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Abstract 38 

Background: To improve the performance of early acute kidney injury (AKI) prediction in 39 

intensive care unit (ICU), we developed and externally validated machine learning algorithms in 40 

two large ICU databases. 41 

Methods: Using eICU® Collaborative Research Database (eICU) and MIMIC-III databases, we 42 

selected all adult patients (age ≥ 18). The detection of AKI was based on both the oliguric and 43 

serum creatinine criteria of the KDIGO (Kidney Disease Improving Global Outcomes). We 44 

developed an early warning system for forecasting the onset of AKI within the first week of ICU 45 

stay, by using 6- or 12-hours as the data extraction window and make a prediction within a 1-46 

hour window after a gap window of 6- or 12-hours. We used 52 features which are routinely 47 

available ICU data as predictors. eICU was used for model development, and MIMIC-III was 48 

used for externally validation. We applied and experimented on eight machine learning 49 

algorithms for the prediction task. 50 

Results: 3,816 unique admissions in multi-center eICU database were selected for model 51 

development, and 5,975 unique admissions in single-center MIMIC-III database were selected 52 

for external validation. The incidence of AKI within the first week of ICU stay in eICU and 53 

MIMIC-III cohorts was 52.1% (n=1,988) and 31.3% (n=1,870), respectively. In eICU cohort, the 54 

performance of AKI prediction is better with shorter extraction window and gap window. We 55 

found that the AdaBoost algorithm yielded the highest AUC (0.8859) on the model with 6-hours 56 

data extraction window and 6-hours gap window (model 6-6) rather than other prediction models. 57 

In MIMIC-III cohort, AdaBoost also performed well. 58 
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Conclusions: We developed the machine learning-based early AKI prediction model, which 59 

considered clinical important features and has been validated in two datasets.  60 

Keywords: Acute Kidney Injury; Intensive Care Unit; Artificial Intelligence; Machine Learning 61 
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Background 62 

Acute kidney injury (AKI) is the major case of multiple organ failure with an incidence more 63 

than 50% in critically ill patients 1-5. Early prevention as one of the limited management options 64 

could greatly improve the prognosis of AKI in the intensive care unit (ICU) and therefore the 65 

early identification of critical patients with AKI becomes a critical issue, which could offer an 66 

opportunity to develop strategies for early prevention and intervention of AKI in critical care 6-9. 67 

The available dataset of large electronic healthcare records (EHR) provide an opportunity of 68 

predicting the early onset of AKI in critical care patients using machine learning algorithms, 69 

which can provide a much earlier, applicable and cost-effective solution than current late 70 

diagnostic criteria and biomarkers with limited utilities 6, 10-18. 71 

Forecasting the onset of AKI was well-studied in previous. Some studies have reported 72 

that their AKI prediction models were desirable. However, deploying such methods to the real 73 

world would be relatively difficult due to several critical limitations 19-21: (1) Some prediction 74 

models were based on highly specific cohorts, such as cardiac disease and post-surgery cohorts, 75 

which lack of the general hospital population background, thus need to be further explored 22-27. 76 

(2) The definitions of AKI in some studies were based on the serum creatinine (SCr) criteria 77 

without oliguria criteria. Even though oliguria criteria is non-early and non-specific, some 78 

studies have already confirmed that nearly one-third of AKI patients in ICU were identified by 79 

oliguria criteria and without elevating SCr26-36. Some of the previous study such as Tomašev et al. 80 

2019 were due to the lack of urine output information. (3) Those prediction tasks simply rely on 81 

a single time point, which is the time of admission to hospital, due to data insufficiency 26, 27, 31, 32, 82 

37-40. (4) Many studies did not include physiological or laboratory parameters as predictors, 83 

especially urine output, which has been confirmed as a critical role in predicting AKI and ICU 84 
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mortality 26, 27, 34, 35, 41. (5) The explored machine learning methods and selected features in the 85 

studies were limited, which may not fully take the advantage of machine learning techniques 86 

based on “big healthcare data” as well as investigating the best model performance 26, 31-36, 39, 40, 42. 87 

For example, Tomašev et al. 2019 developed a deep learning approach for the continuous risk 88 

prediction of AKI, but they did not compare their approach with other baseline algorithms such 89 

as basic neural networks or other ensemble algorithms. (6) Many studies did not perform 90 

external validation or not considering the real-world deployment 26, 31-36, 40, 43-47.  91 

To overcome the above limitations, we utilized a large multi-center ICU database (eICU 92 

Collaborative Research Database (v1.2)) and used both oliguria and SCr diagnostic criteria of 93 

Kidney Disease Improving Global Outcomes (KDIGO) 14 as the definition of AKI, and included 94 

most of the routinely available physiological and laboratory parameters in ICU and clinical 95 

interventions as predictors. We then adopted eight machine learning algorithms to conduct 96 

experiments and develop the comparable models of predicting the early onset of AKI within the 97 

first week of ICU stay. We also used another large non-overlapping single-center MIMIC-III 98 

(Medical Information Mart for Intensive Care III (v1.4)) ICU database for external validation. 99 

By fully utilizing the existed databases, we evaluated four time series models in an artificial 100 

intelligence perspective. The most important clinical features are also identified by feature 101 

importance analysis.  102 

 103 

Methods 104 

Study Design and Databases 105 
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We developed an early warning model for prediction the onset of AKI based on the retrospective 106 

analysis of the multi-center eICU database. The database including 459 ICUs from 58 hospitals 107 

during 2003–2016 in the United States 48, 49. The model was externally validated on a single-108 

center publicly available ICU database (MIMIC-III database), which contains 5 different ICUs in 109 

a tertiary medical center (Beth Israel Deaconess Medical Center, BIDMC; Boston, 110 

Massachusetts) during 2001–2012 50, 51. 111 

Study Cohorts 112 

All patients in the publically available eICU (v1.2) and MIMIC-III (v1.4) databases were 113 

considered in this study. The inclusion criteria are as follows: 1) Age ≥ 18 years old 52; 2) ICU 114 

stay for at least 24 consecutive hours; and 3) The first ICU admission of the first hospitalization 115 

were used 53. The exclusion criteria are as follows: 1) The primary diagnosis contained “Kidney 116 

disease”, “Acute renal failure”, and “Renal obstruction”; 2) clinical history of end-stage renal 117 

disease (ESRD) or their SCr was ≥4 mg/dl within the first 24 hours of ICU admission 26; 3) 118 

Received renal replacement therapy (RRT) within the first 24 hours of ICU admission 54; 4) 119 

diagnosed as AKI based on oliguria diagnostic criteria within the first 24 hours of ICU admission 120 

54, 55; 5) Withdrawal of treatment (which contains patients who did not receive mechanical 121 

ventilation and died during ICU stay); 6) samples with any missing value after imputation 53. 122 

AKI Definition 123 

The detection of AKI in adults was based on the oliguric and SCr criteria of the KDIGO 56. The 124 

“baseline” of SCr was defined as the ICU admission. 32, 37, 38, 57, 58. The oliguric criteria is based 125 

on the urine output <0.5 ml/kg/h for more than 6 hours or 12 hours, or the urine output <0.3 126 

ml/kg/h for 24 hours 56.  127 
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Prediction Task and Outcomes 128 

The prediction target or the primary outcome of this study was the first onset of AKI at any stage 129 

within the first week of ICU stay 31, 52, 53. We used 6 or 12 hours 54, 55, 59 as the feature collecting 130 

window, since the urine output based diagnostic criteria of KDIGO relies on 6 or 12 consecutive 131 

hours, and we make a one-hour prediction window after a gap window of 6 or 12 hours. That is, 132 

we used 6 or 12 hours of data to forecast the onset of AKI after 6 or 12 hours. All features and 133 

labels are extracted at one-hour interval for time-series modeling (Figure 1). Although sampled 134 

in one-hour, forecasting the future onset of AKI is a continuous prediction over the time. 135 

In detail, we experimented four configurations of time-series models. The configurations 136 

are described as follow with model name and the hours of feature collecting window – the hours 137 

of gap window – the hours of prediction window, respectively. 138 

1) Model 6-6: 6h-6h-1h; 139 

2) Model 6-12: 6h-12h-1h; 140 

3) Model 12-6: 12h-6h-1h; 141 

4) Model 12-12: 12h-12h-1h. 142 

Secondary outcomes of the study included ICU mortality, initial sequential organ failure 143 

assessment (ISOFA) score, need for renal replacement therapy (RRT) and ICU length of stay 144 

(LOS) 31, 52, 53. The prediction task and different models are shown in Figure 2. 145 
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146 

Figure 1. Model settings and prediction for a single admission. Timestamp is at one-hour interval147 

Feature collecting window are the discretized time-series features (6 hours or 12 hours) as inputs148 

of machine learning algorithms for predicting the label of AKI after certain gaps (6 hours or 12149 

hours). We experimented on four different model configurations: model 6-6, model 6-12, model150 

12-6, and model 12-12. 151 

 152 

Model Comparison and Feature Importance Ranking 153 

The violin plot 60 and pairwise paired t-test (two sided) 61 were used to visualize and evaluate the154 

performances across four different configurations of our time-series models (model 6-12; model155 

6-6; model 12-12, and model 12-6). Gini importance 62, also known as the mean decrease156 

impurity, is averaged over all trees of the ensemble model, which was used for identifying and157 

ranking feature importance. Gini importance is calculated by scikit-learn packages 63. 158 

 159 
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Feature Examination and Secondary Outcomes 160 

We used “psych” package 64 to further examine the association between ICU mortality, length of 161 

stay (LOS), need for renal replacement therapy (RRT), and the occurrence of AKI in the first 162 

week to obtain the secondary outcomes, since these features were collected after the onset of 163 

AKI and not showed in Table 1. Moreover, ISOFA score was also included into secondary 164 

outcomes. Continuous features are shown as the mean with standard deviation (s.d.) or median 165 

with interquartile range (IQR). Categorical features are expressed as absolute (n) and relative (%) 166 

frequency. Selected features were analyzed by the Spearman �  correlation test (two-sided), 167 

where the Spearman � statistic is used to estimate a rank-based measure of association. The test 168 

is a non-parametric and distribution-free test, thus the data do not necessarily follow a bivariate 169 

normal distribution 65. The significance was considered when P < 0.05. Statistical analysis was 170 

performed by Python 3.7 and R version 3.5.1. 171 

 172 

Data Extraction and Pre-processing 173 

Predictors 174 

For each patient, we extracted most of the routinely available ICU data as predictors based on 175 

methods of previous studies 31, 42, 54, 59, 66 and the availability in the selected databases. We 176 

included following features: 1) 18 static variables of demographic information, primary 177 

diagnosis and comorbidities (e.g., age, gender, sepsis, hypertension, etc.). The primary diagnosis 178 

were identified at the ICU admission from the databases; 2) 31 time-varying variables of vital 179 

signs, laboratory values and fluid balance-related parameters (e.g., heart rate, oxygen saturation, 180 

white blood cell count, blood creatinine, fluids intake, urine output, etc.); 3) two critical 181 
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interventions, which are usages of mechanical ventilation and vasopressors; 4) two other 182 

variables: “Hours” (hours stayed in ICU) and Initial SOFA (ISOFA). The complete feature list is 183 

shown in Table 1, detailed feature selection criteria are listed in Table S1. 184 

 It is worth to know that those variables also include urine output and serum creatinine 185 

(SCr), the same two variables which were used to define the onset of AKI based on KDIGO 56. 186 

In time series analysis, these two variables are known as endogenous variables while other 187 

variables are served as exogenous variables 67, 68. Thought the definition of AKI is based on urine 188 

output and SCr, forecasting the onset of AKI after 6 or 12 hours gap window cannot base on the 189 

future unseen urine output and SCr. Thus, complex machine learning algorithms are involved 190 

into this forecasting problem. 191 

Groups Variables 

Demogr
aphic 
informat
ion 

Age Gender Ethnicity Height Weight BMI1  

Vital 
signs 

Tempera
ture 
(TEM) 

Heart rate 
(HR) 

Respirato
ry rate 
(RR)  

Diastolic 
blood 
pressure 
(DIAS_BP
) 

Systolic 
blood 
pressure 
(SYS_BP) 

Mean 
blood 
pressure 
(MEAN_B
P) 

Oxyge
n 
saturati
on 
(SPO2) 

Laborato
ry 
values 

Sodium 
(NA_IO
N) 

Calcium 
(CA_ION
) 

Potassium 
(K_ION) 

Chloride 
(CL_ION) 

Anion gap 
(AG) 

Glucose 
(GLU) 

Bicarb
onate 
(HCO3
) 

White 
blood 
cell 
count 

Red 
blood cell 
count 
(RBC) 

Hemoglo
bin 
(HGB) 

Hematocri
t (HCT) 

Platelets 
(PLT) 

P_F_ratio2 

(PF) 
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(WBC) 

Glutamic 
pyruvic 
transami
nase 
(ALT) 

Glutamic 
oxalacetic 
transamin
ase (AST) 

Total 
bilirubin 
(TBB) 

Blood urea 
nitrogen 
(UN) 

Serum 
creatinine 
(SCr) 

  

Fluid 
balance 

Fluids 
intake 
last 6 
hours 
(INPUT_
6HR) 

Fluids 
intake last 
12 hours 
(INPUT_
12HR) 

Fluids 
intake last 
24 hours 
(INPUT_
24HR) 

Urine 
output last 
6 hours 
(OUTPUT
_6HR) 

Urine 
output last 
12 hours 
(OUTPUT
_12HR) 

Urine 
output last 
24 hours 
(OUTPUT
_24HR) 

  

Addition
al 
respirato
ry and 
hemody
namic 
support 

Vasopres
sor 
(VASO) 

Mechanic
al 
ventilatio
n 
(MECH) 

         

Primary 
diagnosi
s 

 

Sepsis, 
including 
pneumon
ia (SEP) 

Cardiovas
cular 
(CAR) 

Neurologi
cal 
(NEU) 

Other 
Respirator
y (RES) 

Other 
diseases 
(OD) 

    

Comorbi
dities 

Hyperten
sion 
(HYP) 

Diabetes 
(DIA) 

Congestiv
e heart 
failure 
(CHF) 

Chronic 
pulmonary 
disease 
(CPD) 

Chronic 
kidney 
disease 
(CKD) 

Chronic 
liver 
disease 
(CLD) 

  

Others 

Hours 
stayed in 
ICU 
(HOURS
) 

Initial 
SOFA3 
(ISOFA) 

          

Table 1. Variables and categorized groups. 1Body Mass Index: Weight (kg) / Height (meter) * 192 

Height (meter). BMI then converted to classes according to following criteria: BMI < 18.5: class 193 
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= 0; 18.5 ≤ BMI < 23: class = 1; 23 ≤ BMI < 25: class = 2; 25 ≤ BMI < 40: class = 3; BMI ≥ 40: 194 

class = 4. 2P_F_ratio: PO2/FiO2. 3SOFA: Sequential Organ Failure Assessment. 195 

 196 

Dataset Partitioning and Missing Data Imputation 197 

eICU database was used for model development and the data was analyzed with five-fold 198 

cross-validation: i.e., randomly split the entire cohorts into 60%:20%:20% as training, validation 199 

and testing sets, respectively. The training set (60%) is used for developing machine learning 200 

models, the validation set (20%) helps algorithms find their best hyper-parameters learned by the 201 

training set. The testing set (20%) is used for evaluating the performances of the models learned 202 

and optimized by training and validation sets. To prevent bias introduced when different 203 

admissions of one patient appears in separate dataset, data was splitted according to their unique 204 

patient ID instead of the admission ID, and assigned into either train, validation, or test set, to 205 

ensure patients are mutually exclusive across different datasets. 206 

Missing values were imputed with linear imputation approach 69 with respect to each 207 

admission. Once the linear imputation is done, nearest-neighbor imputation 70-72 was adopted 208 

within each admission to fill the remained missing values outside of the linear imputation range. 209 

All imputations were performed piece-wisely on each single admission. As linear imputation was 210 

adopted, it is critical to avoid data leakage on the validation and testing datasets. In our scenario, 211 

each variable on each admission in validation and testing sets are either partially missing or 212 

complete, otherwise that admission will be dropped. We then let those admissions impute the 213 

missing value by itself instead of using the training set. Moreover, the onset of AKI is occurred 214 

at the last timestamp of each admission since the data after the onset of AKI or at the time of 215 
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AKI were not used in model-building, thus, the experiment will not have the data leakage issue 216 

on time and will not bias the prediction after the data imputation. 217 

Data were coded as multi-dimensional time-series at one-hour interval 66. Static variables 218 

(demographic information, primary diagnosis, comorbidities, and ISOFA) were replicated across 219 

all timestamps for each patient. Categorical features with multiple categories but without order 220 

information, such as “ethnicity”, were one-hot encoded by using “OneHotEncoder” function 221 

from scikit-learn package 63. Vital signs and laboratory values with multiple measurements 222 

within one-hour interval were pooled in average 66 and rounded to the nearest unit hour. 223 

 224 

Model Development and Validation 225 

Driven by the large population database, we used eight different machine learning 226 

algorithms to develop our early AKI prediction model. The algorithms include: logistic 227 

regression (baseline), random forest (RF) 73, AdaBoost (short for Adaptive Boosting, base 228 

estimator: decision tree with maximum depth = 1) 74, decision tree (DT), Gradient Boost 229 

Machine (GBM) 75, neural network (NN), L2 regularized neural network (NN-L2), and long 230 

short-term memory (LSTM) neural networks 76. Then we used MIMIC-III database for external 231 

validation. Time-series data were encoded and reshaped to 1-D vectors to feed the learning 232 

algorithms except for LSTM. Hyper-parameters are fine-tuned for each algorithm on validation 233 

set. The entire workflow is shown in Figure 2. 234 
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235 

Figure 2. The study overview of the artificial intelligence-assisted AKI early warning system,236 

including (1) Data extraction, (2) Data pre-processing and missing data imputation, (3) dataset237 

splitting, (4) supervised machine learning method to predict AKI, (5) external validation, and (6)238 

performance evaluation and important feature identification 239 

 240 

Performance Evaluation and Statistical Analysis 241 

As logistic regression was widely used in predicting time-series events for ICU-related problems242 

26, 54, 66, we used logistic regression as the baseline for comparisons. Performances was evaluated243 

by: 1) the area under the ROC curve (AUC) 77; 2) Precision (macro) 78; 3) Recall (macro) 78; 4)244 

F1 score (macro) 79;  5) negative predictive value 80; and 6) specificity 81. AUC, ranging from 0245 

to 1, the higher the better, indicates the algorithm’s performances. We considered the model with246 
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AUC above 0.85 as the adequate and well-performed model. Model with the highest AUC is 247 

considered as the best model. Precision, also known as positive predictive value (PPV) 80, is the 248 

fraction of true positive classification among the positive results classified by algorithm, a higher 249 

precision indicates an algorithm’s result is reliable. Recall, also known as sensitivity 81, is the 250 

fraction of true positive classification among all the true samples, describes the ability of 251 

identifying true samples (AKI) among the whole population. F1 score is the harmonic average of 252 

precision and recall, higher F1 score indicates better performance. As we reported PPV 253 

(precision) and sensitivity (recall), we also took negative predictive value (NPV) and specificity 254 

into account. NPV is the probability that an admission with a negative prediction truly don’t have 255 

the AKI. Specificity measures the proportion of actual negatives samples that are correctly 256 

identified. Since five-fold cross-validation training scheme was adopted which has five different 257 

mutually exclusive testing sets (each contains 20% of the entire cohort), thus all the performance 258 

metrics are computed 5 times. Results are either presented by mean values in Tables or by 259 

boxplot in Figures. 260 

 261 

Results 262 

Study Cohorts: eICU and MIMIC-III 263 

A total of 3,816 unique admissions of eICU database and 5,975 unique admissions of MIMIC-III 264 

database were included after data pre-processing and filtering by inclusion and exclusion criteria. 265 

Detailed inclusion and exclusion process are presented in Figure 3. 266 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 13, 2021. ; https://doi.org/10.1101/2020.01.27.20019091doi: medRxiv preprint 

https://doi.org/10.1101/2020.01.27.20019091
http://creativecommons.org/licenses/by-nc-nd/4.0/


 17

267 

Figure 3. Study cohort selection workflow of eICU (A) and MIMIC-III database (B) based on the268 

designed inclusion and exclusion criteria. 269 

 270 

Descriptions and statistics of patients’ demographics and clinical characteristics between271 

two cohorts are summarized in Table 2. Commonly missing features are also described in Table272 

S2. The eICU cohort contained 3,816 unique admissions with a mean age of 60 (standard273 

deviation=18.0); 56.8% (n=2,169) were male and 84.8% (n=3,234) were white (including274 

Eastern European, Brazilian, Russian, and other European). 5,975 unique admissions selected in275 

the final MIMIC-III cohort with a mean age of 60 (standard deviation=18.3); 57.0% (n=3,404)276 

were men and 69.3% (n=4,140) were white. The incidence of AKI within the first week in eICU277 
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and MIMIC-III cohorts was 52.1% (n=1,988) and 31.3% (n=1,870), respectively. The AKI cases 278 

were determined based on urine output criteria in eICU and MIMIC-III cohorts were 45.1% 279 

(n=1,722) and 24.9% (n=1,486). Sepsis, including pneumonia, as the primary diagnosis 280 

accounted for 18.7% (n=713) in eICU cohort and 38.39% (n=2,290) in MIMIC-III cohort. 281 

Cardiovascular disease accounted for 35.8% (n=1367) in eICU cohort and 25.6% (n=1,531) in 282 

MIMIC-III cohort. The proportion of patients on mechanical ventilation and vasopressors were 283 

33.4% (n=1,276) and 26.4% (n=1,006) in the eICU, 47.4% (n=2,830) and 27.9% (n=1,666) in 284 

the MIMIC-III. The proportion of patients on cardiac surgery prior to AKI were 3.9% (n=149) in 285 

the eICU and 2.0% (n=122) in the MIMIC-III. The mean ISOFA score was 5.8 (standard 286 

deviation=3.3) in the eICU and 4.1 (standard deviation=3.0) in the MIMIC-III. The need for 287 

renal replacement therapy (RRT) was 1.8% (n=68) in the eICU and 0.95% (n=57) in the MIMIC-288 

III. Median ICU length of stay was 2.6 days in eICU and 2.8 days in MIMIC-III. The proportion 289 

of ICU mortality was 10.0% in eICU and 8.6% in MIMIC-III. 290 

Key Characteristics eICU MIMIC-III 

Unique ICU types (n) 8 5 

Final cohort (n) 3,816 5,975 

The incidence of AKI within the first 
week (n(%)) 

1,988 (52.1%) 1,870 (31.3%) 

AKI cases were determined based on urine 
output criteria (n(%)) 

1722 (45.1%) 1486 (24.9%) 

Age, years (mean (s.d.)) 60 (18.0) 60 (18.3) 

Male gender (n(%)) 2,169 (56.8%) 3,404 (57.0%) 

Comorbidities (n(%)):   

Hypertension 1,625 (42.6%) 2,430 (40.7%) 
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Diabetes 527 (13.8%) 1,253 (21.0%) 

Congestive heart failure 593 (15.5%) 1,172 (19.6%) 

Chronic pulmonary disease 550 (14.4%) 795 (13.3%) 

Chronic kidney disease 379 (10.0%) 395 (6.6%) 

Chronic liver disease 201 (5.3%) 108 (1.8%) 

Primary ICD-9 diagnosis (n(%)):     

Sepsis, including pneumonia 713 (18.7%) 2,290 (38.3%) 

Cardiovascular 1,367 (35.8%) 1,531 (25.6%) 

Other Respiratory 670 (17.6%) 642 (10.7%) 

Neurological 401 (10.5%) 280 (4.7%) 

Others 665 (17.4%) 1,232 (20.6%) 

Ethnicity (n(%)):     

Black 264 (6.9%) 420 (7.0%) 

Hispanic 66 (1.7%) 273 (4.6%) 

Asian 38 (1.0%) 202 (3.4%) 

White 3,234 (84.8%) 4,140 (69.3%) 

Other 214 (5.6%) 940 (15.7%) 

Initial SOFA (mean (s.d.)) 5.8 (3.3) 4.1 (3.0) 

Cardiac surgery (n(%)) 149 (3.9%) 122 (2.0%) 

Mechanical ventilation (n(%)) 1,276 (33.4%) 2,830 (47.4%) 

Vasopressors (n(%)) 1,006 (26.4%) 1,666 (27.9%) 

Need for renal replacement therapy (RRT) 
(n(%)) 

68 (1.8%) 57 (0.95%) 

Length of stay, days (median, (IQR)) 2.6 (1.6-4.8) 2.8 (1.8-5.0) 

ICU mortality rate 10.00% 8.60% 
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 291 

Table 2. Description of the datasets. Ethnicity of Black includes African American, Cape 292 

Verdean, Haitian, and African. Ethnicity of Hispanic includes Latino (central American), Latino 293 

(Cuban), Latino (Puerto Rican), Latino (Honduran), Latino (Guatemalan), Latino (Mexican), 294 

Latino (Dominican), Latino (Salvadoran), Latino (Colombian), and Portuguese. Ethnicity of 295 

Asian includes Vietnamese, Thai, Asian Indian, middle Eastern, Korean, Chinese, Filipino, 296 

Cambodian, Japanese, Asian other. White includes Eastern European, Brazilian, Russian, and 297 

other European. Ethnicity of Other includes Unknown, not specified, multi race, patient declined 298 

to answer, and unable to obtain. s.d.: Standard deviation in short. IQR: interquartile range in 299 

short. 300 

 301 

Model Development and Evaluation in eICU Cohort 302 

Compared with the baseline algorithm (logistic regression algorithm) in eICU cohort, we found 303 

that AdaBoost and Gradient Boosting Machine (GBM) achieved higher AUC than other 304 

algorithms in predicting task of all four configurations of the time-series models. The model 6-6 305 

configuration in general yielded the highest performance. Using model 6-6, the AUC of logistic 306 

regression is 0.8385, while the AUC was higher in the AdaBoost (0.8859) and GBM (0.8522). 307 

AUC results of all five-fold cross validation across four different configurations of the time-308 

series models and eight different machine learning algorithms are shown in Figure 4A. Precision 309 

and Recall of the models are also demonstrated in Figure S1A and Figure S2A. The model 310 

performance (mean values) on eICU cohort testing sets is shown in Table 3. Other performance 311 
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metrics on eICU cohort testing sets MIMIC-III such as F1 score, negative predictive value 312 

(NPV), and specificity are also available at Table S3. 313 

Model External Validation and Evaluation in MIMIC-III Cohort 314 

After external validation on four configurations of the time-series models which developed by 315 

eight different machine learning algorithms, we found model 12-6 developed by AdaBoost 316 

achieved the highest AUC (0.9228) on external validation set. For some models, the higher 317 

performance is noted on external validation than model development stage due to the differences 318 

between eICU and MIMIC-III cohorts (for example, the onset of AKI in MIMIC-III is more 319 

imbalanced), yet the evaluations are comparable within each database cohorts. AUC results of all 320 

five-folds results across four different configurations of the time-series models and eight 321 

different machine learning algorithms on MIMIC-III external validation set are presented in 322 

Figure 4B. The model performances (mean values) on external validation cohort MIMIC-III of 323 

AUC, precision, and recall are shown in Table 4. Other performance metrics on external 324 

validation cohort MIMIC-III such as F1 score, negative predictive value (NPV), and specificity 325 

are also available at Table S4. 326 

 327 
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Figure 4. Performance of four different configurations of the time-series models (model 6-6, 328 

model 6-12, model 12-6, model 12-12) and eight different machine learning algorithms on eICU 329 

for model development (A) and MIMIC-III for external validation (B). Abbreviations: DT: 330 

Decision Tree; GBM: Gradient Boosting Machine; LR: Logistic Regression; NN: Neural 331 

Networks; NN (L2): Neural Networks with L2 regularization; RF: Random Forest; LSTM: Long 332 

short-term memory networks. 333 

 334 

Models and 
algorithms 

Logistic 
Regressi
on 
(Baselin
e) 

Decision 
tree 
(DT) 

AdaBoos
t 

Gradient 
Boosting 
Machine 
(GBM) 

Random 
forest 
(RF) 

Neural 
Network
s (NN) 

Neural 
Network
s (NN 
with L2) 

Long 
short-
term 
memory 
networks 
(LSTM) 

Model 6-6          

AUC 0.8385 0.5937 0.8859 0.8522 0.7954 0.7716 0.7701 0.6154 

Precision 0.6934 0.5209 0.7381 0.5430 0.5503 0.5328 0.5295 0.5056 

Recall 0.5353 0.5937 0.5762 0.5307 0.5262 0.6016 0.5975 0.5492 

Model 6-12          

AUC 0.8402 0.5856 0.8634 0.8385 0.7509 0.7636 0.7695 0.6192 

Precision 0.7051 0.5185 0.7073 0.5707 0.5437 0.5377 0.5370 0.5002 

Recall  0.5380 0.5856 0.5814 0.5551 0.5197 0.6014 0.6040 0.5094 

Model 12-6          

AUC 0.8583 0.5962 0.8804 0.8459 0.7766 0.7692 0.7751 0.5727 

Precision 0.7152 0.5229 0.7339 0.5742 0.5504 0.5269 0.5307 0.5022 

Recall  0.5524 0.5962 0.5913 0.5584 0.5301 0.6147 0.6262 0.5151 

Model 12-12         
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AUC 0.8505 0.5820 0.8509 0.8244 0.7175 0.7467 0.7286 0.6100 

Precision 0.6997 0.5187 0.7412 0.5746 0.5454 0.5249 0.5198 0.5005 

Recall  0.5443 0.5820 0.5784 0.5496 0.5177 0.6076 0.5931 0.5098 

 335 

Table 3. Comparison of model performance (mean values across five-fold validation results) on 336 

eICU internal validation. Abbreviations: AUC: area under the ROC curve. L2 stands for Ridge 337 

regularization. 338 

 339 

Models and 
algorithms 

Logistic 
Regressi
on 
(Baselin
e) 

Decision 
tree 
(DT) 

AdaBoos
t 

Gradient 
Boosting 
Machine 
(GBM) 

Random 
forest 
(RF) 

Neural 
Network
s (NN) 

Neural 
Network
s (NN 
with L2) 

Long 
short-
term 
memory 
networks 
(LSTM) 

Model 6-6          

AUC 0.7550 0.6544 0.8542 0.7993 0.8760 0.8213 0.8175 0.5696 

Precision  0.5018 0.5123 0.5103 0.5059 0.5558 0.5073 0.5071 0.5638 

Recall  0.5395 0.6544 0.5006 0.5648 0.5692 0.6857 0.6886 0.5267 

Model 6-12          

AUC 0.7322 0.6253 0.7911 0.8142 0.7642 0.7811 0.7788 0.5241 

Precision  0.5018 0.5080 0.5039 0.5108 0.5449 0.5064 0.5064 0.5268 

Recall  0.5387 0.6253 0.5017 0.5987 0.6241 0.6690 0.6647 0.5136 

Model 12-6          

AUC 0.7422 0.6192 0.9228 0.8131 0.8502 0.7479 0.7579 0.5006 

Precision  0.5019 0.5077 0.5044 0.5076 0.5593 0.5047 0.5051 0.5343 

Recall  0.5412 0.6192 0.5014 0.6005 0.6291 0.6695 0.6773 0.5077 
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Model 12-12         

AUC 0.7522 0.6419 0.8215 0.7662 0.6816 0.7224 0.7173 0.5147 

Precision  0.5022 0.5095 0.5038 0.5066 0.5213 0.5044 0.5043 0.5250 

Recall  0.5451 0.6419 0.5011 0.5792 0.6223 0.6512 0.6459 0.5140 

 340 

Table 4. Comparison of model performance (mean values across five-fold validation results) on 341 

MIMIC-III cohort for external validation. Abbreviations: AUC: area under the ROC curve. L2 342 

stands for Ridge regularization. 343 

 344 

Secondary Outcomes 345 

Secondary outcomes of eICU and MIMIC-III databases are summarized in Table 5. P-value is 346 

derived according to alternative hypothesis: true Spearman � is not equal to 0 when comparing 347 

the variable with the onset of AKI. The patients who were diagnosed with AKI within the first 348 

week of ICU were associated with higher ICU mortality (eICU: 261 (13.1%) vs 121 (6.6%), 349 

spearman � = 0.1083, p<0.01; MIMIC-III: 284 (15.2%) vs 230 (5.6%), spearman � = 0.1585, 350 

p<0.01), renal replacement therapy (RRT) (eICU: 63 (3.2%) vs 5 (0.3%), spearman � = 0.1093, 351 

p<0.01; MIMIC-III: 47 (2.5%) vs 10 (0.2%), spearman � = 0.1083, p<0.01), longer ICU length 352 

of stay (eICU: median=3.1 (2.2-3.9) vs median=2.0 (1.1-2.5), spearman � = 0.2738, p<0.01; 353 

MIMIC-III: median=4.8 (IQR: 3.5-5.8) vs median=2.2 (IQR: 1.2-2.6), spearman � = 0.4185, 354 

p<0.01), and larger ISOFA score (eICU: mean=6.2 (standard deviation=3.4) vs mean=5.3 355 

(standard deviation=3.1), spearman �  = 0.1229, p<0.01; MIMIC-III: mean=4.9 (standard 356 

deviation=3.3) vs mean=3.8 (standard deviation=2.8), spearman � = 0.1623, p<0.01). 357 
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 eICU MIMIC-III 

Groups and 
outcomes 

AKI occurred 
within first 
week 
(n=1988) 

AKI not 
occurred 
within first 
week 
(n=1828) 

Spearman 
� (P-
value*) 

AKI occurred 
within first 
week 
(n=1870) 

AKI not 
occurred 
within first 
week 
(n=4105) 

Spearman 
� (P-
value*) 

ICU mortality 
(n(%)) 

261 (13.1%) 121 (6.6%) 
0.1083 
(p<0.01) 

284 (15.2%) 230 (5.6%) 
0.1585 
(p<0.01) 

Renal 
Replacement 
Therapy (RRT) 
(n(%)) 

63 (3.2%) 5 (0.3%) 
0.1093 
(p<0.01) 

47 (2.5%) 10 (0.2%) 
0.1083 
(p<0.01) 

Length of stay, 
days (median 
(IQR)) 

3.1 (2.2-3.9) 2.0 (1.1-2.5) 
0.2738 
(p<0.01) 

4.8 (3.5-5.8) 2.2 (1.2-2.6) 
0.4185 
(p<0.01) 

Initial SOFA 
(mean (s.d.)) 

6.2 (3.4) 5.3(3.1) 
0.1229 
(p<0.01) 

4.9 (3.3) 3.8 (2.8) 
0.1623 
(p<0.01) 

 358 

Table 5. Secondary outcomes of eICU and MIMIC-III databases. s.d.: standard deviation in short. 359 

IQR: interquartile range in short. *P-value is derived according to alternative hypothesis: true 360 

Spearman � is not equal to 0 when comparing the variable with the onset of AKI. 361 

 362 

 363 

Relationships between Prediction Performances and Different Time-Series Models 364 

As eight different algorithms with five-fold cross-validation produces 40 results per each time 365 

series model (model 6-6, model 6-12, model 12-6, model 12-12), violin plot (Figure 5) and 366 

pairwise paired t-test (Table 6) are used to compare the overall performances across time series 367 

models. In figure 5, we demonstrated that given fixed feature collecting window, models with 368 
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closer gap tend to have better AUC in average and in pairwise paired t-test (model 6-6: 0.7653 > 369 

model 6-12: 0.7539, p-value: 0.0238; model 12-6: 0.7593 > model 6-12: 0.7388, p-value: 370 

0.0218). Moreover, with fixed gap window, models with shorter feature collecting window also 371 

tend to have better AUC in average and in pairwise paired t-test (model 6-6: 0.7653 > model 12-372 

6: 0.7593, p-value: 0.459; model 6-12: 0.7539 > model 12-12: 0.7388, p-value: 0.0227), Such 373 

findings suggest that the prediction performance improved with closer gaps, while increasing the 374 

lag of time-series data doesn’t improve the model performances. 375 

 376 

Figure 5. Model performances (AUC) violin plot of four different configurations of the models 377 

(model 6-6, model 6-12, model 12-6, model 12-12) across eight different algorithms with five-378 

fold cross-validation. Black solid horizontal lines in each violin plot are the interquartile range 379 

lines. Red points and lines indicate the mean performances (AUC) over four models. 380 

 381 

 Set 2 
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Model 6-6 Model 6-12 Model 12-6 Model 12-12 

t P t P t P t P 

Set 
1 

Model 6-6 - - 2.35 2.38E-02* 0.75 4.59E-01 4.22 1.40E-04* 

Model 6-12 -2.35 2.38E-02* - - -0.73 4.71E-01 2.37 2.27E-02* 

Model 12-6 -0.75 4.59E-01 0.73 4.71E-01 - - 2.39 2.18E-02* 

Model 12-12 -4.22 1.40E-04* -2.37 2.27E-02* -2.39 2.18E-02* - - 

Notes: t denotes the pairwise paired Student’s t-test statistic, P denotes the p-value obtained. P-value < 0.05 are 
significant and indicated with * symbol. 

 382 

Table 6. Pairwise paired t-test comparison among the five-fold cross-validation AUC results over 383 

four different time-series models. 384 

 385 

Identifying Feature Importance 386 

The feature importance identified by the AdaBoost algorithm is determined by the average 387 

feature importance over all ensembled trees. We categorized eight groups of features and 388 

analyzed feature importance by Gini importance (mean decrease impurity). The list of 389 

categorized groups is shown in Table 1. 390 

To gain insights into the relevance of each feature, Figure 6 summarized and ranked the 391 

most critical variables in model 6-6 based on the averaged Gini feature importance using 392 

AdaBoost algorithm in model development (eICU database). Note that vitals, labs, topics and 393 

static data are important for the prediction task, and the most important group of features was 394 

vital signs. Specifically, fluid balance-related features (OUTPUT_12HR, OUTPUT_6HR, 395 

INPUT_12HR, OUTPUT_24HR), AST, AG, SCr, UN, CA_ION, K_ION in the class of 396 
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laboratory values, SYS_BP, RR, HR in the class of vital signs, HOURS in the class of others, 397 

and WEIGHT in the class of Demographic, are the most important predictors for the early AKI 398 

prediction. 399 

 400 

Figure 6. Identified top important features in eICU database. Values and rankings are based on 401 

time-series model 6-6 and the averaged Gini importance from AdaBoost algorithm. Features are 402 

colored group-wisely according to the categories listed in Table 1. The higher value indicates the 403 

higher significance of the feature. 404 

 405 
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Discussion 406 

Electronic healthcare systems (EHR) provides real-world clinical data not only for secondary 407 

analysis, but also for developing the artificial intelligence-based platform to assist clinicians to 408 

identify potential critical events, such as the onset of AKI 82-84. Since there is no effective 409 

treatment of AKI, the prevention of AKI becomes more critical 2, 59, 85-89, thus an early warning 410 

system which may reduce the risk of exacerbating injury is necessary and in urgent demand. 411 

Though some studies on early warning system have been successfully reduced the 412 

nephrotoxic medication in AKI and prevented the contrast-induced AKI 90-92, several other 413 

studies showed the failure of those methods 93-95, which mainly due to the lack of external 414 

validation. Therefore, the study with external validation are necessary before any developed 415 

method be applied to the clinical setting, especially the externally validated prediction models 416 

are relatively rare 19, 42, 56. 417 

In this paper, we have integrated most of the routinely available ICU data based on two 418 

large ICU databases with general population to developed and externally validated an ideal 419 

artificial intelligence assisted early warning system for predicting the onset of AKI within the 420 

first week of ICU stay. Our workflow and time-series models addressed several topics that have 421 

been discussing over these days. For example, we used both oliguric and SCr as diagnostic 422 

criteria of the KDIGO to identify the onset of AKI and included most of physiological and 423 

laboratory parameters as predictors, which contained different clinical commonly used urine 424 

output trends. As a result, we have got an ideal incidence of AKI in both eICU and MIMIC-III 425 

cohort, which would minimize the potential mistakes and maximize the accuracy and improving 426 

of predicting model performance in clinical situation. Moreover, we fully made use of all 427 
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routinely available ICU and clinical features as predictors, to optimize and improve the model 428 

performances. 429 

Using multiple types of ICU and clinical features to predict AKI, a complex clinical 430 

syndrome, is very challenging and difficult as any feature or small changes may cause great 431 

impact on outcomes. Machine learning technique has been successfully applied to predict critical 432 

events under a fast-paced, data-overloaded setting of ICU, which could provide new insights into 433 

evidence-based decision support 96-101. Different machine learning algorithms usually used to 434 

capture the real relationships across different data types which may provide advantages for 435 

predicting AKI far in advance of onset with high sensitivity and specificity. As previous studies, 436 

many machine learning algorithms have been used training many ideal models in predicting AKI, 437 

such as random forest, multivariate regression model, boosted ensembles of decision trees, etc. 26, 438 

31, 59. Based on these previous studies, we take a further step by fully utilizing two independent 439 

databases and applied eight machine learning algorithms with 52 comprehensive features of 440 

different data types for a large-scale model assessments and analyses.  441 

Our current study has several strengths. First, we integrated most of the routinely 442 

available ICU data, including 52 features under different data types, which would be considered 443 

containing the largest number of predictors. Second, we not only used both urine output and SCr 444 

as diagnostic criteria to identify the onset of AKI, but also included physiological (especially 445 

urine output) and laboratory trends as predictors to improve model performance. Third, we 446 

compared 8 modern machine learning algorithms for further analysis to select the best model of 447 

predicting task. Fourth, we developed and externally validated an ideal model based on two 448 

independent general population ICU databases. Last but not least, we did not only rely on using 449 
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data at a single time point (admission to hospital), but also combining static and time-varying 450 

variables as a time series dataset to achieve accurate prediction model performance.  451 

From the results and performances across four time-series models and various machine 452 

learning algorithms, we proved the feasibility of deploying artificial intelligence assisted early 453 

warning system for AKI prediction. We also showed that AdaBoost, one of the ensemble 454 

machine learning algorithms, could be a desired model to predict the onset of AKI. The 455 

performances measured by AUC is decent and could be applied in real-time to assist clinicians’ 456 

decision in the future. While the across-model performances demonstrated that increasing the lag 457 

(feature collecting window), or in another word, how many hours we look back, doesn’t help 458 

improve the performance, justified that model 6-6 with 6 hours feature collecting window is 459 

enough for the future AKI inference. 460 

For feature importance ranking of AKI prediction, the top 15 features are critical and 461 

closely related to AKI development. We justified and validated that the fluid balance and 462 

laboratory values are not only the AKI criteria of the KDIGO, but also directly associated with 463 

the kidney function (such as OUTPUT_12HR, OUTPUT_6HR, INPUT_12HR, SCr, UN, CA_ 464 

ION, K_ION, etc.) 54. Most vital signs, which are used to assess patients’ physiological stability, 465 

are important for prediction as the AKI prediction should be in real-time. Hours stayed in ICU 466 

and weight are also indicated as the most important features which have already been reported 467 

that both of them have a great association with AKI 102. The model developed has the potential 468 

capability of serving as an “alert” for early warning of AKI, which would make the electronic 469 

healthcare systems more artificially intelligence and enable bedside application. 470 
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Although our study bridged many gaps in AKI forecasting research, this study may still 471 

exist some inevitable limitations to be addressed in the future. First, the AKI is defined with the 472 

baseline creatinine chosen as first in stay, which could miss the true incidence of AKI by up to 473 

30% who already had AKI at that time 103. However, as we face the limitation of the data, the 474 

safest way for now is to exclude that group of patients with unclear information. Same exclusion 475 

due to the data limitation also happened in the withdrawal of treatment, which contains patients 476 

who did not receive mechanical ventilation and died during ICU stay. Second, we predict the 477 

onset of AKI at any stage, without predicting the precise stage. In the future, multi-class 478 

classification or even regression might be considered instead of binary classification. Third, 479 

comorbidities were included as “static” variables, since they could not be accurately 480 

timestamped due to the limited information of the eICU and MIMIC-III databases. Fourth, the 481 

predictors may need more effort on improving the recall score – with well-performed AUC and 482 

precision, the recall is not so promising due to some positive samples (AKI) are misclassified. 483 

Fifth, although we used two non-overlapping general population ICU databases, both are from 484 

the United States hospitals. Thus, cross-national and multi-background validations are necessary. 485 

Sixth, we only evaluated two feature windows (6 and 12 hours), two gap windows (6 and 12 486 

hours) and one prediction window (1 hour) due to the data and computational limitation. In the 487 

future, we may put more efforts on various time-series models. Last but not the least, study 488 

design in this work relied on retrospective data investigation which may cause missing some 489 

important information than a prospective study and could not have any result about the impact 490 

analysis between model prediction and patients’ outcomes. Therefore, the model also requires 491 

further external validation based on different background populations and may only be used 492 

inside the research arena. 493 
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 494 

Conclusion 495 

Recent reviews and comments showed that the prediction of AKI in the ICU is relatively 496 

difficult and with several limitations. To answer these limitations and problems, We have 497 

developed an artificial intelligence assisted early warning model for predicting the onset of AKI 498 

within the first week of ICU stay, which identified by using both oliguric and SCr diagnostic 499 

criteria in multi-center eICU database and externally validated in single-center MIMIC-III 500 

database. We integrated most routinely available ICU data and demonstrated the model with 6 501 

hours feature and 6 hours gap developed by AdaBoost achieved optimal performances measured 502 

with AUC, precision, and recall among 8 prevalent machine learning algorithms.  503 
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Figure Legends 832 

Figure 1. Model settings and prediction for a single admission. Timestamp is at one-hour interval. 833 

Feature collecting window are the discretized time-series features (6 hours or 12 hours) as inputs 834 

of machine learning algorithms for predicting the label of AKI after certain gaps (6 hours or 12 835 

hours). We experimented on four different model configurations: model 6-6, model 6-12, model 836 

12-6, and model 12-12. 837 

Figure 2. The study overview of the artificial intelligence-assisted AKI early warning system, 838 

including (1) Data extraction, (2) Data pre-processing and missing data imputation, (3) dataset 839 

splitting, (4) supervised machine learning method to predict AKI, (5) external validation, and (6) 840 

performance evaluation and important feature identification. 841 

Figure 3. Study cohort selection workflow of eICU (A) and MIMIC-III database (B) based on the 842 

designed inclusion and exclusion criteria. 843 

Figure 4. Boxplot of all five-folds recall results across four different configurations of the time-844 

series models (model 6-6, model 6-12, model 12-6, model 12-12) and eight different machine 845 

learning algorithms on eICU testing set (A) and external validation database MIMIC-III (B). 846 

Abbreviations: DT: Decision Tree; GBM: Gradient Boosting Machine; LR: Logistic Regression; 847 

NN: Neural Networks; NN (L2): Neural Networks with L2 regularization; RF: Random Forest; 848 

LSTM: Long short-term memory networks. 849 

Figure 5. Model performances (AUC) violin plot of four different configurations of the models 850 

(model 6-6, model 6-12, model 12-6, model 12-12) across eight different algorithms with five-851 

fold cross-validation. Black solid horizontal lines in each violin plot are the interquartile range 852 

lines. Red points and lines indicate the mean performances (AUC) over four models. 853 
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Figure 6. Identified top important features in eICU database. Values and rankings are based on 854 

time-series model 6-6 and the averaged Gini importance from AdaBoost algorithm. Features are 855 

colored group-wisely according to the categories listed in Table 1. The higher value indicates the 856 

higher significance of the feature. 857 
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Table Legends 859 

Table 1. Variables and categorized groups. 1Body Mass Index: Weight (kg) / Height (meter) * 860 

Height (meter). BMI then converted to classes according to following criteria: BMI < 18.5: class 861 

= 0; 18.5 ≤ BMI < 23: class = 1; 23 ≤ BMI < 25: class = 2; 25 ≤ BMI < 40: class = 3; BMI ≥ 40: 862 

class = 4. 2P_F_ratio: PO2/FiO2. 3SOFA: Sequential Organ Failure Assessment. 863 

Table 2. Description of the datasets. Ethnicity of Black includes African American, Cape 864 

Verdean, Haitian, and African. Ethnicity of Hispanic includes Latino (central American), Latino 865 

(Cuban), Latino (Puerto Rican), Latino (Honduran), Latino (Guatemalan), Latino (Mexican), 866 

Latino (Dominican), Latino (Salvadoran), Latino (Colombian), and Portuguese. Ethnicity of 867 

Asian includes Vietnamese, Thai, Asian Indian, middle Eastern, Korean, Chinese, Filipino, 868 

Cambodian, Japanese, Asian other. White includes Eastern European, Brazilian, Russian, and 869 

other European. Ethnicity of Other includes Unknown, not specified, multi race, patient declined 870 

to answer, and unable to obtain. s.d.: Standard deviation in short. IQR: interquartile range in 871 

short. 872 

Table 3. Comparison of model performance (mean values across five-fold validation results) in 873 

eICU internal validation. Abbreviations: AUC: area under the ROC curve. L2 stands for Ridge 874 

regularization. 875 

Table 4. Comparison of model performance (mean values across five-fold validation results) in 876 

MIMIC-III cohort for external validation. Abbreviations: AUC: area under the ROC curve. L2 877 

stands for Ridge regularization. 878 
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Table 5. Secondary outcomes of eICU and MIMIC-III databases. s.d.: standard deviation in short. 879 

IQR: interquartile range in short. *P-value is derived according to alternative hypothesis: true 880 

Spearman � is not equal to 0 when comparing the variable with the onset of AKI. 881 

Table 6. Pairwise paired t-test comparison among the five-fold cross-validation AUC results over 882 

four different time-series models. 883 

Table S1. eICU and MIMIC-III databases exclusion criteria. 884 

Table S2. Most commonly missing features according to all timestamps in eICU database. Total 885 

missing count was the count of total missing occurrence of the associated feature. Missing ratio 886 

was the ratio of missing observations to the entire observations (427,527 timestamps in total). All 887 

abbreviations are referred to eICU and MIMIC-III databases. Features with high missing ratio 888 

were dropped. 889 

Table S3. Comparison of other performance metrics (mean values across five-fold validation 890 

results) on eICU internal validation. Abbreviations: NPV: negative predictive value. L2 stands 891 

for Ridge regularization. 892 

Table S4. Comparison of other performance metrics (mean values across five-fold validation 893 

results) on MIMIC-III cohort for external validation. Abbreviations: NPV: negative predictive 894 

value. L2 stands for Ridge regularization. 895 
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