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Abstract

Effective management of seasonal diseases such as dengue fever depends on
timely deployment of control measures prior to the high transmission sea-
son. As the epidemic season fluctuates from year to year, the availability of
accurate forecasts of incidence can be decisive in attaining control of such dis-
eases. Obtaining such forecasts from classical time series models has proven
a difficult task. Here we propose and compare machine learning models in-
corporating feature selection,such as LASSO and Random Forest regression
with LSTM a deep recurrent neural network, to forecast weekly dengue in-
cidence in 790 cities in Brazil. We use multivariate time-series as predictors
and also utilize time series from similar cities to capture the spatial com-
ponent of disease transmission. Among the compared models, the LSTM
recurrent neural network model displayed the smallest predictive errors in
predicting incidence of dengue out of sample, in cities of different sizes.

Keywords: epidemiology, dengue, time series forecasting, LSTM, deep
learning

1. Introduction

Dengue is mosquito-borne viral disease which affects roughly 400 mil-
lion people around the globe annually. Its transmitting vector, the Aedes
mosquito (Mainly the aegypti and albopictus species), also transmits other
serious viral diseases such as Zika, Chikungunya and Yellow fever, thus un-
derstanding the dynamics of Dengue can be beneficial the studies of other
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diseases transmitted by Aedes mosquitoes. Dengue is mostly restricted to
tropical regions of the globe but its area of impact is expanding in response
to global warming as well as to the accelerated growth of urban areas [1, 2].
Dengue is caused by 4 closely related serotypes of the dengue virus, which
contributes to its endemicity since serotypes tend to alternate over time, and
morbidity because secondary and subsequent dengue infections have a higher
probability to evolve into a hemorrhagic fever.

Understanding and therefore being able to predict the incidence of mosquito-
borne diseases is challenging due in part to the complex interplay between
epidemiological and environmental determinants. This complex causal sce-
nario manifests itself in the variability of incidence patterns in different ge-
ographical areas [2]. The frequent lack of long-term historical records of
disease incidence along with environmental variables affecting risk, further
complicates statistical analysis.

In the case of dengue, the effects of climate on the vector’s population
dynamics impose a marked seasonality which is then modulated by variations
in the immunological structure of the population due to the co-circulation of
multiple viral types, as well as other aspects of human demography: birth
rates, immigration and short-term mobility.

Modeling dengue incidence patterns in Brazil presents an additional chal-
lenge characterized by the fact that the disease was reintroduced in the coun-
try in the 1980s having been absent for many decades. Therefore, besides
the problem of short time series we are dealing with a disease which has yet
to reach its endemic equilibrium. Any forecasting model assuming ergodicity
will not perform well.

Instead of proposing parsimonious models built from previous knowledge
of the determinants of dengue transmission, we adopted a machine learning
approach, comparing models known for their ability to navigate their way into
data intensive high dimensional problems by integrating variable selection
into their fitting routine. Namely, we will compare the following machine-
learning models: Long-Short-Term-Memory(LSTM ), a recurrent deep neural
network model designed to learn time-series, Random Forest regression(RF)
and LASSO regression.

This approach has been tried before [3], but here we innovate by not
only using a multivariate approach, but also in the way the predictor series
are selected. We exploit the concept of epidemiological similarity to select
the predictors for each city, and thus are able to compensate the short time
span of our series with an ample set of similar series. Another distinguishing
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feature of this paper is that we fit and test the models in 790 Brazilian cities
with a wide range of climate and demographic characteristics, exploring the
robustness of each model.

2. Methodology

2.1. Data sources

The dataset used in the article was provided by the InfoDengue project.
InfoDengue [4] is an integrated online dengue alert system. An unique source
of carefully curated data for epidemiological studies, InfoDengue currently
monitors 790 cities of 5 states in Brazil (Rio de Janeiro, Espirito Santo,
Paraná, Minas gerais and Ceará), providing weekly analytical reports for
Dengue, Zika and Chikungunya.

The data consist of weekly series(442 weeks in total) of dengue incidence,
temperature (oC), relative humidity (%), atmospheric pressure(mmHg) and
tweets about Dengue in each observed city. Meteorological data comes from
local weather stations within each city. Twitter data was collected as de-
scribed by de Almeida Marques-Toledo et al. [5]. It ranges from January
2010 until june of 2018. An excerpt of the data available for each city can
be seen on figure 1.

2.2. Data pre-processing

It is very difficult to accurately forecast the weekly incidence in a city
using only on its own historical data. This happens mainly because of the
spatial component of disease transmission. A disease such as dengue relies
on the movement of the virus among human sub-populations as a persistence
mechanism, this flow is mostly maintained by human mobility patterns[6].
Thus, the flow of individuals between cities can also be an important predic-
tive factor for incidence.

To tap into the spatial component of dengue dynamics [7, 8], it makes
sense to uses series from neighboring cities to inform on the local incidence.
Additionally, other cities not necessarily in the vicinity but which display sim-
ilar historical series of incidence, can also be included as predictors. Besides,
the flow of people between cities is not restricted to contiguous neighbors.

In order to define the set of cities with relevant predictive information
for each city, we clustered all cities within a state based on the correlation
distances(eq. 1) between the incidence time series for each pair (u, v) of
cities.
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Figure 1: Time series available for every city in the dataset. The data shown here is from
the city of Rio de Janeiro. incidence is shown as total reported cases per week; temp min
and temp max are the minimum and maximum daily averaged over a week; humidity is
show as average relative humidity at each week; pressure is the mean atmospheric pressure
per week and finally, tweets is the number of tweets mentioning dengue per week.
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Du,v = 1− (u− ū) · (v − v̄)

||(u− ū)||2||(v − v̄)||2
(1)

above, v̄ and ū are the mean of the series for city v and u, respectively,
and the product in the numerator is the dot product.

The clusters were calculated hierarchically, where the distance d between
each pair of clusters (c1, c2) was given by the “Farthest Point Algorithm”,
d(c1, c2) = max(dist(c1[i], c2[j])), for all points i in cluster c1 and j in cluster
c2. The threshold is set to 0.6×max(Z), where Z is the vector of the pairwise
Spearman correlation distances between the cities.

In order to train the model for each city i, a feature matrix X i, composed
of incidences, minimum temperatures, maximum temperatures, relative hu-
midities and atmospheric pressure time-series, was assembled from the set
of cities in its cluster. Figure 2 shows an example of this clustered feature
matrix.

The clustering was done within each state, i.e., cities can only be clustered
with others from the same state.

City 1 City m

f1 f2 … fk … f1 f2 … fk

w1 a11 a12 … a1k … b11 b12 … b1k

w2 a21 a22 … a2k … b21 b22 … b2k

w3 a31 a32 … a3k … b31 b32 … b3k

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮

wn an1 an2 … ank … bn1 bn2 … bnk

Figure 2: Clustered features data with n as the total number of weekly observations, m as
the total number of cities belonging to a cluster and k the total number of series(features)
per city.

To serve as a baseline for the effectiveness of using a cluster of cities as
predictors, for each type of model described below, we also trained them
without variables from the cluster.
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2.3. Forecasting

The general problem we try to solve here is that of predicting future
incidence in city i using past states of itself and the set of predictors compos-
ing matrix X i. We train tree different classes of models (detailed below) to
forecast the absolute dengue incidence time-series, i.e, the number of cases
reported each week, as shown in fig. 1. In all models we adopted a forecast
window of 4 weeks, meaning that from any moment in time the models will
produce forecasts for the number of weekly dengue cases in the following 4
weeks, based only on historical data up to that point.

2.3.1. Random Forest regression

We used a Random Forest regression model to predict a single point in
the future based on historical data. In order to turn a time series prediction
problem into a random forest regression model, we transformed the series
regressors into a vector T containing the D most recent observations from
each series in the feature matrix X.

ŷt+τ = βtTt + εt (2)

here Tt is defined as Tt = [Xt, Xt−1, ..., Xt−D]T , where Xt−d is the vector
with the values of all mk (k series for each of the m city in the cluster)
predictor series at time t− d, where d = 0, ..., D. βt is a vector 1×mk which
contains the weights for each value of Tt. The model predicts the incidence at
a particular week in the future yt+τ , thus since we wanted to predict 4 weeks
into the future, 4 separate models were fitted to data for each τ varying from
1 to 4.

Figure 3 illustrates the data transformations required by the Random
Forest Regression model.

Long Short Term Memory (LSTM)

A LSTM model is a recurrent deep neural network model developed to
handle predictions of timeseries. We used a LSTM model with topology given
in table 1. The model was trained for 300 epochs using a mean-log squared-
error (MLSE) loss function (eq. 3) and a Nesterov Adam optimizer[9]. Again,
as in the RF model, the 4 most recent weeks were used as predictors, and
a forecasting window of 4 weeks was chosen. The input tensor fed into the
network is described in figure 4.
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Target
  ᶦ = 4

y8

y9

⋮

yn

Feature 1    Feature m

T4 a11 a21 a31 a41 … a1m a2m a3m a4m

T5 a21 a31 a41 a51 … a2m a3m a4m a5m

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮

Tn-4 a(n-7)1 a(n-6)1 a(n-5)1 a(n-4)1 … a(n-7)m a(n-6)m a(n-5)m a(n-4)m

=

ᶔ4

ᶔ5

⋮

ᶔn-4

+ Ɛ

f1 f2 f3 f4 … fm

t1 a11 a12 a13 a14 … a1m

t2 a21 a22 a23 a24 … a2m

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮

tn an1 an2 an3 an4 … anm

Original 
features 
matrix

Transformed features matrix

Figure 3: Feature matrix transformation for Random Forest input. The first matrix is
the original data, where aij is the feature i at time j, j = [1, .., n], and yi is the incidence
of dengue cases at time i, i = [1, ..., n]. In this example, D = 4 and τ = 4, so our first
vector is T4, which contains all m predictors series at times (t1, t2, t3, t4), and our target
is yt+τ = yD+τ = y8. The last input must contain the last target, therefore yt+τ = yn and
Tt = Tn−4.

MSLE =
1

n

i=n∑
i=1

(log(yi + 1)− log(ŷi + 1))2 (3)

The input tensor LSTM is 3-dimensional(2). The first dimension of the
matrix is the number of features; the second dimension is the length of se-
ries (total number of weeks - (look-back + forecasting window)); the third
dimension is the length of the moving window fed to the model (look-back
+ forecasting window).

The figure 4 illustrates the structure of this tensor when forecasting win-
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Table 1: Topology of LSTM neural network. There are three LSTM layers with 0.2 dropout
between them and a dense layers which gives the incidences in the following 4 weeks.

Layer Output Activation Dropout
LSTM (1,4,4) tanh 0.2
LSTM (1,4,4) tanh 0.2
LSTM (1,4) tanh 0.2
Dense (1,4) relu -

dow equal to 4 and look-back window D = 4.

LASSO regression

The third model evaluated was a LASSO least angle regression[10]. The
same feature matrix used for the Random Forest regression applies here.
Similarly, 4 separate models were fit, one for each value of τ .

Validation

Validation of the forecasts must take into account that the data points
which are the targets of the forecast, are subject to observational errors
and natural stochasticity. So we defined the ground truth for validating the
model the percentile of the historical observations for every week and every
city. Let Hi,w be the empirical distribution of incidence on city i and week w
and Pi,w, represent the percentile of Hi,w to which the observed incidence at

week w at city i corresponds to. Similarly, Let P̂i,w represent the percentile
of the model’s prediction. A good agreement between model and data would
lead to their percentiles being very similar for most points. Deviations from
equality would indicate under- or over-estimation issues. By mapping the
data and predictions to a percentile, allow us to pool all predictions from all
weeks and cities into a comparable scale. Using this scale we can validate
the performance of the models regardless the original scale of the data, and
year-to-year differences in magnitude.

3. Results

Cluster analysis

Figure 5 shows the incidence series for one cluster for the entire historical
period available. We can see that cities clustered together display similar

8

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 24, 2020. ; https://doi.org/10.1101/2020.01.23.20018556doi: medRxiv preprint 

https://doi.org/10.1101/2020.01.23.20018556
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 2: Cluster characteristics for each state.

Number of cities Number of Clusters Cluster mean size
Rio de Janeiro 92 14 6
Paraná 399 54 6
Ceará 184 49 3

Table 3: Mean prediction errors in quantile scale (ε̄ ∈ [−1, 1]) and standard deviations for
all models in-sample(in) and out-of-sample(out).

Model RJ CE PR
data in out in out in out

Lasso 0.4± 0.45 0.53± 0.38 0.4± 0.41 0.33± 0.50 0.45± 0.44 0.47± 0.42
RF 0.17± 0.30 0.33± 0.38 0.13± 0.27 0.3± 0.47 0.18± 0.3 0.39± 0.42
LSTM −0.06± 0.41 0.04± 0.35 0± 0.34 −0.07± 0.45 −0.08± 0.36 −0.05± 0.35

incidence patterns. Number of clusters per state and average sizes are given
on table 2.

On figure 6, we can see the clustering in the Rio de Janeiro state.

Forecasting

We measured the performance of the forecasting models by the magnitude
of the prediction error for week t+ 4 where t is the last week observed. The
prediction errors were calculated as mean squared error (MSE), and mean
squared log error(MSLE).

Figures 7 and 8 show the performance of the forecast both in-sample and
out-of-sample. On figure 7, we see the forecast for 2 cities and the three
models: For Rio de Janeiro, all 3 models seem to do an equally good job at
predicting out of sample while for Campos dos Goytacazes, they all seem to
struggle. Over the entire set of cities, LSTM and Random Forest performed
better as shown on figure 9. Table 3, shows the mean errors for all models.

Figure 8 shows forecasts for 6 other cities generated by the LSTM model.
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4. Discussion

From the results obtained for the three models evaluated in this paper, we
realized that machine learning models show a great potential to be used in the
forecasting of dengue incidence time series. Their ability to deal with the non-
linearities as well as with the non-stationary and heavy-tailed distributions of
weekly incidences is a major advantage compared to classical auto-regressive
models[11].

The two regression-based models, RF and LASSO, have the advantage of
being computationally less costly than LSTM, which can be very important
for the application described here which is to provide forecasting for hundreds
of cities on a weekly basis, as is the case with the Infodengue project. RF
and LASSO take on the order of seconds (on a 32-core CPU) to train on our
full dataset, the LSTM model, on the other hand takes close to ten minutes
to train on the same dataset, but on a Nvidia Tesla K40 GPU with 2880
cores. When we have to train hundreds of models, the computational cost of
LSTM can get very high. However, even though is desirable to update the
models weekly, our out-of-sample results have shown that the models remain
accurate for over two years without retraining.

The accuracy winner in this comparison was the LSTM model which
was able to better approximate the empirical distribution of dengue’s weekly
incidence as can be seen in the marginal distributions of figure 9. LSTM
was also the least biased of the three models slightly overestimating the very
low incidences of interepidemic periods while underestimating high epidemic
peaks (see figures 8 and 9).

There are many ways in which the performance of the models compared
here can still be improved. In the present study we maintained the design
of the models as standard as possible as a first approach to the problem. In
the clustering of the cities it can be useful to consider lagged correlations
between series as the causal dependencies between cities are not likely to be
instantaneous. Differentiation and log transforming of the series is also likely
to be interesting as it would stabilize the distribution helping the models to
deal with extreme values.

In the deep learning field, many variations to the standard LSTM model
have been proposed[12, 13] which could be tested with this dataset. Recent
methodologies [14] to assess the uncertainty of deep learning model can be
applied to this model.
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5. Conclusion

The results presented here add to the still scarce literature of the appli-
cability of machine learning models to epidemiological forecasting[15, 3, 16].
We have demonstrated that the Deep learning models such as the LSTM can
be used with good performance in large scale predictive problems. The In-
fodengue project is going to integrate the LSTM model to provide forecasts
of dengue incidence in Brazilian cities and we hope to see a wider evaluation
and adoption of machine-learning models in this setting.
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dence using temperature and rainfall, PLoS neglected tropical diseases
6 (2012) e1908.

[16] X. Zhang, T. Zhang, A. A. Young, X. Li, Applications and comparisons
of four time series models in epidemiological surveillance data, PLoS
One 9 (2014) e88075.

13

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 24, 2020. ; https://doi.org/10.1101/2020.01.23.20018556doi: medRxiv preprint 

https://doi.org/10.1101/2020.01.23.20018556
http://creativecommons.org/licenses/by-nc-nd/4.0/


a(n-8)1 … b(n-8)1 b(n-8)2 … b(n-8)k

a22 … … b(n-7)2 … b(n-7)k

a32 … … b(n-6)2 … b(n-6)k

⋮ ⋮ ⋱ ⋮ ⋱ ⋮

a82 … … bn2 … bnk

w1 a11 a12 … a1k … b11 b12 … b3k

w2 a21 a22 … a2k … b21 b22 … b4k

w3 a31 a32 … a3k … b31 b32 … b5k

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮

w8 a81 a82 … a8k … b81 b82 … b10k

w1 a11 a12 … a1k … b11 b12 … b2k

w2 a21 a22 … a2k … b21 b22 … b3k

w3 a31 a32 … a3k … b31 b32 … b4k

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮
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Figure 4: Structure of the input tensor used to train the LSTM model.
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Figure 5: Dengue incidence for two clusters from Rio de Janeiro state. The colors represent
the incidence of dengue through time, with red being the highest incidence dark blue the
lowest.
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Figure 6: Map representing clusters of cities in Rio de Janeiro state, through color cod-
ing. Cities with the same color belong to the same cluster. Notice how clusters are not
contiguous geographically.
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Figure 7: In-sample and out-of-sample forecast prediction for Rio de Janeiro and Campos
dos Goytacazes. The black line is the observed data and the redline represents predictions
4 weeks after the last observed point.

17

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 24, 2020. ; https://doi.org/10.1101/2020.01.23.20018556doi: medRxiv preprint 

https://doi.org/10.1101/2020.01.23.20018556
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 8: Results for six other cities with varying sizes and from different regions of the
country: Alto Paraná from the south, Barra Mansa, São Gonçalo and Nova Iguaçú from
the southeast and the others from the Northeast.
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Figure 9: In the panels above, we show observed vs predicted distributions for all out
of sample forecasts generated for all cities grouped by state. The x-axis encodes the
percentiles of the predicted points distribution, while the y-axis are the percentiles of the
distribution of observed values. Each point (x, y) giving rise to the heatmaps, represents
one prediction and one expected observation. If the predicted value and the observed value
of a week i is near the line x = y, the predicted value is consistent with the historically
expected for that city in that week. We plotted the density of the points, so the dark blue
areas are where the most values belongs to.
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