and long-term outcomes to address the balance between

costs and benefits of screening. The benefits are measured as the increase in 25-year survival. The

costs are the increase in overdiagnosis quantified in two ways, through the difference in the number

of patients diagnosed [18], and through the number who would have died due to other causes if

treatment were relatively ineffective.

The proposed model is designed to first reproduce the cancer incidence and mortality in the

CNBSS with a minimum of parameter fitting to the data itself [5]. By varying key model parame-

ters, we simulate different scenarios of tumor aggressiveness and cancer treatment effectiveness to

quantify their effect on the benefit and harm of mammography screening in a population.

The paper first presents the model framework and describes how parameters were estimated

from the literature and the CNBSS. Because of the focus on unmeasured differences in underlying

cancers, we term this the Breast Cancer Heterogeneity Aggressiveness Model (BCHAM). Using

BCHAM, we experiment with the effectiveness of treatment and the underlying mean and variance

of tumor aggressiveness to identify when mammography should provide the greatest benefit and

the least harm.

2. Materials and Methods

2.1. The CNBSS. The CNBSS has been described in detail [5, 19], and we here summarize its

key features (Figure 1a). The CNBSS was designed to investigate the benefits of mammography

screening in women aged 40 ´ 59. The patients were followed up for up to 25 years (22 years

on average). A population of 89, 835 healthy women aged 40 ´ 59 was randomly assigned to

mammography (five annual mammography screens) and control (no mammography). Women in

the mammography arm received both annual mammography and physical examination for the first

5 years of follow-up. In the control arm, women aged 40 ´ 49 received only a single physical

examination at enrollment, and women aged 50´ 59 received annual physical examination for the

first 5 years of follow-up. Participants were considered eligible if they were in good health, had no
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BREAST CANCER INCIDENCE AND MORTALITY 3

mammography in the previous 12 months, and had no history of breast cancer. The number of

detected breast cancers, breast cancer mortality and all-cause mortality was recorded during the

follow-up period.

2.2. BCHAM: An individual-based stochastic model. We use a five-compartment model

to track the number of women at each cancer stage via the probabilities and rates of transition

between consecutive stages (Figure 1b). Let a denote the age of a woman at enrollment and t the

time since the beginning of follow-up. The rate of cancer incidence, captq, is a bell-shaped function

based on the report of Canadian Cancer Registry and Health Statistics Division [20]. The rate of

non-breast cancer mortality is captured by an exponential function haptq obtained from the 1991

Canadian statistics reported in [21].

Several models of tumor growth have been used in the literature [22, 23]. We model tumor

diameter at time t with initial diameter dini at initial time tini, dpt, tini, dini, kq, with a Gompertz

model of human breast cancer growth [22]. The key parameter k is the tumor aggressiveness

constant. Detection sensitivities of a tumor are modeled by sigmoid functions [24]. Smpdq, Sppdq

and Sspdq denote the tumor detection sensitivities of mammography, physical screening and self-

examination respectively during the follow-up period. To capture undetected cancers entering the

study, we let Sbpdq be the tumor detection sensitivity of self-examination before the beginning

of the study to eliminate candidates with noticeable tumors. Let td represent the time when a

tumor is detected (the time when a patient moves from Stage 2 to 3). Suppose that breast cancers

originate from a single cell of the diameter d0 at time t0, the time when a woman moves from

Stage 1 to 2. Let dde “ dptd, t0, d0, kq be the size of a tumor at detection time td ą t0. The

hazard of cancer mortality depends on the size at detection, tumor aggressiveness and time since

detection according to hpdde, k, t ´ tdq, which follows a two-parameter Weibull distribution based

on the probability of cancer mortality [25]. This function includes a parameter α that captures the

effectiveness of treatment. All parameter values are presented in Tables 1a and 1b.

At enrollment, the participants can be in either the healthy or the undetected cancer compart-

ment. As time passes, they can transfer between stages (Fig. 1b).

Stage 1: An individual in the healthy compartment may develop undetected breast cancer at a rate

captq or die due to other causes apart from breast cancer at a rate haptq (solid arrows in

Fig. 1b).

Stage 2: During follow-up, an individual with undetected cancer can be detected with a probability

of Sjpdq, j P tm, p, su, or die of other causes at a rate of haptq (long-dashed arrows in

Fig. 1b).

Stage 3: An individual with detected cancer may die of breast cancer at a rate of hpdde, k, t´ tdq or

of other causes at rate haptq (short-dashed arrows in Fig. 1b).

We simulate a population of N0 individuals. The total women in the i-th compartment at time t is
řN0
k“1 x

k
i ptq where xki ptq, i “ 1, ..., 5 is an indicator function of the stage i of a individual k at time

t.

2.3. Parameter calibration based on the CNBSS. We simulate the model using the CNBSS [5]

to calibrate model parameters that cannot be estimated independently from the literature. In the

CNBSS, the large number of breast cancers detected during the first year of follow-up (253 and 170
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Figure 1. a) Flow diagram of the CNBSS [19]. Values in parentheses indicate the

number of individuals in each compartment. b) Diagram of the stages of breast

cancer incidence and mortality in BCHAM. Solid arrows indicate transitions from

the healthy state, long-dashed arrows from the undetected state, and short-dashed

arrows from the detected state
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Parameters Values Units

Cancer mortality hazard parameter Q [26] 0.0067 1{mmZ

Cancer mortality hazard parameter Z (estimated) 1.06

Cancer mortality hazard parameter ω [27] 1.272

Scale factor in cancer incidence γ (estimated) 1.54

Maximum tumor diameter ( [22,23]), dmax unifp1, 128qp1q mm

Tumor diameter of a single cell, d0 0.0124 mm

Current tumor diameter at time t with an initial

diameter d0 at time t0, dpt, t0, d0, kq [22]

dmax

ˆ

dmin
dmax

˙expp´12kpt´t0qq

mm

Tumor aggressiveness, k [22] logpkq P N pµk, σkq month´1

Cancer incidence parameters µage, σage [20] 76.86, 19.5 years old

True cancer incidence rate, captq [20]
0.1967 γ

σage
?

2π
exp

˜

´pt` a´ µageq
2

2σ2age

¸p2q

year´1

Rate of other cause mortality, haptq [21] 0.208ˆ 10´5 expp0.1196pt` aqq year´1

Detection sensitivity of a tumor size d, Sjpdq, j P

tb,m, p, su, [28]

exp
`

pd´ bj2q{b1
˘

1` expppd´ bj2q{b1q

Hazard rate of cancer mortality hpdde, k, tq, based

on [26,27]

kαdZdeωt
ω´1,

α “
logpQ{15ωq

logpkmq
“ 3.19

Detection sensitivity constants b1, bm2, bp2, bs2 [19,

28]

1.5, 6.33, 18.5, 20 mm

Detection sensitivity constants bb2 (estimated) 40 mm

Mean of logpkq adapted from [22], µk ´2.9 month´1

Standard deviation of logpkq [22], σk 0.71 month´1

Mean of k, km exppµk ` σ
2
k{2q “ 0.0708

p1q unifp1, 128q is a uniform distribution on the interval r1, 128s.

p2q A polynomial approximation of captq was used in programming to speed up model simulations.

(a) Definitions, values and units of model parameters (see also Table 1b). Citations indicate the source for

parameter values, with three parameters estimated from the data as noted.

Parameters Values

Age of participants, a unifp40, 59q

Average follow-up time, t 0´ 22

Population size, N0 see Figure 1a

Mammography screening schedule for women aged 40´ 59 in the mam-

mography arm, Tm

t0th, 1st, 2nd, 3rd, 4thu

Physical examination schedule for women aged 40´ 59 in the mammog-

raphy arm, Tp

t0th, 1st, 2nd, 3rd, 4thu

Physical examination schedule for women aged 40´49, Tp in the control

arm

t0thu

Physical examination schedule for women aged 50´59, Tp in the control

arm

t0th, 1st, 2nd, 3rd, 4thu

(b) Study-specific values of BCHAM model parameters based on the design of the CNBSS [5,23].

Table 1. Model parameters and values.
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diagnosed cancers in the mammography and control arms respectively (Table 1 and [5]) suggests

that at enrollment the participants may have been either in the healthy or undetected cancer

compartment. To capture this, we began each simulated patient as healthy 6 years prior to the study

initiation, with 6 years as a sufficient time period for previously originating cancers to be diagnosed

before the first year of the study. In accordance with the study design, we assume that cancers

can be diagnosed only by self physical examination with the detection sensitivity Sbpdq before the

study. Patients who get diagnosed, die of breast cancer or of other causes before the beginning of

the study are not included in the simulated population. A time step of 1 day is chosen for numerical

simulation. Due to the nature of discretization, possibilities of two events occurring during a period

of a time step are encompassed in our numerical simulations. In particular, Algorithm I in [29]

was used to speed up the simulation of Stage 1 and also eliminate the simultaneous occurrence

of undetected cancer and non-breast cancer death events. Because implementation of Algorithm I

requires the integration of the cancer incidence rate captq, we used a polynomial approximation of

captq. Moreover, we considered all possible cases including the concurrence of detected cancer and

non-breast cancer death events when simulating Stage 2. At any time during the follow-up, if the

death event occurs, the simulation is terminated.

Let Xi be the simulated outcomes, the number of detected cancers and the number of cancer

deaths, and Yi be the corresponding recorded observations from the study. For the jth realization

of our model, Sj is the sum of squared deviations, i.e. Sj “
ř

ipXi ´ Yiq
2. The three unknown

parameters (bb2, γ and Z) are chosen to minimize the expected value of S. Model calibration

is carried out using the data only from the control arm. Then we simulate the model with the

estimated parameters over both arms to reproduce the outcomes of the CNBSS.

2.4. Statistics and calculation of overdiagnosis. To quantify the survival and overdiagnosis,

we simulated each patient in the BCHAM model 100 times, 50 times in the mammography and 50

in the control arm, with identical parameters and time of onset of cancer. We used Cox proportional

hazards (the coxph function in R [30]) to evaluate the effect of treatment arm on survival from the

time of acquiring cancer, thus avoiding the effects of lead time bias [18]. To illustrate the effects, we

conduct these regressions on data broken up into sextiles of aggressiveness k and maximum tumor

diameter dmax, and by the time of cancer acquisition before, during or after the study. We term

these 108 groups as study subcohorts. To estimate confidence limits, we bootstrap the simulated

patients by sampling with replacement.

We quantify the number of diagnoses by computing the number of patients diagnosed in each

arm and comparing in each subcohort with a χ2 test. To test for overdiagnosis itself, we compute

the probability of death from other causes before death from cancer using the hazards h and ha

from Table 1a and integrating as in [31]. To minimize confounding the benefits of treatment that

sufficiently delay cancer-induced mortality to allow death from other causes, we lower the treatment

effectiveness parameter in the cancer mortality hazard h to its minimum value α “ 2.5.

3. Results

3.1. Fit with CNBSS results. Simulations of BCHAM accurately capture the outcomes of the

CNBSS including the number of detected cancers, deaths from cancer, deaths from other causes

and the distributions of age at diagnosis in both arms (Figures 2a, 2b and Table 2).
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Figure 2. a) The number of simulated (box-plots) versus recorded (‚, CNBSS)

breast cancers diagnosed and deaths from breast cancer in mammography arm (MA)

and control arm (CA). b) Simulated (box-plots) versus recorded (‚, CNBSS) number

of breast cancers diagnosed in MA and CA by study year.
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Mean Range

Simulated (recorded) Simulated (recorded)

Age at diagnosis (years):

In MA 53.08 p52.5q 40.00´ 63.84 p40´ 64q

In CA 53.44 p52.6q 40.02´ 63.82 p40´ 64q

Age at cancer death (years):

In MA 60.97 p59.9q 40.56´ 80.76 p43´ 80q

In CA 60.70 p60.6q 41.43´ 80.30 p43´ 83q

Table 2. Comparison of simulated versus recorded ages at diagnosis (at cancer

death in 25 years) for breast cancer detecting during screening phase (from the

beginning of follow-up to the 5th year) in mammography arm versus control arm.

3.2. Benefit and harm of mammography screening. The accurate fit of the model to the

data under current conditions motivates testing how various model parameters affect the balance

between benefit and harm. We first quantify the benefit of increasing the parameter α that describes

the effectiveness of treatment (Figure 3a). Value of screening is estimated as the percent increase

in survival after 25 years of follow-up. As can be seen, when cancer treatment is highly effective,

mammography screening provides only a minimal benefit.

To compare the benefit and harm as a function of age, tumor aggressiveness k, and maximum tu-

mor diameter dmax, we simulate identical populations in both arms. In the simulation, participants

receive an annual mammography and physical examinations in the mammography arm, or only an

annual physical examination in the control for the first five years of follow-up. The simulation of

each patient was repeated 50 times to reduce variance due to individual variation. Higher values of

k and dmax strongly increase survival and decrease overdiagnosis (Figure 3b). The effects of age are

much weaker, with slightly improved benefits in the middle age groups (women between the ages of

44 and 56). For patients with unaggressive tumors (small values of k and/or dmax), mammography

provides little benefit and the highest harm.

We also illustrate overdiagnosis and survivorship as functions of whether patients first acquired

their cancer before, during, or after the study, and of the aggressiveness (k) and the maximum tumor

diameter dmax of their tumor. For overdiagnosis (Figures 4a and b, we compare the difference in

number of patients per thousand diagnosed in the mammography and control arms (top number)

with the difference in the number of patients per thousand who would have died of other causes

with less effective treatment (α “ 2.5, bottom number). For survivorship (Figures 4c and d, we

compare the difference in number of deaths per thousand in the mammography and control arms

(top number) with the hazard ratio of death due to inclusion in the mammography arm (bottom

number).

For patients who acquired an undetected tumor before the beginning of the study, those with

ultimately small tumors are highly overdiagnosed and experience reduced survival due to the effects

of the treatment. The greatest survival benefits accrue to patients with largest and most aggressive

tumors. Patients who acquire a tumor during the five years of the study show a similar but

weaker pattern of overdiagnosis, and no strong survival cost of overtreatment of rapidly-growing

but ultimately small tumors. Patients who acquired tumors after the conclusion of the study
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Figure 3. a) Survivorship as a function of the treatment effectiveness parameter α.

b) Benefit (increase in probability of surviving patients after 25 years of follow-up)

and harm (increase in probability of patients diagnosed with cancers that would not

have been the cause of death) of mammography screening. c) Benefit and harm of

mammography screening with an increase of breast cancer incidence by a factor of 5

in comparison with the baseline case presented on the left. Size of dots indicates age,

the size increases with age. Color saturation increases with value of dmax. Markers

indicate value of k, 4 (l) corresponds to the smallest (largest) value of k.
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Figure 4. Comparison of simulated mammography and control arms after boot-

strap analysis. The aggressiveness class indicates the value of the tumor aggres-

siveness parameter k (1 represents k ă 0.0275, 2 from 0.0275 ´ 0.0400, 3 from

0.040´ 0.0543, 4 from 0.0543 ´ 0.0726, 5 from 0.0726 ´ 0.104 and 6 values greater

than 0.104). The maximum tumor diameter class indicates the parameter dmax,

with all values in mm (1 represents dmax ă 22.36, 2 from 22.36 ´ 43.36, 3 from

43.36´ 64.16, 4 from 64.16´ 85.05, 5 from 85.05´ 106.4 and 6 values greater than

106.4). Ranges are from 500 bootstrap replicates of the simulated data. Panels a)

and b) show the difference in the number of patients per thousand diagnosed (top

number) and the difference in the number per thousand who would have died first of

other causes with ineffective treatment (bottom number, α “ 2.5). Colors indicate

the significance of the difference in probability of diagnosis in the two arms (red for

higher in mammography arm, green for lower). Panels c) and d) show the difference

in number of patients per thousand who died of any cause (top number) and the

hazard ratio associated with mammography (bottom number) and colors indicate

the significance of the effect of mammography on survival (red for higher hazard in

the mammography arm, green for lower).
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show no effect of mammography as expected (results not shown). These observations suggest that

overdiagnosis mainly occurs at the first screening [32].

To capture a high-risk population, such as women with germline BRCA1 and BRCA2 mutations,

family breast cancer history, hormone therapy and smoking history, we assume an increase of breast

cancer incidence by a factor of 5 [33] over the baseline case. The main observations remain largely

unchanged. In a high risk population, mammography screening is slightly more beneficial for

younger women, illustrated by a slight shift in the age effect in Figure 3c compared with Figure 3b.

4. Discussion

We have developed an individual-based mechanistic model of breast cancer incidence and mortal-

ity in a population based on the Canadian National Breast Screening Study (CNBSS). All but three

of the parameters could be estimated independently from the literature or taken from the CNBSS

report, with the remaining ones calibrated to the outcomes of the CNBSS. The model includes two

forms of heterogeneity: tumor aggressiveness describing the growth rate and maximum tumor size.

The model accurately matches the cancer incidence and survival in the CNBSS (Section 3).

We then use the model to quantify the benefit and harm of mammography screening, with benefit

measured as the increase in 25-year survival, and harm as the increase in overdiagnosis. The benefit

of screening decreases almost to zero with highly effective treatment. In general, patients with the

most rapidly growing or potentially largest tumors have the highest benefit and least harm from

mammography screening, with only a relatively small effect of age.

We measured overdiagnosis in two ways, through the difference in the number of patients di-

agnosed (excess incidence [18]), and through the number who would have died of other causes if

treatment were relatively ineffective. The goal of treatment is, of course, to ensure that all patients

have the chance to die of something else, and thus comparing the number of deaths with relatively

effective treatment confounds true overdiagnosis with successful treatment. An alternative defines

overdiagnosis as cancers that would not have presented clinically during the patient’s lifetime [15,31]

which is most appropriate for modeling studies that optimize timing and type of testing.

Unlike age or other know risk factors, it is difficult in practice to predict specific tumor charac-

teristics in an individual patient before recommending screening. In addition to improving mam-

mography technology, increasing the net benefit of screening may require pretreatment tests that

can identify women at the greatest risk of the highly aggressive cancers.

The CNBSS has been criticized because participants were volunteers [34] and thus possibly at

higher risk than the general population. However, because participants were then randomized, this

selection of volunteers should only increase the effect size of screening, but not create a change in

direction.

Our model has several limitation. The parameters from the literature come from a variety of

sources and studies that might not apply across all populations. The remaining three are based

on a single study, and future work will test how effectively it can reproduce the outcome of other

clinical trials, such as the Swedish trial [6,7], by modifying few or no parameter values. In addition,

our modeling of treatment is quite simplified, without taking into account recent improvements or

different treatments for different breast cancer types.

Our model brings a new quantitative tool to bear on the controversy over the use of mammog-

raphy screening. We have found, in line with recent trials, that the benefits are sufficiently small
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and the harm sufficiently large to make screening of dubious value except in patients destined to

have highly aggressive cancers, who of course are difficult if not impossible to identify in advance.
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