microRNA-based predictor for diagnosis of frontotemporal dementia

Short title: miRNA biomarkers for FTD

Iddo Magen¹,²,†, Nancy-Sarah Yacovzada¹,²,†, Jason D. Warren³, Carolin Heller³,⁴, Imogen Swift³,⁴, Yoana Bobeva⁵, Andrea Malaspina⁵,⁶, Jonathan D. Rohrer³, Pietro Fratta⁶, and Eran Hornstein¹,²

¹ Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
² Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
³ Dementia Research Centre, and 4 UK Dementia Research Institute, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK.
⁵ Centre for Neuroscience and Trauma, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
⁶ Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK

† Equal contribution

Email addresses (order of emails corresponds to the order of authors): iddo.magen@weizmann.ac.il; nancyy@weizmann.ac.il; jason.warren@ucl.ac.uk; c.heller@ucl.ac.uk; i.swift.17@ucl.ac.uk; y.bobeva@qmul.ac.uk; a.malaspina@ucl.ac.uk; j.rohrer@ucl.ac.uk; p.fratta@ucl.ac.uk; eran.hornstein@weizmann.ac.il;

Correspondence to: Andrea Malaspina; Jonathan D. Rohrer; Pietro Fratta; Eran Hornstein.

Abstract word count: 150

Text word count (excluding title page, abstract, references and figure legends): 4394

No. of items (Figures, Tables, Supplementary): 5, 2, 6

References: 92

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Background

Frontotemporal dementia (FTD) is an early onset dementia that is diagnosed in ~20% of the progressive dementia cases. Heterogeneity in FTD clinical presentation too often delays clinical diagnosis and calls for molecular biomarkers to assist diagnosis, including cell free microRNAs (miRNA). However, nonlinearity in the relationship of miRNAs to clinical states and underpowered cohorts has limited research in this domain.

Methods

We initially studied a training cohort of 219 subjects (135 FTD and 84 non-neurodegenerative controls) and then validated the results in a cohort of 74 subjects (33 FTD and 41 controls).

Results

Based on cell-free plasma miRNA profiling by next generation sequencing and machine learning approaches, we develop a nonlinear prediction model that accurately distinguishes FTD from non-neurodegenerative controls in ~90% of cases.

Conclusion

The fascinating potential of diagnostic miRNA biomarkers might enable early-stage detection and a cost-effective screening approach for clinical trials that can facilitate drug development.

Key words: frontotemporal dementia; biomarker; microRNA; diagnosis; machine learning; non-linear relationship; next-generation sequencing; predictor; feature elimination.
Background

Frontotemporal dementia (FTD) is a neurodegenerative disease that is characterized by frontal and temporal lobe atrophy, and typically manifests with behavioral or language deficits [1-4]. The key known genetic drivers of FTD include hexanucleotide repeat expansion in the first intron of the gene chromosome 9 open reading frame 72 (C9ORF72) [5, 6], and mutations in the genes Valosin-containing protein (VCP), TANK-binding kinase 1 (TBK1), progranulin (GRN), charged multivesicular body protein 2B (CHMP2B) and the RNA-binding protein TAR DNA-binding protein 43 (TDP-43) [7-11]. Relatedly, inclusions of TDP-43 are a hallmark of FTD neuropathology [12].

FTD can be difficult to diagnose, due to heterogeneity in clinical presentation [1]. Three main phenotypes of FTD are described: behavioral variant frontotemporal dementia (bvFTD), characterized by changes in social behavior and conduct, semantic dementia (SD), characterized by the loss of semantic knowledge, leading to impaired word comprehension and progressive non-fluent aphasia (PNFA), characterized by progressive difficulties in speech production [1, 13]. Related motor variants within the FTD spectrum are corticobasal syndrome (CBS) and progressive supranuclear palsy (PSP) [14]. FTD further resides on a genetic and a clinico-pathological continuum with amyotrophic lateral sclerosis (ALS) [15].

Brain imaging and several biofluid proteins have been proposed as biomarkers for FTD [16-45]. Among the proteins, noticeable are neurofilament light chain (NFL), TDP-43, and phospho-tau, amyloid beta and glial fibrillary acidic protein (GFAP). A recent study concluded that high NFL blood levels are indicative of the intensity of neurodegeneration or the extent of the degenerated axons in FTD [24].

microRNAs (miRNAs) are a class of small, non-coding RNAs, that can be quantified in biofluids in a massively parallel fashion, yielding fine-grained profiles [46]. We have previously shown the power of cell-free miRNAs as biomarkers in neurodegeneration [47, 48]. Plasma miRNAs were suggested as diagnostic biomarkers for FTD [49-57]. However, initial biomarker studies were confounded by cohort size, sample heterogeneity biases or pre-selection of candidate miRNAs. Furthermore, these studies did not address the potential non-linear relationships between miRNAs in developing a predictor.

In the current study, we profiled blood plasma miRNAs, and developed miRNA-based classifier for diagnosing FTD in a training cohort of 219 subjects, that was further validated in a cohort of 74 subjects. We implemented an ensemble machine learning approach, to address biomarker...
nonlinearity and were able to expose unrevealed disease-associated signals. We then confirmed that these signals are similar between clinical subtypes of FTD. The diagnostic power of the study roots from unbiased miRNA signature discovered by advanced machine learning, on a large and heterogeneous cohort, and validation in an independent held-out cohort, according to the TRIPOD guidelines [58]. Therefore, circulating miRNAs hold a fascinating potential as diagnostic biomarkers and as means for patient stratification in clinical trials.
Methods

Participants and Sampling

Demographic data of study participants are detailed in Table 1. FTD subjects and their respective controls were enrolled in the longitudinal FTD cohort studies at UCL. Study cohort included 169 FTD patients and 56 controls. Additional controls (N=102) were obtained from the ALS biomarker study (Ethics approval 09/H0703/27) in Queen Mary Hospital, totaling 158 non-neurodegenerative controls. Controls were typically spouses or relatives of patients.

Blood was collected by venipuncture in EDTA tubes, and plasma was recovered from the whole blood sample by centrifugation for 10 minutes at 3500 RPM at 4°C within 1 hour of sampling, and stored at −80°C until RNA extraction and subsequent small RNA next generation sequencing. Frozen plasma samples of FTD and controls from the UCL Biobanks were shipped to the Weizmann Institute of Science for molecular analysis.

Study Design

We determined the sample size by the following power analysis: 150 controls and 150 cases are required to obtain an ROC AUC of 0.7 with a power of 99% and a p-value of 0.0001. Phenotypic data on de-identified patients was separated and blinded during steps of the molecular analysis.

Small RNA Next Generation Sequencing

Total RNA was extracted from plasma using the miRNeasy micro kit (Qiagen, Hilden, Germany) and quantified with Qubit fluorometer using RNA broad range (BR) assay kit (Thermo Fisher Scientific, Waltham, MA). For small RNA next generation sequencing (RNA-seq), libraries were prepared from 7.5 ng of total RNA using the QIAseq miRNA Library Kit and QIAseq miRNA NGS 48 Index IL (Qiagen), by an experimenter who was blinded to the identity of samples. Samples were randomly allocated to library preparation and sequencing in batches. Precise linear quantification of miRNA is achieved by using unique molecular identifiers (UMIs), of random 12-nucleotide after 3’ and 5’ adapter ligation, within the reverse transcription primers [46]. cDNA libraries were amplified by PCR for 22 cycles, with a 3’ primer that includes a 6-nucleotide unique index, followed by on-bead size selection and cleaning. Library concentration was determined with Qubit fluorometer (dsDNA high sensitivity assay kit; Thermo Fisher Scientific, Waltham, MA).
Scientific, Waltham, MA) and library size with Tapestation D1000 (Agilent). Libraries with different indices were multiplexed and sequenced on NextSeq 500/550 v2 flow cell or Novaseq SP100 (Illumina), with 75bp single read and 6bp index read. Fastq files were de-multiplexed using the user-friendly transcriptome analysis pipeline (UTAP) [59]. Human miRNAs, as defined by miRBase [60], were mapped using the GeneGlobe pipeline (https://geneglobe.qiagen.com/us/analyze). For quality control of sequencing data, we first excluded miRNAs with an average UMI counts < 100 across all samples or zero count in at least one sample. Data were further corrected for the library preparation batch in order to reduce its potential bias, and normalized with DESeq2 package [61] under the assumption that miRNA counts followed negative binomial distribution.

Constructing Cohorts and Age and Sex Biases

We observed a younger mean age in controls (53.8±14.5, 95% CI [51.5-56.1]) than in FTD (65.6±8.4, 95% CI [64.4-67.0], Table S1). We reduced age-variance by excluding 34 participants younger than 40, which reduced differences in mean age across the remaining meta-cohort of 293 subjects by 45%. Thus, 168 out of 169 FTD patients and 125 out of 158 non-neurodegenerative control samples were included in the analysis (Table S1). In order to verify that a merged dataset of controls, collected in two different clinical centers, does not introduce biases, we employed the t-distributed stochastic neighbor embedding (t-SNE) algorithm and measured Kullback–Leibler divergence, the difference between probability distributions. Because a higher prevalence of males was observed among FTD patients (65%) than among the controls (35%), sex was removed from the list of candidate predictors to eliminate confounding biases.

Gradient Boosted Trees for the Development of Disease Binary Classifiers

The FTD-disease binary classifier was developed using Gradient Boosting Classifier, a machine-learning algorithm that uses a gradient boosting framework. Diagnostic models were developed, validated and reported according to the TRIPOD guidelines [58] (https://www.tripod-statement.org/). Gradient Boosting trees [62, 63], a decision-tree-based ensemble model, differ fundamentally from conventional statistical techniques that aim to fit a single model using the entire dataset. Such ensemble approach improves performance by combining strengths of models that learn the data by recursive binary splits, such as trees, and of “boosting”, an adaptive method for combining several simple (base) models. At each iteration of the gradient boosting algorithm, a subsample of the training data is selected at random (without
replacement) from the entire training data set, and then a simple base learner is fitted on each subsample. The final boosted trees model is an additive tree model, constructed by sequentially fitting such base learners on different subsamples. This procedure incorporates randomization, which is known to substantially improve the predictor accuracy and also increase robustness. Additionally, boosted trees can fit complex nonlinear relationships, and automatically handle interaction effects between predictors as addition to other advantages of tree-based methods, such as handling features of different types and accommodating missing data. Hence, in many cases their predictive performance is superior to most traditional modelling methods. Additional gain of these algorithms is the various loss functions that can be applied. Using the softmax loss function, we explicitly estimated the class conditional probabilities, which allow us to demonstrate the performance of each of the classifiers both as “soft-classifiers” (i.e., predicting class probabilities) and “hard-classifiers” (i.e., setting a probability threshold and predicting a class). The former approximates a continuous number as output - the class conditional probabilities - and then performs classification based on these estimated probabilities. In contrast, hard classifiers output a discrete number as the decision - directly targeting the classification decision boundary, without producing the probability estimation.

A gradient boosting classifier was developed with a feature set of 132 miRNA predictors. Dataset was partitioned to training-set (75%) and validation-set (25%) which was used as held-out data. The training-set was cross-validated during training with stratified 3-fold cross validation. An ROC was generated for each of the folds and individual and mean AUCs were calculated along with 95% confidence intervals.

The chosen hyper-parameters: ccp_alpha=0.0, learning_rate=0.5, max_depth=8, max_features=0.45, min_samples_leaf=14, min_samples_split=8, n_estimators=100, subsample=0.45 and tol=0.0001.

miRNA Predictor Selection by Recursive Feature Elimination (RFE)

For selecting the most predictive features during prediction model development, we used Recursive Feature Elimination (RFE) algorithm, an efficient recursive approach for eliminating features from a training dataset with 3-fold cross validation. ExtraTreesClassifier algorithm is used in the cross-validated RFE procedure, with hyper-parameters: criterion="entropy", max_features=0.9, and n_estimators=20. RFE works by iteratively removing features and using model accuracy to identify which features contribute the most to prediction. Tree-based
importance scores of 132 miRNAs were used in order to rank features, and thus reduce the
dimension of miRNA measurements needed for prediction by ~90% (12-16 features in a model
in total).

Feature Importance and SHAP Analysis

Although gradient boosting tree models are complex models, they can automatically provide an
approximation of feature importance from the trained boosted trees. A miRNA predictor is
assigned with an importance score in every single tree, where the Gini purity index is used to
assess split points in the tree. The score of a feature is calculated based on the amount of
improvement in the Gini index achieved by split points that include the feature, weighted by the
number of observations in that node. The final importance score of a feature is calculated by an
average across all decision trees within the final model.

For local interpretability of the predictive model, we used SHapley Additive exPlanations (SHAP)
[64], the current state of the art in Machine Learning explainability tools. SHAP provides
estimates and visualizations to infer what decisions the model is making. This is achieved by
quantifying the contribution that each feature brings to each prediction made by the model.

Linear regression model

A linear classifier (Logistic Regression) was developed with a feature set of 95 miRNA
predictors, that were differentially expressed (adjusted p-value ≤ 0.05) between FTD cases and
controls. Each miRNA was binarized by its mean value. Training and validation were identical
as in the gradient boosting classifier: Dataset was partitioned to training-set (75%) and
validation-set (25%) which was used as held-out data. The training-set was cross-validated
during training with stratified 3-fold cross validation. An ROC was generated for each of the
folds and individual and mean AUCs were calculated along with 95% confidence intervals. The
chosen hyperparams for Logistic Regression: L2 penalty, tol=1e-4, fit_intercept=True,
solver='lbfgs', max_iter=500.

Results

We sought to determine the overall diagnostic capability of miRNA measurements in FTD. To
this end, we based our study on analysis of plasma miRNA expression and the development of
computational diagnostic models. The cohort included a total of 293 participants, enrolled
between 2009 and 2018. Summary of participants’ basic characteristics is shown in Table 1.
Since the non-neurodegenerative controls were collected in two centers, we first verified that they could have been sampled from a single population and can therefore be considered a single cohort. We estimated the Kullback–Leibler divergence, a measure of the difference between two probability distributions. This analysis indicated only a small difference between the two sets in question (KL = 0.293, Figure S1), that is further visualized by t-distributed stochastic neighbor embedding (t-SNE) analysis of the cohorts.

Differential expression of miRNAs

Out of the >2000 miRNA species that were aligned to the genome, only 132 fulfilled QC criteria (see methods). Next, we quantified the differential miRNAs that may distinguish FTD from controls. Ninety-five miRNAs were differentially expressed between plasma of patients with FTD and controls with an adjusted p-value<0.05 (Figure 1A). Additional analysis of only subsets of C9ORF72-FTD cases (Figure 1B), FTD females (Figure 1C) or FTD males (Figure 1D) vs. relevant controls revealed that the miRNA signature was comparable between the full FTD cohort and subcategories (Table S2: Source Data Fig. 1).

Development of machine learning classifier for the diagnosis of FTD

We established a diagnostic prediction model for FTD on a randomly selected training set of 135 FTD cases and 84 controls, comprising 75% of the total cohort (168 cases, 125 controls). For model validation, the remaining 25% of the data were held out as a replication cohort (33 FTD, 41 control samples).

The 132 miRNAs were tested as potential predictors, using an ensemble machine learning approach for ranking miRNAs predictive value in the diagnosis of FTD vs. individuals that did not suffer from neurodegeneration and were considered healthy. For selecting the most predictive features during model development, we used Recursive Feature Elimination (RFE), an efficient approach that removes miRNAs (features) iteratively to identify those that contribute the most to prediction accuracy. Cross validated RFE on the training set with gradient boosting classifier obtained a set of 13 miRNAs with highest feature importance (Figure 2A). The 13-miRNA-based prediction model presented a mean receiver operating characteristic area under the curve (ROC AUC) of 0.93 under internal cross validation on training dataset (Figure 2B). Furthermore, the 13-miRNA-based predictor was capable of predicting the diagnosis of FTD in an independent held-out (replication) cohort of 74 individuals with an ROC AUC of 0.9 (Figure 2C). At a defined probability threshold (0.6), the classifier exhibits a 0.8 precision (PPV) over 0.87 negative predictive value (NPV) with a 0.85 recall (sensitivity), a 0.83 specificity and a 0.13...
false omission rate over 0.2 false discovery rate values (Figure 2D). Additional analysis reveals that the model is well calibrated and satisfactorily performs on held-out data (Figure 2E). Furthermore, a family of models trained with only a subset of the 13 most predictive features, displays a stable AUC ROC performance and reassures that the selected final features are suitable (Figure 2F). In summary, we determined 13 miRNAs that are able to call the diagnosis of FTD with high accuracy. We have further compared the machine-learning based model to a linear model classifier based on logistic regression. A linear model that was developed with a feature set of 95 miRNAs that were differentially expressed between FTD and controls, was inferior to the gradient boosting classifier model, particularly by sensitivity (0.76 vs 0.85) and negative predictive value (0.81 vs 0.87) (Figure S2). Moreover, the non-linear approach showed better robustness in the different training folds and also outperforms the linear model in utilizing a significantly smaller number of miRNA features (13 vs. 95), to obtain its accuracy. We then sought to better understand the prediction model by investigating the relative effect of each individual miRNA. Therefore, we utilized post-hoc SHapley Additive exPlanations (SHAP) feature importance analysis to uncover the contribution of individual miRNAs to the FTD diagnostic predictor (Figure 3A, B). A more positive or more negative SHAP value leads the model to a more likely FTD or healthy control predictions, respectively. The key predictors revealed by SHAP, which contribute the most to calling FTD vs controls, are multiple sclerosis-associated miR-629 [65, 66], brain enriched miR-125b [67] and the astrocyte-derived exosomal miR-361 [68].

We further tested each individual miRNA as a single predictor of FTD diagnosis. A model with only miR-423-5p or miR-125b-5p presented the highest AUC values of ~0.69 (Table 2). Boxplots depicting the underlying distribution of each of the 13 miRNA predictors, along with scatter plots of the expression values of individual subjects in these miRNAs, confirm the non-linear relationship between miRNA expression and the phenotype, for some miRNAs (e.g., miR-107 and miR-26a), while other miRNAs can be divided to low/high values predominated by either controls or FTD cases (e.g., miR-629-5p, Figure 4). These observations emphasize the power of a model, which is able to take into account non-linear relationship between features. Significant pairwise differences were noted in miR-107 levels in both bvFTD and SD vs other FTD subtypes [(primary progressive aphasia, corticobasal syndrome, progressive supranuclear palsy and FTD with motor neuron disease). ANOVA: p=0.009, bvFTD vs other FTD subtypes: p=0.01, SD vs other FTD subtypes: p=0.02, Figure S3C]. In addition, significant pairwise
differences in miR-26a levels were found in both bvFTD (p=0.04) and PNFA (p=0.02) vs other FTD subtypes (ANOVA: p=0.024, bvFTD vs other FTD subtypes: p=0.04, PNFA vs other FTD subtypes: p=0.02, Figure S3F).

None of the other miRNAs showed differences between clinical subtypes (Figure S3), between different mutation carriers, or between mutations carriers and patients with no known FTD mutations (Figure S4). In conclusion, a non-linear signature based on only 13 miRNAs is able to call the diagnosis of FTD with high accuracy and generalizability, for all FTD subtypes and independent of the underlying genetic background.

Finally, we tested the performance of plasma miRNA classifiers that were reported in previous works [52, 54], relative to the classifier we have reported here. We replicated the logistic regression model (with L2 regularization[69, 70]) from the study of [54] on our data. Taking miR-34a-5p, miR-345-5p, miR-200c-3p and miR-10a-3p as features, displayed inferiority to our model. Moreover, these miRNAs were not differentially expressed between cases and controls in our study. Next, we replicated the "microRNA pair" approach from the study of [52]: miR-335/let-7e, miR-99b/let-7e and miR-9-3p/miR-181a and assessed the ROC curves, showing they are inferior to our classifier in distinguishing between FTD and controls (Figure 5). Thus, when tested in comparison to reported miRNA classifiers from the literature, our panels of miRNA classifiers perform better, with AUC values of 0.9.
Discussion

The need to facilitate the diagnosis of FTD in the face of clinical heterogeneity raises the hope for new effective biomarkers. Circulating miRNAs hold a fascinating potential as diagnostic biomarkers that were not fully explored. By using an unbiased, next generation sequencing approach and advanced computation, in a discovery cohort of 219 subjects and 74 additional subjects for a replication study, we overcome limitations of past works in developing biomarkers for FTD. A recursive non-linear approach was utilized to find the smallest set of miRNA features that obtain the highest accuracy of the prediction model, leading to a signature of 13 miRNAs only. Thus, our miRNA-based binary classifier is more accurate and robust than published miRNA-based predictors [52, 54].

The use of gradient boosting trees, an ensemble learning approach, allows discovering nonlinear relationships between miRNAs and disease status that gained affirmation by cross validation in the training dataset. Furthermore, our model is externally validated on held-out data, which was not used during feature selection and model development, according to the TRIPOD guidelines [58]. SHAP analysis [64] further unfolds the relative contribution of individual features to the predictive model. Of note, the performance of the ensemble learning was superior to that of a logistic regression model, and enabled the use of only 13 features, instead of 95, for prediction.

According to the human miRNA tissue atlas [67], most of the selected miRNAs are CNS-enriched (let-7c-5p, miR-26a-5p, miR-107, miR-125b-5p), suggesting that they might be directly involved in the disease state of the CNS. miR-26a, miR-326, miR-484 and miR-361 were associated with FTD diagnosis in our data and with cognitive deficits or Alzheimer’s disease (AD) in other analyses [71-77]. In mice, miR-326 inhibited tau phosphorylation, a hallmark of FTD [72]. Brain-enriched miR-107 was also implicated in AD [78-83]. Changes in blood levels of miR-326, miR-26a, and miR-629 are associated with multiple sclerosis (MS), a condition characterized by demyelination [84-91]. Moreover, serum miR-629 was negatively correlated with MS patient brain volume and lesion severity, respectively [92]. Thus, some of the miRNA predictors proposed here are associated directly or indirectly with other degenerative brain diseases.
We would like to put forward a few notable limitations of our study: First, patients in our cohorts are recruited in different phases of the disease, with no progression biomarker to use for stratification. Second, the study of biomarkers by machine learning leaves the question why defined nonlinear patterns are strongly predictive of disease states, unanswered. Discrepancies from the conclusions of past studies [49-52, 54] are plausibly related to the progress we present in power (larger cohort) and to our unbiased analysis that contrasts past biased choices of miRNA candidates. In addition, we did not find any miRNAs, which can differentiate between FTD subtypes, which might result from small, underpowered subtype cohorts. Lastly, while we kept a held-out cohort for external validation, towards clinical diagnostic usage, it is warranted to test the predictor on an independent cohort of different ethnicity.

Conclusions

We have found specific molecular miRNA patterns that can contribute to the diagnosis of FTD. Therefore, the work encourages testing if circulating miRNAs biomarkers can be used as a cost-effective screening approach to increase speed or precision in the diagnosis of suspected FTD. Early-stage diagnosis may be useful towards design of prospective clinical trials. More broadly, the findings demonstrate the importance of integrating machine learning into clinical biomarker studies, addressing nonlinearity and exposing otherwise cryptic disease-associated signals.

List of abbreviations

AD, Alzheimer’s Disease; ALS, amyotrophic lateral sclerosis; AUC, area under the curve; bvFTD, behavioral frontotemporal dementia; C9ORF72, chromosome 9 open reading frame 72; CBS, corticobasal syndrome; CHMP2B, charged multivesicular body protein 2B; EDTA, Ethylenediaminetetraacetic acid; FTD, frontotemporal dementia; GFAP, glial fibrillary acidic protein; GRN, progranulin; MAPT, microtubule-associated protein tau; miRNA, microrRNA; MS, multiple sclerosis; NfL, neurofilament light chain; PNFA, progressive non-fluent aphasia; PSP, progressive supranuclear palsy; ROC, receiver operating characteristic; RFE, recursive feature elimination; SD, semantic dementia; SHAP, SHapley Additive exPlanations; TBK1, TANK-binding kinase; TDP-43, TAR DNA-binding protein 43; TRIPOD, Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis; UMI, unique molecular identifier; UTAP, user-friendly transcriptome analysis pipeline; VCP, Valosin-containing protein;
Declarations

Ethical Approval and Consent to participate
Approvals were obtained from the local research ethics committee and all participants provided written consent (or gave verbal permission for a carer to sign on their behalf).

Consent for publication
Not applicable.

Availability of supporting data
The data that support the findings of this study are available from the corresponding author upon reasonable request.

Competing interests
The authors state that they have no competing interests.

Funding
Research at the Hornstein laboratory is supported by the CReATe consortium and ALSA (program: "Prognostic Value of miRNAs in Biofluids From ALS Patients"), the RADALA Foundation; AFM Telethon (20576); the Weizmann–Brazil Center for Research on Neurodegeneration at Weizmann Institute of Science; the Minerva Foundation, with funding from the Federal German Ministry for Education and Research; the ISF Legacy Heritage Fund (828/17); the Israel Science Foundation (135/16, 3497/21, 424/22, 425/22); United States - Israel Binational Science Foundation (#2021181); A research grant from the Anita James Rosen Foundation; Target ALS (118945); the Thierry Latran Foundation for ALS Research; the European Research Council under the European Union's Seventh Framework Program ([FP7/2007–2013]/ERC grant agreement number 617351); ERA-Net for Research Programs on Rare Diseases (eRARE FP7) via the Israel Ministry of Health; Dr Sydney Brenner and friends; Edward and Janie Moravitz; A. Alfred Taubman through IsrALS; Yeda-Sela; Yeda-CEO; the Israel Ministry of Trade and Industry; the Y. Leon Benoziyo Institute for Molecular Medicine; the Nella and Leon Benoziyo Center for Neurological Disease; the Kekst Family Institute for Medical Genetics; the David and Fela Shapell Family Center for Genetic Disorders Research; the Crown Human Genome Center; the Nathan, Shirley, Philip, and Charlene Vener New Scientist Fund; the Julius and Ray Charlestein Foundation; the Fraida Foundation; the Wolfson Family Charitable Trust; the Adelis Foundation; Merck (UK); M. Halphen; the estates of F. Sherr, L. Asseof, and L. Fulop; the Goldhirsh-Yellin Foundation; the Redhill Foundation–Sam and Jean...
Rothberg Charitable Trust; Dr. Dvora and Haim Teitelbaum Endowment Fund; A research grant from the Anita James Rosen Foundation. The ALS-Therapy Alliance, Motor Neuron Disease Association (UK); this work was supported by the Motor Neuron Disease Association (MNDA) 839-791.

The Dementia Research Centre is supported by Alzheimer's Research UK, Brain Research Trust, and The Wolfson Foundation. This work was supported by the NIHR Queen Square Dementia Biomedical Research Unit, the NIHR UCL/H Biomedical Research Centre and the Leonard Wolfson Experimental Neurology Centre (LWENC) Clinical Research Facility as well as an Alzheimer's Society grant (AS-PG-16-007). JDR is supported by an MRC Clinician Scientist Fellowship (MR/M008525/1) and has received funding from the NIHR Rare Disease Translational Research Collaboration (BRC149/NS/MH). PF is supported by a Medical Research Council Senior Clinical Fellowship, an MRC/MND LEW Fellowship, the NIHR UCLH BRC and the Lady Edith Wolfson Fellowship scheme (MR/M008606/1 and MR/S006508/1).

NSY was supported by the Israeli Council for Higher Education (CHE) via the Weizmann Data Science Research Center, by a research grant from the Estate of Tully and Michele Plesser and by Maccabim Foundation. I.M. was supported by Teva Pharmaceutical Industries as part of the Israeli National Network of Excellence in Neuroscience (fellowship no. 117941).

Authors’ contribution

I.M., P.F., J.D.R. and E.H. conceived research.

I.M., N.S.Y. and E.H. analyzed the data.

A.M. and J.D.R. established cohort, gained ethical approval and collected human samples for research.

Y.B., C.H. and I.S. assisted research.

I.M., N.S.Y., P.F., A.M., J.D.R. and E.H. wrote the manuscript, with comments and final approval by all other authors.

J.D.W. provided resources for research and input in research development.

A.M. and J.D.R. are corresponding authors for cohorts and clinical data. P.F. and E.H. are corresponding authors for all other facets of the work.

All authors read and approved the final manuscript.

Acknowledgements
We thank Vittoria Lombardi (UCL) for technical assistance. We acknowledge patients with FTD, and healthy volunteers for their contribution and ALS biomarkers study co-workers for biobanking, which has made this study possible (REC 09/H0703/27). We also thank the North Thames Local Research Network (LCRN) for its support. EH is the Mondry Family Professorial Chair and Head of the Nella and Leon Benoziyo Center for Neurological Diseases and of the Andi and Larry Wolfe Center for Neuroimmunology and Neuromodulation.

Author’s information
Not applicable

Appendix
IDs of 34 subjects removed due to age-based QC:
CTRL_rep9, CTRL_rep10, CTRL_rep13, CTRL_rep19, CTRL_rep16, CTRL_rep18, CTRL_rep20, FTD30, CTRL_rep17, CTRL12, CTRL13, CTRL2, CTRL5, CTRL56, CTRL57, CTRL58, CTRL68, CTRL100, CTRL111, CTRL20, CTRL22, CTRL23, CTRL24, CTRL27, CTRL29, CTRL33, CTRL48, CTRL50, CTRL54, CTRL60, CTRL62, CTRL73, CTRL82, CTRL83.
References

blood biomarker to differentiate psychiatric disorders from behavioural variant

E, Padovani A: Csf p-tau181/tau ratio as biomarker for TDP pathology in

32. Bourbouli M, Rentzos M, Bougea A, Zouvelou V, Constantinides VC, Zaganas I,
Evdokimidis I, Kapaki E, Paraskevas GP: Cerebrospinal Fluid TAR DNA-Binding
Protein 43 Combined with Tau Proteins as a Candidate Biomarker for Amyotrophic
Lateral Sclerosis and Frontotemporal Dementia Spectrum Disorders. *Dement
Geriatr Cogn Disord* 2017, 44:144-152.

Trojanowski JQ, Levey AI: Reduced CSF p-Tau181 to Tau ratio is a biomarker for

34. Jiskoot LC, Panman JL, Meeter LH, Dopper EGP, Donker Kaat L, Franzen S, van der
Ende EL, van Minkelen R, Rombouts S, Papma JM, van Swieten JC: Longitudinal
multimodal MRI as prognostic and diagnostic biomarker in presymptomatic

35. McCarthy J, Collins DL, Ducharme S: Morphometric MRI as a diagnostic biomarker
of frontotemporal dementia: A systematic review to determine clinical

Neurofilament Light Chain as a Routine Biomarker in a Memory Clinic. *J Gerontol A

JL, Emeršič A, Simrén J, et al: Diagnostic and prognostic value of serum NfL and p-

38. Das S, Dewit N, Jacobs D, Pijnenburg YAL, In ’t Veld S, Coppens S, Quaglia M, Hirtz C,
Teunissen CE, Vanmechelen E: A Novel Neurofilament Light Chain ELISA Validated
in Patients with Alzheimer's Disease, Frontotemporal Dementia, and Subjective
Cognitive Decline, and the Evaluation of Candidate Proteins for Immunoassay

Alterations in GRN/C9orf72 and Sporadic Frontotemporal Lobar Degeneration. *Cells* 2022, 11.

40. Choulilaras L, Thomas A, Malpetti M, Donaghy P, Kane J, Mak E, Savulich G, Prats-
biomarkers of neurodegeneration in Lewy body dementia, Alzheimer's disease,
temporal dementia and progressive supranuclear palsy. *J Neurol Neurosurg
Psychiatry* 2022, 93:651-658.

primary psychiatric disorders from rapidly progressive, Alzheimer’s disease and

42. Krishnan G, Raitcheva D, Bartlett D, Prudencio M, McKenna-Yasek DM, Douthwright C,
Oskarsson BE, Ladha S, King OD, Barmada SJ, et al: Poly(GR) and poly(GA) in
cerebrospinal fluid as potential biomarkers for C9ORF72-ALS/FTD. *Nat Commun
2022, 13:2799.

Table 1. Summary of demographic and clinical characteristics of participants suffering from FTD and control samples.

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>FTD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of subjects (% males)</td>
<td>125 (32%)</td>
<td>168 (65.5%)</td>
</tr>
<tr>
<td>UCL controls</td>
<td>48 (45.8%)</td>
<td></td>
</tr>
<tr>
<td>Queen Mary Hospital controls</td>
<td>77 (23.4%)</td>
<td></td>
</tr>
<tr>
<td>Age at enrolment (yr.)</td>
<td>59.5±10.2</td>
<td>65.8±8.1</td>
</tr>
<tr>
<td>UCL controls</td>
<td>65.6±7.3</td>
<td></td>
</tr>
<tr>
<td>Queen Mary Hospital controls</td>
<td>55.7±10.0</td>
<td></td>
</tr>
<tr>
<td>Age of onset (1st reported symptoms)</td>
<td>60.3±8.3</td>
<td></td>
</tr>
<tr>
<td>Disease duration at enrolment (yr.)</td>
<td>5.5±3.4</td>
<td></td>
</tr>
<tr>
<td>FTD clinical subtype</td>
<td>81/40/28/5/14</td>
<td></td>
</tr>
<tr>
<td>(bvFTD/PNFA/SD/FTD-ALS/others)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FTD Mutation carriers</td>
<td>18/13/13/2</td>
<td></td>
</tr>
<tr>
<td>(C9ORF72/MAPT/GRN/TBK1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Likely FTD pathology (TDP-43/Tau)</td>
<td>63/18</td>
<td></td>
</tr>
</tbody>
</table>

bvFTD: behavioural FTD; PNFA: progressive nonfluent aphasia; SD: semantic dementia. Mean±SD.
<table>
<thead>
<tr>
<th>Predictor</th>
<th>Single Feature AUC</th>
</tr>
</thead>
<tbody>
<tr>
<td>miR-423-5p</td>
<td>0.69</td>
</tr>
<tr>
<td>miR-125b-5p</td>
<td>0.69</td>
</tr>
<tr>
<td>miR-26a-5p</td>
<td>0.68</td>
</tr>
<tr>
<td>miR-107</td>
<td>0.68</td>
</tr>
<tr>
<td>miR-185-5p</td>
<td>0.64</td>
</tr>
<tr>
<td>miR-629-5p</td>
<td>0.62</td>
</tr>
<tr>
<td>let-7d-3p</td>
<td>0.61</td>
</tr>
<tr>
<td>miR-379-5p</td>
<td>0.61</td>
</tr>
<tr>
<td>miR-361-5p</td>
<td>0.6</td>
</tr>
<tr>
<td>let-7c-5p</td>
<td>0.6</td>
</tr>
<tr>
<td>miR-326</td>
<td>0.58</td>
</tr>
<tr>
<td>miR-378a-3p</td>
<td>0.56</td>
</tr>
<tr>
<td>miR-484</td>
<td>0.55</td>
</tr>
</tbody>
</table>

Table 2. Predictive power of selected miRNA features, when used as a single predictor for FTD on held-out data. Among the most predictive features are miRNAs expressed in the brain, such as miR-26a-5p, miR-125b-5p and let-7c-5p.
Figure 1. miRNA signature associated with FTD. MA plot of differential miRNA expression in plasma of patients with FTD vs non-neurodegenerative healthy controls in the (A) total cohort of FTD patients and controls (N=168 and N=125, respectively). (B) C9ORF72 mutations carriers only (N=18) vs healthy controls (N=125). (C) Female patients with FTD and healthy female controls (N=58 and N=85, respectively) (D) male patients with FTD and healthy male controls (N=110 and N=40, respectively). Log 2 transformed fold change (y-axis), against mean miRNA abundance (x-axis). Red: significantly changed miRNAs (adjusted p<0.05, Wald test). Black: miRNAs showing insignificant change.
Figure 2: Diagnosis of FTD by a distinctive cell free miRNA signature.

(A) Mean accuracy under 3-fold cross validation (AUC ROC, y-axis) as a function of the number of plasma miRNAs used in the FTD prediction model. Increasing numbers of miRNA features (x-axis) successively selected in the recursive feature elimination process reveals a saturation at 13 features (red line).

(B) ROC curves in the training set: true positive rate (y-axis) vs. false positive rate (x-axis). Mean values and variance of data from 219 samples with 3-fold cross validation. Mean AUC 0.93 ± 0.02. 95% CI is 0.91-0.95.

(C) Performance and generalizability on replication held-out data revealed by an ROC curve with AUC of 0.9.

(D) Reliability diagram, plotting truly observed fraction of cases (upper plot, y-axis) vs. predicted probability by the prediction model (upper plot, x-axis), in five probability bins, reveals a sufficiently calibrated model on the held-out set. Lower plot shows the number of individuals at each of the five predicted probability bins.

(E) Confusion matrix showing the prediction errors on held out dataset. At a probability threshold of 0.6, we observed 0.87 Negative predictive value (NPV), 0.8 Positive Predictive Value (PPV/precision), 0.85 recall (sensitivity) and 0.83 specificity. In addition, a 0.17 False Positive Rate is obtained over 0.13 False Omission Rate and 0.2 false discovery rate.

(F) AUC ROC of a model trained with only a subset of top 13 most predictive features, reveals a stable performance with the selected final features.
Figure 3: The contribution of individual miRNAs to the predictor of FTD diagnosis. (A) Mean absolute SHapley Additive exPlanations (SHAP) values break down the impact of specific miRNAs on FTD disease non-linear predictor output in the held-out cohort. (B) Illustration of the relationship between the miRNA levels (low – blue to high – red), SHAP values and the impact on the prediction in the held-out cohort. Positive or negative SHAP value lead the model to a more likely FTD or healthy control predictions, respectively.
Figure 4. Distribution of the top 13 miRNA predictors in patients with FTD and controls. Box plots with complement scatter plots of the 13 miRNA features predicting FTD, depicting expression values of all cohort along with distribution of each miRNA. Blue dots represent the levels of a given miRNA measured in healthy control participants. Red dots represent the levels of a given miRNA measured in patients with FTD. Box – two central data quartiles, with a line at the median (Q2). Whiskers extend to show the rest of the distribution, except for points that are determined to be outliers using a method that is a function of the inter-quartile range.
Figure 5. AUC values for different miRNA classifiers for discriminating FTD vs controls in the held-out data. The classifiers were either the 13 selected in the FTD model in our data, a combination of miR-34a-5p, miR-345-5p, miR-200c-3p and miR-10a-3p [from [54]], or a combination of miR-335/let-7e, miR-99b/let-7e and miR-9-3p/miR-181a [from [52]];
Supplementary tables and figures

Supplementary Table 1. Age and sex characteristics of the cohort and exclusion by age of 34 individuals that were below 40 years of age during blood collection.

<table>
<thead>
<tr>
<th>Group Name</th>
<th>Before Exclusion</th>
<th></th>
<th>After Exclusion</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Age [95% CI]</td>
<td>Sex</td>
<td>Mean Age</td>
<td>Group Size</td>
</tr>
<tr>
<td>controls total (n=158)</td>
<td>53.8±14.5, 95% CI [51.5, 56.1]</td>
<td>F</td>
<td>54.0</td>
<td>103</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M</td>
<td>53.4</td>
<td>55</td>
</tr>
<tr>
<td>UCL controls (n=56)</td>
<td>61.0±13.3, 95% CI [57.4, 64.5]</td>
<td>F</td>
<td>61.1</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M</td>
<td>60.8</td>
<td>26</td>
</tr>
<tr>
<td>Queen Mary Hospital controls (n=102)</td>
<td>49.9±13.7, 95% CI [47.2, 52.6]</td>
<td>F</td>
<td>51.1</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M</td>
<td>46.8</td>
<td>29</td>
</tr>
<tr>
<td>FTD cases (n=169)</td>
<td>65.6±8.3, 95% CI [64.4, 67.0]</td>
<td>F</td>
<td>66.8</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M</td>
<td>65.0</td>
<td>110</td>
</tr>
</tbody>
</table>
Supplementary Figure 1. t-SNE analysis of control subjects from Queen Mary Hospital (blue) and from UCL (red). Similarity of the two control groups suggests they could have been taken from a single distribution which is justified further by an associated Kullback–Leibler divergence value of 0.293, a measure of the difference between two probability distributions.
Supplementary Figure 2. Diagnosis of FTD by a logistic regression model. (A) ROC curves in the training set: true positive rate (y-axis) vs. false positive rate (x-axis). Mean values and variance of data from 219 samples with 3-fold cross validation. Mean AUC 0.90 ± 0.04. 95% CI is 0.86-0.94. (B) Performance and generalizability on held-out data revealed by a ROC curve with AUC of 0.88. (C) Reliability diagram, plotting truly observed fraction of cases (upper plot, y-axis) vs. predicted probability by the prediction model (upper plot, x-axis), in five probability bins, reveals a sufficiently calibrated model on the held-out set. Lower plot shows the number of individuals at each of the five predicted probability bins. (D) Confusion matrix showing the prediction errors on held out dataset. At a probability threshold of 0.6, we observed 0.81 Negative predictive value (NPV), 0.81 Positive Predictive Value (PPV/precision), 0.76 recall (sensitivity) and 0.85 specificity. In addition, 0.15 False Positive Rate is obtained, over 0.19 False Omission Rate and 0.19 false discovery rate.
Supplementary Figure 3. Levels of 13 miRNA predictors in different FTD subtypes. miRNA levels for PNFA (progressive nonfluent aphasia), SD (semantic dementia), behavioral FTD (bvFTD) and the following subtypes: primary progressive aphasia, corticobasal syndrome, progressive supranuclear palsy and FTD with motor neuron disease, commonly referred to as “Other”. Box plot with two central data quartiles, with a line at the median (Q2). Whiskers extend to show the rest of the distribution, except for points that are determined to be outliers using a method that is a function of the inter-quartile range. Data were analyzed by one-way ANOVA. Post-hoc Bonferroni was conducted only for miR-107 (C) and miR-26a-5p (F) which showed significant differences in ANOVA. Significant pairwise differences in miR-107 levels were found between other FTD subtypes and both bvFTD (p=0.01) and SD (p=0.02). Significant pairwise differences in miR-26a were found between other FTD subtypes and both bvFTD (p=0.04) and PNFA (p=0.02).
Supplementary Figure 4. Levels of 13 miRNA predictors in mutations carriers.

miRNA levels for 802 FTD patients without known FTD mutations, or with mutations in C9ORF72, progranulin (GRN), tau (MAPT) and TBK1. Box plot with two central data quartiles, with a line at the median (Q2). Whiskers extend to show the rest of the distribution, except for points that are determined to be outliers using a method that is a function of the inter-quartile range. Data were analyzed by one-way ANOVA.