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Abstract

Human Phenotype Ontology (HPO)-based analysis has become standard for genomic diagnos-
tics of rare diseases. Current algorithms use a variety of semantic and statistical approaches to
prioritize the typically long lists of genes with candidate pathogenic variants. These algorithms
do not provide robust estimates of the strength of the predictions beyond the placement in a
ranked list, nor do they provide measures of how much any individual phenotypic observation has
contributed to the prioritization result. However, given that the overall success rate of genomic
diagnostics is only around 25–50% or less in many cohorts, a good ranking cannot be taken to
imply that the gene or disease at rank one is necessarily a good candidate. Likelihood ratios (LR)
are statistics for summarizing diagnostic accuracy, providing a measure of how much more (or
less) a patient with a disease has a particular test result compared to patients without the disease.
Here, we present an approach to genomic diagnostics that exploits the LR framework to provide
an estimate of (1) the posttest probability of candidate diagnoses; (2) the LR for each observed
HPO phenotype, and (3) the predicted pathogenicity of observed genotypes. LIkelihood Ratio
Interpretation of Clinical AbnormaLities (LIRICAL) placed the correct diagnosis within the first
three ranks in 92.9% of 384 cases reports comprising 262 Mendelian diseases, with the correct
diagnosis having a mean posttest probability of 67.3%. Simulations show that LIRICAL is robust
to many typically encountered forms of genomic and phenomic noise. In summary, LIRICAL
provides accurate, clinically interpretable results for phenotype-driven genomic diagnostics.

Phenotype-driven prioritization of candidate genes and diseases is a well-established approach to-
wards genomic diagnostics in rare disease.1–12 Most current approaches use the Human Phenotype
Ontology (HPO) for annotating the set of phenotypic abnormalities observed in the individual being
investigated by exome or genome sequencing (WES/WGS). The HPO contains 14,813 terms arranged
as a directed acyclic graph in which edges represent subclass relations; 13,182 of these terms repre-
sent phenotypic abnormalities. For instance, Abnormal renal cortex morphology (HP:0011035) is a
subclass of Abnormal renal morphology (HP:0012210). The HPO project additionally provides com-
putational disease models of 7623 rare diseases that are constructed from HPO terms and metadata
that define the diseases based on the phenotypic abnormalities that characterize them, their modes
of inheritance, and in many cases the age of onset of diseases or phenotypic features and the overall
frequencies of features in a disease.13 For instance, Meckel syndrome type 7 is characterized by Patent
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ductus arteriosus (HP:0001643) with a frequency of two of seven patients and Antenatal onset

(HP:0030674).14

WES/WGS typically reveals tens or hundreds of variants that are predicted to be deleterious
by common computational frameworks, and therefore the analysis of such data generally requires
some additional criterion to prioritize genes.15 Phenotypic approaches leverage the proband’s observed
phenotypic abnormalities to assess candidate diseases by searching diseases with similar phenotypic
abnormalities that are associated with genes that harbor a predicted pathogenic variant.16 However,
current algorithms for phenotype-driven genomic diagnostics have a number of shortcomings that
represent impediments to the successful implementation of genomic testing outside of specialist centers.

All current approaches that we are aware of present their results as an ordered list of candidate
genes or diseases. The overall sucess rate of genomic diagnostics depends on the cohort and the NGS
technique, but the overall rate is still hovering at about 40% for a wide range of conditions.17–20 There-
fore, one must expect that, in many cases, the top-ranked gene is actually not a good candidate. Also,
existing approaches do not provide a framework for deciding how many candidates in the ranked list
are worthy of detailed examination. Therefore, it would be desirable to provide a transparent measure
of how good the top predictions are, and why. Such an approach could reduce the number of candidates
that busy diagnostic labs have to review. Finally, current approaches do not provide information about
how much individual phenotypic features contribute to the computational prediction. For clinical use,
approaches that allow users to understand the reasons for the computational predictions are preferable
to black-box algorithms and better support clinical decision making.21

Results

In this work, we present an approach that addresses the aforementioned shortcomings by applying the
likelihood ratio (LR) framework to phenotype-driven genomic diagnostics. The LR is defined as the
probability of a given test result in an individual with the target disorder divided by the probability of
that same result in an individual without the target disorder. The LR framework allows multiple test
results to be combined by multiplying the individual ratios, and also relates the pretest probability to
the posttest probability in a way that can be used to guide clinical decision making.22–24

The LIRICAL algorithm

We define a LR-based model of the clinical examination of a patient being investigated for a suspected
but unknown Mendelian disorder as follows. Each recorded phenotypic observation is defined as a
clinical test. The probability of a person with disease D having a phenotypic abnormality encoded by
HPO term hi, denoted as fDi , is taken to be the frequency with which the abnormality is observed
in affected individuals as recorded in the computational disease models of the HPO project based
on literature biocuration (a default value of 100% is used if specific frequency information is not
available). For many diseases and features, an overall frequency of the feature is known; for instance,
19/437 persons (∼ 4%) with neurofibromatosis type 1 have seizures.25 On the other hand, 338/442
individuals (∼ 87%) with this disease have multiple café-au-lait spots.26 In our algorithm fDi represents
the numerator of the LR.

The denominator of the LR is the probability of the phenotypic feature if the proband does not
have the disease (D) in question. It would be difficult to calculate this for each of the 13,182 phenotypic
abnormalities of the HPO in the general population, but we note that a tractable and realistic model
for our purposes is that any proband being investigated by genomic diagnostics has some genetic
disease. We can therefore calculate the denominator of the LR by means of the overall prevalence of
HPO feature hi in genetic diseases other than D. For instance, if D and 13 of the 7622 other diseases
in the HPO database are characterized by feature hi and we assume an equal pretest probability for all
diseases, then the probability of the proband having feature hi if the proband is not affected by disease
D is the sum of the frequencies of hi in the 13 diseases divided by 7622 (See the Online Methods

2

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 28, 2020. ; https://doi.org/10.1101/2020.01.25.19014803doi: medRxiv preprint 

https://doi.org/10.1101/2020.01.25.19014803
http://creativecommons.org/licenses/by-nc/4.0/


for a detailed description of the algorithm).
Our algorithm takes as input a VCF file with genetic variants identified in an exome, genome,

or gene panel experiment as well as a list of HPO terms that describe the phenotypic abnormalities
observed in the proband. The algorithm returns a ranked list of candidate diagnoses each of which is
assigned a posttest probability. Each of the HPO terms is conceived of as a diagnostic test, and a LR
is calculated for each term representing the probability that a proband has the term in question if the
proband has the candidate disease divided by the probability of the proband having the term if the
proband does not have the candidate disease.

The current version of the HPO database comprises 7623 diseases, of which 5192 are associated
with at least one gene (total disease-associated genes: 4025), and 2431 diseases are not associated
with a gene. In contrast to previous approaches to phenotype-driven genomic diagnostics,1;2;27 our
approach includes diseases with no known associated disease gene in the differential. However, if a
disease gene is known, then the genotype of the proband is also used as a diagnostic test in the LR
framework. The LR is calculated for the observed genotype of the gene based on our expectation of
observing one or two causative alleles according to the mode of inheritance of the disease and also
the probability of observing called pathogenic variants in the gene in the general population. The
individual LRs are multiplied to obtain a composite LR, which, together with the pretest probability
of each disease, is used to calculate the posttest probability in order to rank the diseases.

LIRICAL supports clinical interpretation with estimates of post-test prob-
ability and per-phenotype likelihood ratios

Fig. 1 illustrates our approach for a published proband with five characteristic features of Ataxia-
pancytopenia syndrome (ATXPC; OMIM:159550): Dysmetria, Babinski sign, Cerebellar atrophy,
Dysarthria, and Ataxia.28 We additionally added the HPO term High myopia to simulate an unre-
lated (false-positive) finding that is not related to the underlying Mendelian disease. Exome sequencing
was simulated in this example case by spiking a heterozygous variant in the causative gene for ATXPC,
SAMD9L, into an otherwise “normal” VCF file. LIRICAL was then run on the combined phenotype
and genotype data, and ranked ATXPC first out of the 7623 diseases in the HPO database. The
graphical display of the results shown in Figure 1a indicates how much each feature contributed to the
prediction. Figure 1b shows the second highest ranking candidate, Spinocerebellar ataxia, autosomal
recessive 7 (SCAR7). SACR7 matches four of the five phentypic features that APS does. It scores
lower because the match to the term Dysmetria was exact for ATXPC but in SPAR7 the closest match
to Dysmetria was Ataxia, resulting in a lower LR (the HTML output of LIRICAL allows the user to
browse the matching and approximate terms and their LRs by tool tips that appear when mousing
over the bars that display the LR). The third candidate, Oculodental dysplasia (OMIM:164200) has
two additional mismatching HPO terms, Babinski sign and Cerebellar atrophy, and is assigned
a posttest probability of under 0.1%. LIRICAL thereby provides users both with an assessment of
the degree to which any given phenotypic feature supports a diagnosis or argues against it, as well
as an estimated posttest probability of the candidate diagnosis on the basis of the information pro-
vided. Users can remove terms deemed irrelevant (e.g., High myopia) and rerun the analysis. They
can choose to concentrate detailed follow-up on candidate diagnoses with a high posttest probability.

LIRICAL achieves state of art performance and is robust to phenotypic and
genotypic noise

We evaluated the performance of LIRICAL using several different approaches. Many previous studies
simulated cases by choosing a certain number of HPO terms at random to simulate a patient (e.g.,
choosing 5 terms at random from the 56 terms that annotate Marfan syndrome in the HPO database).
Phenotypic noise is simulated by adding a certain number of HPO terms at random from all available
annotations (“noise terms”). In some cases, imprecision of clinical data entry is simulated by replacing
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Figure 1: LIRICAL evaluation of simulated case of Ataxia-pancytopenia syndrome
(ATXPC) For each candidate diagnosis with an above-threshold posttest probability, LIRICAL shows
the contribution of each phenotypic feature and of the genotype to the final diagnosis. In this case, the
data were extracted from a published case report on an individual with ATXPC,28 and an additional
unrelated term (High myopia was added to simulate the effect of noise. (a) LIRICAL provides a
table of the top candidates with the posttest probability and a sparkline view of the contributions of
each HPO term and the relevant genotype. (b) The observed HPO terms. (c) The correct diagnosis,
ATXPC, is ranked in first place because of a good phenotype match and a positive LR for the het-
erozygous genotype for the causative gene SAMD9L. (d) The second candidate has many of the same
phenotype matches, but the first query term Dysmetria matches exactly with Ataxia-pancytopenia
syndrome and only approximately with the second candidate, spinocerebelllar ataxia, autosomal reces-
sive 7. (e) The third candidate has a posttest probability close to zero because it has more mismatching
or poorly matching query terms.

4

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 28, 2020. ; https://doi.org/10.1101/2020.01.25.19014803doi: medRxiv preprint 

https://doi.org/10.1101/2020.01.25.19014803
http://creativecommons.org/licenses/by-nc/4.0/


Cases
total 384

Diseases
Median # cases per disease 1
Maximum # cases per disease 19
Autosomal recessive diseases 203
Autosomal dominant diseases 128
X chromosomal diseases 10
Multiple modes of inheritance 43
total 262

Disease genes
total 259

HPO terms
total over all cases 1687
Mean # HPO terms per case 11.1 (median 9)
Mean # negated HPO terms per case 2.71 (median 0)

Table 1: Phenopackets used for evaluating the performance of LIRICAL. 384 phenopackets each de-
scribing a single published case report were derived from the literature by manual biocuration. See
Supplemental Table S1 for details. Multiple modes of inheritance means that more than one mode has
been described for the disease in question, e.g. inherited cataract associated with variants in PITX3
can be inherited in an autosomal dominant or recessive fashion.

the randomly chosen disease terms by parent terms. If studies simulate genomic analysis, then addi-
tionally a published disease-associated variant would be spiked into an otherwise normal VCF file.29–32

However, this kind of simulation can be criticized because randomly chosen terms are unlikely to re-
semble terms that would be chosen in a real clinical encounter. In a real clinical encounter, the clinician
may or may not be able to describe phenotypic abnormalities with the greatest possible detail. For
instance, a general practicioner may diagnose reduced visual acuity, but the precise abnormality, say
Y-shaped cataract, may only be observable by an ophthalmologist. Therefore, in real life situations,
the different aspects of the phenotype of a patient may have been observed, recorded, or communicated
at different levels of detail.

Our basic approach for this study was therefore to extract HPO terms and disease-causing variants
from published case reports and to perform simulations with the original data as well as simulations
in which varying types of phenotypic or genotypic noise were added. We tested the performance of
LIRICAL using a collection of 384 case reports derived from the literature and curated using the
GA4GH phenopacket format (Table 1). LIRICAL can be run with or without genetic data, and so we
first compared it to Phenomizer, which exploits semantic similarity between query terms and diseases
on the basis of clinical (but not genetic) data.29 LIRICAL placed a total of 43.7% of cases in the top
3 ranks compared to 35.3% for Phenomizer (Supplemental Figure S2).

We then compared LIRICAL to Exomiser, which has shown state of art performance against other
algorithms.31 Exomiser currently ranks disease genes (combining all diseases associated with any given
gene), and so for this comparison we recorded LIRICAL’s rank by gene. LIRICAL placed the correct
gene in the first ranks in 80.7% of cases, compared to 77.3% for Exomiser. The percentages for placing
the correct gene in the top 3 ranks were 92.9% for LIRICAL and 92.2% for Exomiser (Fig. 2b).

Diagnostic Next-Generation Sequencing (dNGS) data including exome, genome, and gene-panel
investigations can be affected by many different kinds of noise.15 The disease-causing variant may be
missed, or in autosomal recessive conditions one of the two pathogenic alleles may fail to be detected.
Phenotypic features unrelated to the Mendelian disease may be included in the analysis. On the
other hand, phenotypic features associated with the disease may be observed or described imprecisely.
LIRICAL was designed with a number of features that can help mitigate these kinds of noise.
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We first compared the performance of both approaches in the presence of phenotypic noise Fig. 2a
explains the obfuscations). Fig. 2e shows the performance if two random HPO terms are added to each
case to simulate noise. Fig. 2f shows the effect of additionally replacing each of the original HPO terms
with a parent term, and Fig. 2g shows the effect of additionally replacing each original term with a
grandparent term. The latter two experiments simulate the effect of two different degrees of imprecision
in the description of the clinical data (e.g., not entering a term such as Zonular cataract but instead
entering its parent term Cataract or even grandparent term Abnormality of the lens). It can
be seen that LIRICAL’s performance is better than Exomiser’s on this dataset and that LIRICAL’s
performance degrades less in the presence of noise.

LIRICAL’s genotype LR does not apply a hard filter to candidates whose genotype does not match
the expected genotype for some disease. In exome and genome sequencing, structural variants and
point variants in GC rich exons may be missed, which can lead to only one of two pathogenic alleles
being detected for an autosomal recessive disease. LIRICAL will rate such a genotype less highly than
a pathogenic biallelic genotype, but will not filter out such candidates (Supplemental Figure S9).We
therefore compared the performance of LIRICAL and Exomiser on the 221 autosomal recessive cases
in our dataset. LIRICAL placed the correct candidate in first place in 84.6% of cases compared to
71.0% for Exomiser. If one of the two pathogenic alleles is removed, LIRICAL still placed the correct
gene in first place in 62.0% of cases, compared to only 20.1% for Exomiser (Fig. 2c–d).
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Figure 2: Evaluation of LIRICAL and Exomiser on 384 case studies. The case studies were
formated as Phenopackets (Table 1) and the diagnostic process was simulated by spiking disease-
causing variants into a VCF file, which was passed together with phenotype data to LIRICAL and
Exomiser. (a) Simulation approach. Random noise terms were added to some simulations, and in
some cases, terms were replaced by their parent term or grandparent term to mimic imprecision in
measuring or recording phenotypic abnormalities. (b)–(g) Results of simulations are shown with the
X axis showing the rank assigned by LIRICAL or Exomiser to the correct disease gene, and the Y
axis showing the percentage of cases in which the given rank was achieved. (b) Original data; (c)
Performance on the subset of 221 autosomal recessive cases; (d) The same 221 autosomal recessive
cases in which one of the two pathogenic alleles was removed. (e) Two random (“noise”) HPO terms
are added to each case; (f) Original terms are replaced by a parent term and two noise terms are
added; (g) Original terms are replaced by a grandparent term and two noise terms are added.
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Figure 3: (a) The posttest probability of the correct diagnosis was calculated for each of the 384
phenopacket case reports (Original). Densities are shown for the original data (original; mean
posttest probability, pp, 67.4%), noise2**: two random HPO terms were added and original terms
were replaced by grandparent terms (mean pp: 50.3%), and random: All HPO terms were replaced
by random terms (mean pp: 2.9%). Supplemental Figure S6 shows results for other perturbations.
(b) Performance of LIRICAL and Exomiser on 116 solved singleton cases from the 100,000 Genomes
project. The X axis shows the rank assigned by LIRICAL or Exomiser to the correct disease gene.
The Y axis shows the percentage of cases in which the given rank was achieved.

LIRICAL ranked 259 of 384 (67.4%) cases at a posttest probability above 0.5, and 287 cases (74.7%)
were above a posttest probability of 0.05. The overall rankings as well as the posttest probability were
robust to the addition of noise, deteriorating only slightly when two random terms were added per
case, somewhat more if terms were replaced by more general parent or even more general grandparent
terms, and falling to a mean of only 29.4% if all pathogenic alleles were omitted, and to 2.9% if all HPO
terms were replaced by random terms (Fig. 3a). This suggests that LIRICAL assigns substantially
mean lower posttest probabilities to candidates diseases for which by chance an apparently pathogenic
variant is identified by dNGS but where there is no clinical match.

Finally, we examined 116 solved singleton cases from the 100,000 Genomes Project. All cases were
singletons with single-sample VCF files available. The diagnoses came from 89 different genes across
a wide spectrum of rare disease areas (cardiovascular, ciliopathies, dermatological, dysmorphic and
congenital abnormalities, endocrine, hearing and ear, metabolic, neurology and neurodevelopmental,
ophthalmological, renal and urinary tract, rheumatological, skeletal, tumor syndromes). LIRICAL
placed the correct gene in first place in 60.3% of cases, compared to 64.6% for Exomiser, and placed
the correct gene in the top 5 ranks in 88.8% compared to 87.1% for Exomiser (Fig. 3b). This is an
impressive outcome, considering that there may be a performance bias from Exomiser already being
part of the 100,000 Genomes Projects diagnostic pipeline.

Prioritization of genes associated with multiple diseases

Many Mendelian-disease related genes are associated with more than one disease (for instance, mu-
tations in FBN1 are associated with both Marfan syndrome and geleophysic dysplasia). In contrast
to Exomiser, LIRICAL ranks diseases rather than genes (for an example, see Fig. 4). The by-disease
ranking results for LIRICAL for the data in Fig. 2B are shown in Supplemental Fig. S3.
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Figure 4: LIRICAL evaluation of simulated case with a pathogenic FBN1 variant Eight
distinct diseases are associated with variants in the FBN1 gene. LIRICAL prioritizes each disease sep-
arately, and in this case correctly placed Marfan syndrome at rank #1. Three other FBN1 -associated
diseases were placed in ranks 2–4. Clinical and molecular data were simulated according to patient
1 in Cao et al.33. The HPO terms are shown in panel (b). The graphic shows LIRICAL’s summary
table and three of the detailed LR plots for the candidates at ranks #1 (c), #3 (d), and #5 (e).

Incorporation of ClinVar data and analysis of excluded phenotypic abnor-
malities

LIRICAL uses several heuristic algorithms to account for some challenges in the prioritization of
genomic data. For instance, genes such as TTN have a high population frequency of variants predicted
computationally to be pathogenic that are found in apparently healthy individuals. On the other
hand, specific TTN variants are listed as pathogenic in ClinVar.34 There is currently no approach
that always correctly interprets pathogenicity of variants in such genes. In such cases, LIRICAL takes
the approach of downweighting rare, predicted pathogenic variants without support in ClinVar, but
heuristically assigns variants listed as pathogenic in ClinVar a LR score of 1000. In a simulated case
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of TTN-related dilated cardiomyopathy, LIRICAL correctly ranks a known pathogenic variant in first
place but ranks a rare variant that is computationally predicted to be pathogenic but is listed in
ClinVar as uncertain only in eigth place (Supplemental Fig. S12).

In clinical practice, the differential diagnostic process can occasionally be empowered by identifying
phenotypic abnormalities that a patient does not have. In medical genetics, many diseases share a
number of phenotypic features but differ with respect to one characteristic feature which presents in
one disease but never presents in others. Such a feature can be very important for the differential
diagnosis. For instance, Loeys-Dietz syndrome 4 is not characterized by Ectopia lentis, while the
phenotypically similar disease Marfan syndrome is35. LIRICAL uses a heuristic to downweight can-
didate diagnoses by a factor of 1000 if the candidate is explicitly annotated not to have a feature
present in the query terms. 10 of the 380 phenopackets have excluded query terms (e.g., the individual
does not have some HPO term) that support one candidate diagnosis (column 1 in Supplemental Ta-
ble S3) but speak against another (column 2 in the table). In all cases, the correct diagnosis using the
negated annotations was 1, with the mean posttest probability of 98.9%. If the negated query term
was omitted, the average rank was 1.3, and the mean posttest probability was 72.6% (Supplemental
Fig. S5). Supplemental Figure S10 shows an example of a differential diagnosis in which the omission
of a negated term reduces the posttest probability of the correct diagnosis from 92.4% to 1.2% and
changes the rank of the candidate from 1 to 2. To our knowledge, LIRICAL is the only HPO-based
algorithm for genomic diagnostics that leverages information about excluded phenotypes in this way.

Simultaneous analysis of molecularly elucidated and idiopathic diseases

Another feature of LIRICAL is a mode (--global) that ranks all candidates including diseases whose
molecular etiology is unknown as well as diseases with a known associated gene in which no pathogenic
variants were identified. This is a harder prediction problem because there are more candidate dis-
eases, but it can prioritize diseases that would be missed by conventional approaches. For example,
Arima syndrome is an autosomal recessive disease with no known disease-associated gene. LIRICAL
prioritized it in first place in a simulated run, in which some clinically similar diseases such as Joubert
syndrome failed to achieve a good score (Supplemental Fig. S11). LIRICAL placed the correct diag-
nosis in first place in 24.5% of cases compared to 1.0% for Exomiser, and placed the correct candidate
in the top three ranks in 38.2% (1.0% for Exomiser). Overall, LIRICAL placed the correct candidate
in the top ten ranks in roughly half of the cases (Supplemental Fig. S4).
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Discussion

Clinical decision support systems and genomic diagnostics have rapidly been gaining importance in
recent years. The interpretability of computational predictions is of utmost importance in clinical
settings for clinicians to efficiently and correctly integrate computational analyses into medical work-
flows, and even accurate black-box algorithms may not be appropriate in clinical settings.21;36;37 The
LIRICAL algorithm presented here adapts the LR framework that is widely used in the interpretation
of clinical laboratory results.22;38;39 To the best of our knowledge, the LR framework has not previ-
ously been used to support phenotype-driven genomic diagnostics. LIRICAL provides predictions of
rare-disease diagnoses whose accuracy at par with that of previous state-of-art approaches such as Ex-
omiser.27 LIRICAL exhibits substantially better performance in the face of phenotypic and genotypic
noise. Additionally, provides an estimated posttest probability of each candidate diagnosis and allows
clinicians to evaluate the contribution of each individual phenotypic abnormality to each candidate
diagnosis.

A LR indicates how many times more or less likely patients with the disease are to have that
particular result than patients without the disease. A LR greater than 1 indicates that the result of
the test is associated with the presence of the disease being investigated, while a LR less than one
indicates the absence of the disease. The more the value of the LR deviates from 1, the stronger
the evidence is for the presence or absence of disease.24 In practice, the posttest probability can be
used as an estimate of the quality of any diagnosis. The mean posttest probability estimated for the
candidate at rank one for randomized data was close to zero, while the posttest probability of the
correct diagnosis was about 67% for the case reports (Fig. 3). In some cases, however, the correct
candidate was placed at rank one but received a low posttest probability. Future improvements in
the quality and comprehensiveness of HPO annotations as well as in the computational assessment of
variants may lead to improved ability of LIRICAL to estimate posttest probabilities.

LIRICAL can analyze an exome in less than a minute on a typical laptop computer. We identified
14 other tools for phenotype driven analysis of diagnostic exome or genome data. None of these tools
was both up to date and available for executation on the command line, which would have enabled
testing of the total of 1978 original or obfuscated cases from the phenopackets and the 116 GEL cases
(Supplemental Table S2).

In addition to having a performance that is comparable to that of other state of art tools such
as Exomiser, LIRICAL provides users with interpretable results that can be used to guide clinical
actions. For instance, large-scale disease sequencing projects such as the 100,000 Genomes Project
often have hundreds or thousands of unsolved cases. LIRICAL can be run on collections of unsolved
cases, and the posttest probability of the highest ranked candidates could be used as a critierion to
decide whether to subject a case to detailed reanalysis.

LIRICAL’s assessment of the contribution of individual phenotypic abnormalities can also be useful
in many ways. For instance, in practice, patients with genetic diseases may present with a mix of signs
and symptoms that are related both to an underlying Mendelian disorder and also may have unrelated
(coincidental) findings. If a core set of phenotypes and a genotype strongly support a candidate
diagnosis but some features do not, clinicians may consider whether alternate explanations for the non-
contributory features are plausible according to their clinical judgment. For instance, features such as
Myopia, Scoliosis, and Gastroesophageal reflux are relatively common in the general population and
may therefore occur in persons with genetic disease as coincidental findings. Clinical judgment would
be necessary to evaluate each term. For instance, myopia (short-sightedness) is relatively common in
young adults, but the presence of high myopia in a toddler is more likely to be a clinical finding that
is important for the differential diagnostic workup.

LIRICAL takes as input a list of HPO terms and can be run with or without an associated VCF file
with genetic variants. The Java implementation of LIRICAL presented here assumes an equal pretest
probability for each of the diseases under consideration (e.g., 1

7596 for the 7596 diseases currently
represented in the HPO database). This is a reasonable approach to the analysis of Exomes in a
setting such as the 100,000 Genomes Project where we speculate that rarer genetic diseases are more
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likely to be analyzed than common, more easily recognized genetic diseases. However, in other settings
LIRICAL could be used with other values for the pretest probability. For instance in general care
settings, the rare-disease prevalence data from Orphanet could be used.40

LIRICAL is implemented as a standalone Java desktop application that can be installed in less
than an hour. LIRICAL is freely available for academic use and source code can be downloaded from
https://github.com/TheJacksonLaboratory/LIRICAL.
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Methods

Data sources

The hp/releases/2019-09-06 version of the Hu-
man Phenotype Ontology (hp.obo) was used
for the analysis described here (http://purl.
obolibrary.org/obo/hp.obo). HPO anno-
tations (HPOA) were downloaded on Octo-
ber 16, 2019 from http://compbio.charite.

de/jenkins/job/hpo.annotations.current/

lastSuccessfulBuild/artifact/misc_2018/

phenotype.hpoa.

Likelihood ratio

The likelihood ratio (LR) is defined as the prob-
ability of a given test result (x) in a patient with
a target disorder D divided by the probability of
that same result in a person without the target
disorder (¬D):

LR(x) =
Pr(x|D)

Pr(x|¬D)
, (1)

Pr(x|D) is the sensitivity (true positive rate) of the
test, i.e., the proportion of individuals with disease
D who are correctly identified. The specificity or
true negative rate is the proportion of individu-
als without disease D who are correctly identified
as unaffected, i.e., Pr(¬x|¬D). Therefore, the LR
can be expressed as

LR(x) =
sensitivity

1− specificity
. (2)

The definition of the LR can be extended to
multiple tests.22 Suppose X = (x1, x2, · · · , xn) is
an array of n test results. Under the assumption
that the tests are independent, LR(X) is defined
as:

Pr(X|D)

Pr(X|¬D)
=

Pr(x1, x2, · · · , xn|D)

Pr(x1, x2, · · · , xn|¬D)

=
n∏
i=1

Pr(xi|D)

Pr(xi|¬D)
.

The posttest probability refers to the probabil-
ity that the patient has a disease given the infor-
mation from test results X and the pretest proba-
bility of the disease. The posttest probability can
be calculated as

Pr(D|X) =
pLR(X)

(1− p) + pLR(X)
, (3)

where p is the pretest probability of D. Depend-
ing on the cohort, the pretest probability can be
defined as the population prevalence of the disease
or by some other estimate of the frequency of the
disease in the cohort being tested.

Likelihood ratio for phenotypes

The signs and symptoms and other phenotypic ab-
normalities of probands being investigated by this
approach are represented using terms of the Hu-
man Phenotype Ontology (HPO), which provides
a structured, comprehensive and well-defined set
of 14,813 classes (i.e., terms; September 2019 re-
lease) describing human phenotypic abnormali-
ties13;41–43. We model the clinical encounter that
results in a set of n phenotypic observations en-
coded as HPO terms h1, h2, . . . , hn. The LR of
each phenotype term with respect to a specific dis-
ease D is defined as:

LR(hi) =
Pr(hi|D)

Pr(hi|¬D)
. (4)

We assume that the tests are independent and the
LR of the n HP terms are obtained from the prod-
uct of the individual ratios.

The probability of having phenotypic ab-
normality hi given a disease D

We first explain how we define the numerator of
equation (4) based on the relationship of term hi
to the set of phenotype terms to which disease D
is annotated (Supplemental Figure S1). We dis-
tinguish four cases.

(i) hi is identical to one of the terms to
which D is annotated. In this case, we define
Pr(hi|D) = fDi , that is, the frequency of the phe-
notypic feature hi amongst individuals with dis-
ease D. For instance, if the disease model for D is
based on a study in which 7 of 10 persons with D
had hi, then fDi = 0.7. If no information is avail-
able about the frequency of hi, then by default we
define fDi = 1.

(ii) hi is an ancestor of one or more of the
terms to which D is annotated. Because of
the annotation propagation rule of subclass hier-
archies in ontologies44, D is implicitly annotated
to all of the ancestors of the set of annotating
terms. For instance, if the computational disease
model of some disease D includes the HPO term
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Polar cataract (HP:0010696) then the disease is
implicitly annotated to the parent term Cataract

(HP:0000518) (to see this, consider that any per-
son with a polar cataract can also be said to have
a cataract). By extension, this is also true of more
distant descendants of the term. We therefore de-
fine the probability of a term hi (e.g., Cataract)
that is an ancestor of any term hj (e.g., Polar

cataract) that explicitly annotates disease D as

Pr(hi|D) = max
j

such that
hi∈anc(hj)

∧
hj∈annot(D)

fDj , (5)

where anc(hj) is a function that returns the set of
all ancestors of term hj and annot(D) is a func-
tion that returns the set of all HPO terms that
explicitly annotate disease D. In words, the prob-
ability of hi in disease D is equal to the maximum
frequency of any of the descendants of hi that di-
rectly annotate disease D .

(iii) hi is a child term of one or more of the
terms to which D is annotated. In this case,
hi is a descendant (i.e., specific subclass of) some
term hj of D. For instance, disease D might be an-
notated to Syncope (HP:0001279), and the query
term hi is Orthostatic syncope (HP:0012670),
which is a child term of Syncope. In addi-
tion, Syncope has two other child terms, Carotid
sinus syncope (HP:0012669) and Vasovagal

syncope (HP:0012668). According to our model,
we will weight the frequency of Syncope in dis-
ease D (say, 0.72) by 1

|child(hj)| , where child(hj) is

the set of child terms of hj (so in our example,
we would use the frequency 0.72 × 1/3 = 0.24).
In our implementation, only the direct children of
a disease-associated term hj are considered. The
maximum LR is taken across all disease-associated
terms.

Pr(hi|D) =
1

|child(hj)|
· max

j
such that

hi∈child(hj)
∧

hj∈annot(D)

fDj , (6)

where child(hj) refers to the set of direct descen-
dants (child terms) of HPO term hj .

(iv) hi and some term to which D is an-
notated have a non-root common ancestor.

In this case, hi is not a child term of any disease
term hj and no disease term hj is a descendant of
hi.

If this is the case, then we find the closest
common-ancestor (denoted hca in the following).
Noting that hca may have a zero or very small fre-
quency in disease D, we define the LR using the
following heuristic:

LR(hca) =
Pr(hca|D)

Pr(hca|¬D)

= max

(
1

100
,

fDca
Pr(hca|¬D)

)
Because the common ancestor is higher up in

the HPO hierarchy, the LR tends to be lower and
sometimes substantially lower for features with a
high frequency across the HPO corpus (with a cor-
responding low value for Pr(hca|¬D). Therefore,
in order to avoid a single term having an excessive
influence on the final result, the LR is taken to be
at least 1

100 ,

(v) hi does not have any non-root common
ancestor with any term to which D is anno-
tated. In this case, hi does not affect the same
organ system as any of the annotations of D. A
heuristic small value of 1

100 is assigned.

The probability of having a pheno-
typic abnormality hi that is explicitly
excluded from disease D
In the HPO annotation resource, each disease is
represented by a list of HPO terms that charac-
terize it together with metadata including prove-
nance, and in some cases, frequency and onset in-
formation13. Some diseases additionally have ex-
plicitly excluded terms (there are a total of 921
such annotations in the September 2019 release of
the HPOA data). These annotations are used for
phenotypic abnormalities that are important for
the differential diagnosis. For instance, Marfan
syndrome and Loeys-Dietz syndrome share many
phenotypic abnormalities35. The feature Ectopia

lentis (HP:0001083) is characteristic of Marfan
syndrome but is not found in Loeys-Dietz syn-
drome45. The LR for such query terms is assigned
an arbitrary value of 1

1000 , i.e., the ratio for a can-
didate diagnosis is reduced by a factor of one thou-
sand if an HPO term is present in the proband that
is explicitly excluded from the disease.
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On the other hand, if the query includes a
negated term that is explicitly excluded in the dis-
ease, then the opposite value is assigned, i.e., the
ratio for a candidate diagnosis is increased by a
factor of one thousand if an HPO term is present
in the proband that is explicitly excluded from the
disease.

The probability of having phenotypic ab-
normality hi if disease D is not present

The denominator of equation (4) specifies the
probability of the test result given that the
proband does not have some diseaseD. This would
be difficult to calculate for the general popula-
tion for the same reasons as those described above.
However, we can estimate this probability if we as-
sume that all persons being tested have some (un-
known) Mendelian disorder by simply summing
over the overall frequency of a feature in the entire
HPO corpus (with N diseases).

Pr(hi|¬Dj) =
1

(N − 1)

∑
k 6=j

Pr(hi|Dk)

=
1

(N − 1)

∑
k 6=j

fDk
i (7)

Equation (7) would need to be calculated sep-
arately for each of the N diseases, but noting that
we are summing over a relatively large number of
diseases (7623 in September, 2019) in the complete
HPO database of rare diseases, we use the follow-
ing approximation that allows us to precalculate
Pr(hi|¬Dj) for an arbitrary disease Dj .

Pr(hi|¬Dj) =
1

(N − 1)

∑
k 6=j

fDk
i

≈ 1

N

N∑
k=1

fDk
i (8)

Likelihood ratio for genotypes

Our model of predicting the relevance of any given
genotype makes use of the following concepts.
There is a true but unobservable pathogenicity,
defined as a deleterious effect of a genetic vari-
ant on the biochemical function of a gene and the
gene product it encodes that leads to disease. We
can estimate the pathogenicity of a variant on the

basis of a computational pathogenicity score that
ranges from 0 (predicted benign) to 1 (maximum
pathogenicity prediction). Our model posits two
distributions that allow us to calculate the like-
lihoods of an observed genotype given that the
sequenced individual has the disease (D) as com-
pared to the situation in which the individual does
not have the disease in question and the variants
originate from population background (B). We
will use the pathogenicity score of the Exomiser,
which calculates a score for any variant in the cod-
ing exome or at the highly conserved dinucleotide
sequences at either end of introns27. We will use
the estimated population frequencies of variants
from the gnomAD46 resource, which is incorpo-
rated into the Exomiser database to calculate the
background distribution (version 12.1.0 was used
for the analysis reported here).

Our model depends on the assumed mode of in-
heritance of the disease; we will begin our explana-
tion with autosomal dominant (AD) diseases. We
are interested in the ratio of an observed geno-
type (G) given that it is disease-causing (i.e., the
sequenced individual has disease D) or not (i.e.,
the sequenced individual does not have disease D).
Assume we observe n variants (v1, v2, . . . , vn) in
gene g, and have calculated their pathogenicity
score as s(vi) for i ∈ {1, . . . , n}. For simplicity, we
will assume that the variants have been arranged
such that s(v1) ≥ s(v2) ≥ . . . ≥ s(vn).

We first note that 98.9% of the pathogenicity
scores of variants classified as pathogenic in Clin-
Var34 are assigned a pathogenicity score of 0.8 or
more by Exomiser (Supplemental Figure S7).
For the purposes of assessing and scoring candi-
date variants, we therefore divide the score distri-
bution into two bins N and P, with bin N repre-
senting the predicted non-pathogenic bin and hav-
ing a range of pathogenicity scores of [0, 0.8), and
bin P representing the predicted pathogenic bin
with pathogenicity scores of [0.8, 1]. Although in
reality there is no strict division in pathogenicity
scores between neutral and disease-causing vari-
ants, we will use the binning as a way of down-
weighting variants in genes that often show pre-
dicted pathogenic variants and tend to be fre-
quently found as false positives in exome sequenc-
ing results, such as many mucin and HLA genes47.

We model the expected counts of observed al-
leles in bin P as Poisson distributions, using sep-
arate distributions for the case that a variation in
a given gene is disease-causing or not. In this con-
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text, a Poisson distribution gives the probability
of observing k variants in a gene, based on a rate
parameter λ that represents the expected number
of variants.

Pr(k) = Pois(k;λ) = e−λ
λk

k!
(9)

For an autosomal dominant disease associated
with pathogenic variants in gene g, we expect
one heterozygous disease causing variant, and so
λDg = 1; for autosomal recessive diseases, λDg =
2. We can estimate the probability of observing a
variant in bin P in a gene g that is not related to
the disease based on the frequency of such variants
in the general population; we denote this proba-
bility as λBg . Different genes have different dis-
tributions of predicted pathogenic variants in the
general population. If a gene has a low frequency
of predicted-pathogenic variants in the general
population, then the observation of a predicted-
pathogenic variant in a diagnostic context may be
more likely to be a true-positive disease-causing
variant48. We calculate λBg for each gene g based
on available population frequency data from the
gnomAD46 resource by summing up the frequen-
cies of individual variants under the independence
assumption.

In detail, the frequency (if available)
of each variant is taken from each of
the following populations: African/African
American (GNOMAD_E_AFR), Admixed Amer-
ican (GNOMAD_E_AMR), Ashkenazi Jewish
(GNOMAD_E_ASJ), East Asian (GNOMAD_E_EAS),
Finnish (GNOMAD_E_FIN), Non-Finnish Eu-
ropean (GNOMAD_E_NFE), and South Asian
(GNOMAD_E_SAS). For the analysis reported here,
the average frequency in all populations is calcu-
lated. We note that this approach may overes-
timate the overall frequency of variants per ex-
ome/genome, but nonetheless we can use it as a
heuristic to downweight genes commonly found to
have predicted pathogenic variants in the popu-
lation (e.g., Supplemental Table S5), as we will
show below.

We denote the function that returns the pre-
dicted pathogenicity of a variant as path and the
function that returns the average population fre-
quency of a variant as freq. This parameter is
calculated separately for each gene. We represent
the fact that variant i is assigned to gene g as
vi ∈ g.

λBg =
∑

path(vi)∈P
∧

vi∈g

freq(vi) + ε (10)

The parameter λBg is thus the expected count
of variants in gene g whose pathogenicity score is
in bin P. A small number (ε = 10−5) is added
to the sum to avoid division by zero in subsequent
steps because some genes did not display any vari-
ants in bin P in the population data.

For a gene associated with an autosomal dom-
inant disease, the calculation proceeds as follows.
Assume we are evaluating disease D which is asso-
ciated with mutations in gene g and that there is
one predicted-pathogenic variant v′ in bin P and
there are k other predicted non-pathogenic vari-
ants in bin N . The model assumes that any vari-
ants in bin N are unrelated to the disease and
have the same probability whether or not gene g
is causally related to the disease. The genotype
observed for gene g is symbolized as gt(g).

LR(gt(g)) =
Pr(gt(g)|D)

Pr(gt(g)|¬D)

=
Pr(v′|D)

Pr(v′|¬D)
×
∏
i

vi 6=v′

Pr(vi)|¬D)

Pr(vi)|¬D)

=
Pr(v′|D)

Pr(v′|¬D)

We model the process by which a variant or
variants lead to disease by a compound distribu-
tion. A Poisson distribution models the number of
variants observed whose pathogenicity score is in
bin P, and a Bernoulli distribution with parameter
p = s(v′) determines the probability that the allele
is disease causing. Thus, let {Xn} be a sequence
of mutually independent random variables each of
which can take on the value of 0 (for not disease-
causing) or 1 (for disease-causing). The sum of N
such variables is SN = X1 + X2 + . . . + Xn, and
thus SN represents the count of truly pathogenic
alleles (we expect SN = 1 for autosomal dominant
and SN = 2 for autosomal recessive diseases).

This leads to the compound distribution:

Pr {Sn = k} = Binom(k;n, p)Pois(k;λ) (11)

It can be shown that this is equivalent to a Pois-
son distribution with parameter λp49. Therefore,
to calculate the LR, we substitute the parameters
λDg and λBg as well as p = s(vi).
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LR(g) =
Pr(v′|D)

Pr(v′|B)
=

Pois
(
1; pλDg

)
Pois (1; pλBg )

(12)

This will have the effect of favoring genes with
a single variant in bin P that has a maximal
pathogenicity score (p = s(v′) = 1) and that has
a minimal frequency of bin P variants in the pop-
ulation. If this is the case, then λBg = ε and we
can calculate the LR using equation (9):

LR(g) =
Pois(1; 1)

Pois(1; ε)
≈ 36788. (13)

The procedure for autosomal recessive diseases
is analogous, except that λDg = 2. In the case
that gene g is causative for the disease in the in-
dividual being sequenced, then we expect to find
two alleles (which will be identical in case of a
pathogenic homozygous variant and distinct in the
compound heterozygous case). The two alleles in
bin P with the highest pathogenicity score are cho-
sen for analysis. Let savg denote the mean of the
pathogenicity scores of the two variants observed
in gene g that have the two highest pathogenicity
scores, i.e., savg = 0.5 · (s(v1) + s(v2)). Then,

LR(gt(g)) =
Pr(v′|D)

Pr(v′|¬D)
=

Pois
(
2; savg · λDg

)
Pois (2; savg · λBg )

(14)
This will have the effect of favoring genes with

two pathogenic alleles (homozygous or compound
heterozygous) in bin P, which have a maximal
pathogenicity score (s(v′) = 1) and that has a min-
imal frequency of bin P variants in the population
(in this case, λBg = ε and LR(g) ≈ 3, 678, 831, 200,
but this value is not seen in practice).

Noting that in males, hemizygous variants on
the X chromosome are called as homozygous by
current variant-calling software, we set λDg = 2
for both recessive and dominant X-chromosomal
diseases.

Genotype likelihood ratio: Special
cases

(i) No variants at all found in gene g If
the molecular basis of a disease is known to be
mutations in a gene g, but no bin P variants or
no variants at all are found in that gene, then
a LR of 1/20 is assigned for autosomal domi-
nant diseases, reflecting an estimation that the

probability of missing a pathogenic variant if one
is present is about 5%. For autosomal reces-
sive diseases, we will estimate the probability at
0.05× 0.05 = 0.0025.

The intuition for this step is that some down-
weighting should be performed if no candidate
variant is found in a gene but given the pre-
sumed high prevalence of false-negative results in
exome/genome sequencing, it would not be desir-
able to radically downweight otherwise strong can-
didates.

(ii) Clinvar-pathogenic variant(s) found in
gene g ClinVar34 makes use of the American
College of Medical Genetics and Genomics and
the Association for Molecular Pathology standards
for the interpretation of a variant as pathogenic

(i.e., causative of a disease)50. Denote the count
of ClinVar pathogenic alleles as c. If c = 2 for
an autosomal recessive diseases, then a heuristic
LR of 10002 is assigned. If c = 1 for an autoso-
mal dominant disease, then a heuristic LR of 1000
is assigned. If the c does not match the count of
pathogenic alleles that would be expected for the
mode of inheritance, then a heuristic LR of 1000
is assigned.

This heuristic means that if a ClinVar
pathogenic variant is found even in a gene such
as TTN that is characterized by a high frequency
of predicted pathogenic variants in the population,
then this is taken as being supportive of a diagno-
sis associated with variants in the gene.

(ii) Heuristic for genes with many variants
Some genes commonly harbor variants in the gen-
eral population that are predicted as pathogenic
by bioinformatic software. LIRICAL uses the
background score to assess this. The background
score ranged from 0 to 20.7 (for MUC4). Numer-
ous disease-associated genes displayed scores over
1.0, including for example TTN with a score of
9.5. According to our model, it is not surpris-
ing to observe a predicted pathogenic variant in a
gene such as TTN, whether or not the gene is as-
sociated with the disease being investigated in any
particular case. LIRICAL downweights the LR for
genotypes in these genes if predicted pathogenic
variants are found in a VCF file, because such
variants are commonly encountered as false pos-
itive findings.15 It does so by limiting the value of
λBg to be at most the observed count of predicting
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pathogenic variants, cpath, in cases where λBg ≥ 1
(If the observed called-pathogenic variant count
is much higher, the probability calculated by the
Poisson distribution will be very low).

λBg = min(cpath, λ
B
g ).

For instance, if one predicted pathogenic vari-
ant is identified in TTN, this scheme would lead
to a LR of one – the observation of the predicted
pathogenic variant in this gene neither adds to nor
detracts from the probability of the differential di-
agnosis (we treat known disease-associated vari-
ants in ClinVar differently, see above).

--global setting for genotype likeli-
hood ratio

Our approach has two options for dealing with
genes in which no predicted pathogenic variants
are obeserved. With the default option, LIRICAL
will remove the genes and the diseases they are as-
sociated from further analysis. This may be most
appropriate if the goal of analysis is to demon-
strate the genetic etiology of a disease.

If the --global option is chosen, LIRICAL
ranks all diseases (including those with and with-
out known associated disease genes) according to
the posttest probability. In this case, if a disease
has no associated disease gene, the LR is calcu-
lated from the phenotype evidence alone. Our
procedure is designed to work whether or not ge-
netic evidence is available to support a candidate
diagnosis. If for instance, the individual being
sequenced is affected by a Mendelian disease for
which the causative genes have not yet been identi-
fied, then if there is a good phenotypic match, ide-
ally the analysis procedure would include the dis-
ease in the overall results. Therefore, we omit the
genotype score from the overall LR for Mendelian
diseases in the HPO database that have a cur-
rently unclarified molecular basis.

Combined genotype-phenotype like-
lihood ratio score

Our procedure takes as input a VCF file and a list
of HPO terms representing the set of phenotypic
abnormalities observed in the individual being se-
quenced. For each of the ∼ 4,000 Mendelian dis-
eases in the HPO database for which the causative

disease gene has been identified, all bin A vari-
ants are extracted and their average pathogenic-
ity score is calculated. The LRs are calculated for
each phenotypic feature as described above. The
final LR for some disease D is then

LR(D) = LR(gt(g))×
∏
i

Pr(hi|D)

Pr(hi|¬D)
. (15)

Ranking candidates

Our approach calculates the LR of equation (15)
for each disease represented in the HPO disease
database (n = 7623 in the 9/2019 release). The
diseases are then ranked according to the posttest
probability.

Visualization

The results of analysis are displayed here by show-
ing bars whose magnitude is proportional to the
decadic logarithm of the LRs of each tested fea-
ture. Features that support the differential diag-
nosis are shown in green and directed to the right
of a vertical line in the center of the plot, and fea-
tures that speak against the differential diagnosis
are shown in red and directed to the left.

Evaluation

We curated HPO terms from 384 published case
reports (Table 1 and Supplemental Table S1). We
chose case reports in which the causative muta-
tion had been identified so that we could perform
simulations with and without a simulated exome.

We compared the results of simulation with the
original data and also performed various types of
obfuscation to assess the influence of noise on the
performance of LIRICAL and Exomiser, adding
varying degrees of phenotypic or genotypic noise
(Supplemental Table S4).

A comparison of LIRICAL and Exomiser was
also performed for 116 solved cases from the
100,000 Genomes Project where detailed clini-
cal phenotype data in the form of HPO terms
had been collected. All cases were singletons
with single-sample VCF files available. The di-
agnoses came from 89 different genes across a
wide spectrum of rare disease areas (cardiovascu-
lar, ciliopathies, dermatological, dysmorphic and
congenital abnormalities, endocrine, hearing and

17

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 28, 2020. ; https://doi.org/10.1101/2020.01.25.19014803doi: medRxiv preprint 

https://doi.org/10.1101/2020.01.25.19014803
http://creativecommons.org/licenses/by-nc/4.0/


ear, metabolic, neurology and neurodevelopmen-
tal, ophthalmological, renal and urinary tract,
rheumatological, skeletal, tumour syndromes).

Implementation

LIRICAL is implemented as a Java application.
It is written in Java 1.8 and compiles under Java
11. An executable and source code can be down-
loaded from the GitHub page at https://github.
com/TheJacksonLaboratory/LIRICAL and de-
tailed documentation is available at the readthe
docs page (https://lirical.readthedocs.io/
en/latest/). LIRICAL is freely available for aca-
demic use.
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